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Abstract Humans have the ability to easily separate a

composed speech and to form perceptual representations of

the constituent sources in an acoustic mixture thanks to

their ears. Until recently, researchers attempt to build

computer models of high-level functions of the auditory

system. The problem of the composed speech segregation

is still a very challenging problem for these researchers. In

our case, we are interested in approaches that are addressed

to the monaural speech segregation. For this purpose, we

study in this paper the computational auditory scene anal-

ysis (CASA) to segregate speech from monaural mixtures.

CASA is the reproduction of the source organization

achieved by listeners. It is based on two main stages:

segmentation and grouping. In this work, we have pre-

sented, and compared several studies that have used CASA

for speech separation and recognition.

Keywords Auditory system � Monaural speech

segregation � Computational auditory scene analysis

(CASA) � Segmentation � Grouping

1 Introduction

The auditory system is an acoustic and cognitive wonder.

Indeed, it has a remarkable ability to decompose the different

sources of soundscape, even noisy, and instantly make sense

of this entire noisy environment that reaches our eardrums. In

addition, when several speakers are talking simultaneously,

we are able to easily follow the speaker of interest. However,

this is a problem that remains highly complex in digital

signal processing. Indeed, the estimation of superposed

signals in a real environment is the current problem posed.

For this, several techniques have been developed to achieve

the purpose of composite speech separation.

In this context, we mention the blind sources separation

(BSS) which is the most general form of source separation

problem. It aims to extract the unknown speech signals

from the mixture signals without consideration of any ‘‘a

priori’’ information on signals sources or on mixture sig-

nals. Mixture signals observed at a set of sensors are

generally a combination of the source signals which are

undergoing changes and were added [1].

Since BSS is only based on multiple sensors records and

our interest is on the monaural speech segregation, we will

be focusing later only on these approaches. Several meth-

ods have been proposed for monaural speech separation,

like spectral subtraction [2], subspace analysis [3], hidden

Markov modeling [4], and sinusoidal modeling [5]. These

approaches usually suppose certain properties of interfer-

ence and then separate composite speech based on these

hypotheses. That is why their capacity for speech segre-

gation is much limited than the human capacity. Thus, we

are interested by the study of the computational auditory

scene analysis (CASA).

According to Bregman [6], the separation process in the

auditory scene analysis (ASA) has two main steps:
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segmentation and grouping. The first step is to decompose

the auditory scene in time–frequency zones or segments

which are sound elements having a coherent structure. The

second step is to group segments that may result from the

same source in auditory streams. The segmentation and

grouping mechanisms exploit acoustic features such as

harmonicity, coherent envelope, coherent modulation fre-

quency or amplitude…which are based on the intrinsic

characteristics of the sound properties. Two types of

combination are defined in the ASA: The simultaneous

mechanism and the sequential mechanism. The first

mechanism allows the assembly of the segments through

the frequencies, while the second mechanism incorporates

the segments having similar properties in time.

Research in ASA has inspired considerable work to

build CASA. CASA is a separation technique aimed to

numerically simulate the mechanisms of the human audi-

tory system to separate sources in the same way as do our

ears, at least theoretically. Indeed, it is the study of the

auditory scene analysis by computational means (repro-

duction of the ASA in machines). Several researchers have

adopted this approach for the separation of sources. This

technique involves two main stages: segmentation and

grouping [7–10].

The present paper is organized as follows. The second

section presents the different CASA stages and the ideal

binary mask. The third section describes Major works

using CASA for the composite speech separation and

recognition. In the fourth section, an evaluation and a

comparison are presented for different monaural speech

segregation methods. And finally the fifth section con-

cludes this work.

2 Computational auditory scene analysis (CASA)

Typically, CASA extracts one source from a single channel

of audio using heuristic grouping rules based upon psy-

chological observations. Then, it is based on two main

stages as ASA: segmentation and grouping [7–10] (Fig. 1).

2.1 Segmentation stage

The first step of CASA system usually consists of a time–

frequency analysis of the signal that mimics the frequency

selectivity of the human ear and the characteristics

extraction which are useful for the following steps. This is

the segmentation of the auditory scene in elementary

acoustic features [7–10].

Typically, the input signal is passed through a bank of

bandpass filters; each one simulates the frequency response

associated with a particular position on the basilar mem-

brane. The ‘gammatone’ filter is often used, which is an

approximation of the impulse response of the physiologi-

cally recorded auditory nerve fibers.

Most CASA systems make the device time–frequency

representation and the application of a correlogram to

extract features and useful information for the following

steps as: the autocorrelation of a filter response, the auto-

correlation of a filter response envelope, the cross-channel

correlation, the dominant fundamental frequency of each

frame…
The filter bank used is generally composed of 128

gammatone filters (or 64 filters) with center frequencies

ranging from 80 to 5000 Hz. The impulse response of this

filter has the following form:

g tð Þ ¼ atn�1e�2pbt Cosð2pf t þ UÞ; t[ 0

0; else

�
ð1Þ

where a is the amplitude, U is the phase, n is the filter

order(we usually take 4), b is the filter band width (ER

B = 24.7 ? 0.108 9 f), the filter center frequency, t is the

time.

For each channel, the output is divided into 20 ms

frames with an overlap of 10 ms between two consecutive

frames. As a result of this filtering and windowing, the

input signal is decomposed into a representation of two-

dimensional time–frequency (TF) or a collection of TF

units. Now, to extract the acoustic features of the signal, a

correlogram which is an autocorrelation executed in each

filter response across an auditory filterbank is used. Indeed,

it provides an efficient auditory representation mid-level

between the auditory periphery and segregation. For each

T–F unit, we have:

AH c;m; sð Þ ¼ 1

Nc

XNc�1

n¼0

h c;mT � nð Þh c;mT � n� sð Þ; ð2Þ

where c is the channel, n is the step time, t is the time

delay, Nc: number of samples, s is the delay

”

[0, 12.5 ms],

h (c, n) is the output of the channel cochlear filter bank.

The correlogram is an effective tool for F0 estimating

because it detects the periodicities present in the output of

the cochlear filterbank. Indeed, a convenient way to
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Fig. 1 The schematic diagram

of the CASA system
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determine F0 consists of adding the correlogram channels

as indicates this equation:

s m; sð Þ ¼
X
c

AHðc;m; sÞ: ð3Þ

The sum of the resulting autocorrelation function has a

peak at the period of each F0.

2.2 Grouping stage

After the first stage, we obtain a time–frequency repre-

sentation in order to extract features that are useful for

grouping. The grouping stage presents the problem of

determining which components should be grouped together

and identified as the same sound. Principal features that are

used for grouping are fundamental frequency (F0), har-

monicity, onset synchrony, continuity, etc. Then, the signal

components are split into groups based on the similarity of

their source and location attributes. These groups are the

separated signals.

In this context, it can be classified into sequential

grouping cues (across time) and simultaneous grouping

cues (across frequency) [7–10]:

• Sequential grouping is influenced by many of the

factors that define the similarity, the frequency prox-

imity, the repetitive character, and the repetition rate of

successive sounds.

• Simultaneous grouping is affected by harmonicity,

envelope coherence, binaural correlation, amplitude

modulation, and frequency modulation.

2.3 Ideal binary mask (IBM)

The notion of an ideal binary mask (IBM) has been pro-

posed as a primary goal of CASA.

In the time–frequency representation of the front-end

part, the key factor behind the notion of ideal binary mask

is to keep the time–frequency regions of the target that are

stronger than those of the interference, and delete regions

which are weaker than the latter. More precisely, the ideal

mask is a binary matrix, where ‘‘1’’ indicates that the

energy of the target is higher than the energy of the

interference inside the corresponding TF unit and ‘‘0’’

indicates the opposite [7–10]:

Mðt; f Þ ¼ 1 if sðt; f Þ � nðt; f Þ[ h;
0 else:

�
ð4Þ

where s (t, f) is the target energy in a TF unit, n (t, f) is the

interference energy.

Weintraub was the first who used this approach in a

CASA system, which had been adopted by several other

researchers. The use of binary masks is motivated by the

masking phenomenon of the human ear, in which a weaker

signal is masked by a stronger within the same critical

band. It is also noted that the reconstruction of a masked

signal can be interpreted as a highly nonstationary Wiener

filter. The IBM has several properties such as:

• Flexibility Depending on the target and with the same

mixture, we can define different masks.

• Good definition The mask is well defined even if there

are several intrusions in the speech mixture and we can

also estimate several targets from this same mixture.

• The ideal binary mask is more performant than all

existing masks. In fact, it gives excellent resynthesis for

a variety of sounds.

2.4 Major works using CASA for the separation

of the composite speech

There are several works that have used the CASA system

for the composite speech segregation, multiple fundamen-

tal frequencies estimation and tracking, speech recognition,

etc. All following works are based on CASA system.

For monaural segregation and multi-pitches estimation,

we note essentially the approach of Hu and Wang [11] who

proposed a system for resolved and unresolved harmonics

segregation of voiced speech. For resolved harmonics, the

model generates segments based on temporal continuity

and cross-channel correlation, and groups them according

to common periodicity. In order to segregate unresolved

harmonics, authors use the common amplitude modulation

(AM) and the temporal continuity to generate segments

which will be grouped after according to AM repetition

rates.

The Fig. 2 represents the schematic diagram of the

proposed multistage system.

In the first stage, an input signal is decomposed with a

bank of 128 gammatone filters into two-dimensional time–

frequency units. Then, autocorrelation of a filter response,

cross-channel correlation and dominant pitch are extracted

for each frame and used in the following stages.

In the second stage, these T–F units are merged into

segments which are grouped into initial foreground stream

and a background stream based on a dominant pitch. Then,

Segregated 
Speech 

Mixture 

Peripheral and 
mid-level 
processing 

Initial 
segregation 

Pitch 
tracking 

Final 
segregation 

Resynthesis 

Fig. 2 The schematic diagram of the proposed multistage system

A comparison of several (CASA) techniques for monaural 157

123



two streams are obtained which respectively correspond to

target and intrusion speech.

In the third stage, the fundamental frequency of the

target speech is extracted from the initial foreground

stream and it is used to mark units as speech dominant or

interference dominant.

In the next stage, segments obtained in the initial seg-

regation are regrouped based on unit labels in order to

obtain foreground and background streams.

Finally, target speech and intrusion speech are obtained

by synthesizing the speech waveform from the resulting

foreground stream.

After this work, the same authors [12] proposed a tan-

dem algorithm that performs pitch estimation of a target

speech and voiced zones segregation. This algorithm first

obtains a rough estimation of target pitch, and then uses

this estimation to segregate target speech using harmonic-

ity and temporal continuity. This algorithm improves both

pitch estimation and voiced speech segregation iteratively.

On the other hand, Zhang and Liu [13] added to CASA

system minimum amplitude and harmonicity principles for

resolved harmonics segregation. To segregate unresolved

harmonics, they extracted AM rate by the enhanced auto-

correlation function of the envelope. The ‘‘Enhanced’’ ACF

eliminates the fake period peaks and improves the

robustness.

Besides, Zhang and Liu [14] presented a novel approach

for monaural voiced speech separation that differs with

usual methods by avoiding the compute of correlograms.

The typical Front-End processing is applied to the com-

posite speech in order to obtain time–frequency units. After

that, the zero crossing rate (ZCR) of the T–F units is used

to extract the pitch contour of the target speech. Finally, a

comb filter is applied to label each unit as target speech or

intrusion.

Furthermore, Radfar and Dansereau [15] introduced a

new algorithm called ‘‘MPtracker’’ for pitch frequencies

estimation and tracking in order to separate two speakers

from their mixture. The pitch frequencies are detected by

introducing a novel spectral distortion optimization which

takes into account the sinusoidal modeling of the speech

signal. The detected pitch frequencies are grouped, sepa-

rated, and interpolated for obtaining two separated

speakers.

In addition, we cite Jiang and Liu [16] who proposed a

new monaural speech segregation method by the new

implementation of the Gammatone frequency cepstral

coefficients (GFCC) which are extracted within each T–F

unit and the use of a deep neural networks (DNNs) clas-

sifier for the ideal binary mask estimation.

Figure 3 shows the diagram of the proposed system.

As CASA system, the input mixture is decomposed into

T–F units by the auditory filterbanks. After calculating

features for each frame, the GFCC are introduced as the

inputs to the binary DNN classifier for each frequency

channel. This classifier grouped T–F units to target speech

and intrusion speech.

Li and Guan [17] proposed a new method which com-

bines CASA with objective quality assessment of speech

(OQAS) in order to segregate voiced speech. In fact, the

OQAS algorithm is used to classify foreground and back-

ground streams.

This combination introduced the knowledge on speech

perceptual quality in separation and constructed a direct

link between separated speech and its perceptual quality for

improving the performance of the speech separation.

The Fig. 4 represents the schematic diagram of the

proposed technique.

In this approach, the typical CASA model of Hu and

Wang’s system for resolved and unresolved harmonics

segregation is employed. For more reliable grouping result

of the foreground and background streams corresponding

to the target speech and intrusion, there are two parts where

OQAS is inserted into this system: in the initial and the

final segregation stages.

Hu and Wang [18] used CASA system to segregate

unvoiced speech using segregated voiced signals. At first,

this system removes estimated voiced speech and the

periodic part of interference based on cross-channel cor-

relation. Then, it estimates interference energy by averag-

ing mixture energy in neighboring voiced intervals.

Unvoiced speech segregation is decomposed in two stages:

segmentation and grouping. In fact, the estimated inter-

ference is used by spectral subtraction to extract unvoiced

segments, which are then grouped by either simple

thresholding or Bayesian classification.

Figure 5 shows the diagram of unvoiced speech segre-

gation system.

First, composite speech is analyzed by an auditory

periphery model and voiced speech is segregated using the

tandem algorithm as Hu and Wang CASA system. After

that, the segregated voiced speech is subsequently removed

along with the periodic portions of interference from the

mixture.

The unit is included in the segregated voiced stream, or

it has a high cross-channel correlation.

After the removal of periodic signals, the mixture is

composed of only unvoiced speech and a periodic inter-

ference. Then, this mixture is segmented by spectral sub-

traction. Finally, in order to extract only unvoiced speech

segments and to remove residual noise, a grouping is car-

ried out.

For speech recognition, Shao and Srinivasan [19] have

presented a CASA system for segregating and recognizing

the target speech in a mixture. The proposed system is

based on two stages. First, the harmonicity is used to
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segregate the voiced portions of individual sources in each

time frame based on multipitch tracking. And an onset/

offset analysis is used to segment unvoiced portions. Sec-

ond, speaker characteristics are used to group the T–F units

across time frames. The resulting masks are used in an

uncertainty decoding framework for automatic speech

recognition.

The Fig. 6 shows the diagram of proposed system.

The input signal is analyzed by an auditory front-end to

obtain T–F representation. In the segmentation stage, both

voiced and unvoiced segments are generated. After that, a

simultaneous grouping process uses periodicity similarity

to group voiced components and produces simultaneous

streams. In addition, a sequential grouping algorithm

organizes these simultaneous streams and unvoiced seg-

ments across time. The resulting binary T–F masks are

used by an uncertainty decoder and a target selection

mechanism to recognize the target utterance.

Zhao and Shao [20, 21] used CASA as a front-end

processor for robust speaker identification (SID).

In fact, they have first introduced the GFCC, based on an

auditory periphery model for better speaker characteristics

capture. They have also applied CASA masks for speech

separation for noisy speech in order to better reconstruct or

marginalize corrupted components. Then, they have com-

bined both reconstruction and marginalization methods

into their system for best results.

Figure 7 shows the diagram of proposed system.

The CASA system is applied to the input signal, in order

to compute a binary mask which indicates whether a par-

ticular T–F unit is dominated by target speech or by

intrusion. In the same time, the input speech is decomposed

into gammatone features (GF) by an auditory filterbank.

And, GFCC are derived from GF by a cepstral analysis.

After that, with CASA masks, unreliable components can

be reconstructed or marginalized. As reconstruction and

marginalization modules perform well in different condi-

tions, a combination system integrating these two modules

is proposed.

3 Evaluation and comparison

In this section, we cite only approaches that are evaluated

on Cooke database [22]. This database is a collection of

composite sounds obtained by mixing ten male voiced

speech signals with ten other signals representing a variety

of sounds called interferences that can be classified into

three categories:

(1) Interferences without pitch (N1: White noise and

N2: Impulse noise),
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(2) Interferences having a pitch quality (N0: Pure

frequency of 1 kHz, N3: Cocktail party noise, N4:

Rock music, N5: Siren and N6: Ringtone).

(3) Speech interferences (N7: Speech signal uttered by a

woman 1, N8: Speech signal uttered by a man 2 and

N9: Speech signal uttered by a woman 2).

3.1 SNR

To evaluate the performance of studied models, the signal-

to-noise ratio (SNR) is applied. Its computation is as

follows:

SNR ¼ 10 log10

P
t R tð Þ2

P
t R tð Þ � S tð Þ½ �2

" #
; ð5Þ

where, R(t) is the clean speech, S(t) is the synthesized

waveform by segregation systems.

The Table 1 contains the SNR results for different

methods that are evaluated on Cooke database.

We compare some of precedent developed methods and

other approaches for composite speech segregation. We

conclude that the tandem algorithm of Hu and Wang [11]

performs consistently better than other systems. In fact,

they introduced a new aspect to usual CASA system that

treats unresolved harmonics in the high-frequency range.

And, they improved pitch estimation and voiced speech

segregation using harmonicity and temporal continuity.

This table contains also true pitch that is obtained from

premixing target speech and further verified manually to

ensure high quality for examining more closely the type of

error. Moreover, we cite the Narrow band filter which is an

alternative filterbank with a fixed narrow bandwidth and

the comb filtering method which extracts a harmonic series

using pitch information [23]. Indeed this filter retains target

speech and attenuates interference whose frequency com-

ponents are incompatible with the series target harmonic.

The results are not as good as those using an auditory

filterbank.

The spectral subtraction method which is a standard

method for speech enhancement is also cited. However,

because of its well-known deficiency in dealing with no

stationary interference, it performs significantly worse than

other systems.

Besides, we mention Wang and Brown CASA model

that is representative of recent CASA systems [24]. The
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processing of the Wang–Brown model is similar to the first

two stages of Hu and Wang model.

Hu and Wang system is more efficient than the Wang–

Brown system. In fact, figures below show that the sepa-

ration is more perfect in the case of Hu. The target signal is

more similar to the clean speech (Figs. 8, 9, 10, 11, 12, 13).

From these figures, it is clear that the segregated speech

from Hu–Wang system is more similar to the clean speech

for the three cases than the segregated speech from Wang–

Brown system.

3.2 Run-time complexity

In this section, we analyze and compare the run-time

complexity only of Hu–Wang model to Zhang–Liu system

because Hu and Wang model [4] has much better perfor-

mance than the previous systems.

The entire separation systems are relatively compli-

cated. For this, only the major processes in each stage are

compared like correlogram, segmentation, pitch estima-

tion… The complexity of computing correlograms is O

(CLlogW), where W is the time frame.

Table 2 shows the different compared processes

between Hu and Wang [11] and Zhang–Liu [14].

In Table 3, we present the computing time of three

methods.

From Table 3, we note that Zhang and Liu system has

the best computing time. In fact, the computing time of the

first Hu and Wang model [11] is 14.6 times of real time. An

enhanced version of Hu and Wang system [11] called

Table 1 SNR results

N0 N1 N2 N3 N4 N5 N6 N7 N8 N9 Average

Mixture -3.26 -4.07 10.19 4.34 3.99 -5.82 1.90 6.62 10.37 0.73 2.49

Hu and Wang [11] 16.34 7.83 16.71 8.32 10.88 14.41 16.89 11.97 14.44 5.27 12.30

Hu and Wang [12] 24.50 13.50 20.30 13.40 11.99 22.40 18.60 15.11 17.60 8.66 16.60

Zhang and Liu [13] 17.07 5.94 17.26 6.26 8.50 15.18 16.23 11.50 14.43 7.40 11.97

Zhang and Liu [14] 17.86 8.16 18.27 8.26 11.28 16.04 17.46 11.93 14.84 4.98 12.90

Li and Guan [17] 11.13 3.50 14.41 5.21 6.66 12.93 14.66 9.39 11.50 3.96 9.33

True pitch 16.33 8.35 17.71 8.79 11.56 15.06 17.76 12.31 15.32 6.04 12.92

Narrow band [23] 9.88 6.74 11.44 6.94 8.95 8.33 11.31 9.15 10.60 3.98 8.73

Comb filter 3.12 3.01 13.28 8.72 8.32 2.25 6.56 10.57 13.19 5.39 7.44

Wang–Brown [24] 11.31 4.93 11.19 5.65 8.72 10.44 11.15 9.22 10.84 2.66 8.61

Spectral subtraction 18.35 3.05 16.00 6.14 8.32 -5.51 4.85 8.23 10.90 2.46 7.27

Ideal binary mask 20.76 9.04 22.90 9.72 13.19 18.40 21.53 15.78 18.10 10.5 15.99
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‘‘AccHW’’ consists on calculating the bandpass filtering

and correlograms in the spectrum domain. ‘‘AccHW’’

saves 57 % computing time, while the total computing

time of the Zhang and Liu model [14] is 2.23 times of real

time.

4 Discussion and overview

Hu and Wang model [11] has much better performance

than previous systems. First, this system applies different

mechanisms to deal with resolved and unresolved

Mixture
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Fig. 10 Mixture of two males;

clean speech, segregated speech

from Wang–Brown system and

segregated speech from Hu–

Wang system
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harmonics. Secondly, the separation is based on segmen-

tation which is more robust than other techniques. Besides,

the fundamental frequency is determined in noisy envi-

ronment and it is applied for final segregation. Moreover,

the tandem algorithm of Hu and Wang [12] is robust to

interference. In fact, it produces good estimations of both

pitch and voiced speech even in the real noisy

environment.
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Fig. 11 Spectrograms of

respectively two males mixture;

clean speech, segregated speech

from Wang–Brown system and

segregated speech from Hu–

Wang system
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and cocktail party noise; clean

speech, segregated speech from

Wang–Brown system and

segregated speech from Hu–

Wang system
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Nevertheless, in the case of two-speaker situation (the

third category of Cooke database (N7, N8, and N9)), the

performance of these methods is relatively limited. In fact,

these models make grouping based only on pitch. As a

result, they are limited to segregation of only voiced

speech. In addition, unvoiced speech presents also a big

challenge for monaural speech segregation.

On the other hand, according to Zhang and Liu [13], the

Hu–Wang model has failures like AM (amplitude modu-

lation) rate detection error. To overcome the disadvantages,

their system uses the ‘‘Enhanced’’ ACF (envelope auto-

correlation function) to eliminate the wrong period peaks

and to improve the robustness. Added to that, the Zhang

and Liu system [14] has the best computing time (see

Sect. 4.2).
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Fig. 13 Spectrograms of

respectively speech and cocktail

party noise mixture; clean

speech, segregated speech from

Wang–Brown system and

segregated speech from Hu–

Wang system

Table 2 Comparison of time

complexity

C number of channels, L length

of input signal, T time shift,

D maximum pitch period,

F length of FIR bandpass filter

Stage Process Hu–Wang [11] Zhang–Liu [14]

Front-end Signal decomposition O(CL) O(CL)

Envelope Extraction O(CLlog(L)) O(CLlog(L))

Correlograms O(CLD)

ZCR O(CL)

Pitch estimation Segmentation O(CL/T) O(CL/T)

Pitch estimation O(CL) O(CL)

Unit labeling Bandpass filtering O(CLF)

Comb filtering O(CL)

Separation and synthesis O(CL) O(CL)

Table 3 Computing time

Run time (s) Real time property

Hu–Wang [11] 2460 14.6 9 RT

AccHW 1064 6.33 9 RT

Zhang–Liu [14] 375 2.23 9 RT

164 J. Zeremdini et al.

123



Besides, for Radfar and Dansereau [15], their algorithm

detects and tracks the pitch contours for the dominant and

intrusion signals. Besides, this model does not suppose that

the mixture signal is only voiced. Also, it assigns the

contours of pitch to individual speakers.

In addition, Jiang and Liu method [16] has shown consistent

and significant automatic speech recognition (ASR) perfor-

mance gains in various noise types and SNR level conditions.

In fact, this system achieves more robust segregation in low

SNR conditions. Nevertheless, the performance decreases

gradually in no stationary noisy and reverberant conditions.

Moreover, Li and Guan [17] make a link between CASA

system and the speech quality. This combination enables a

better selection of the segments which were not affected

greatly by interference sources and use them to track the

pitch contour which can be useful in the separation step.

However, there are some weaknesses in this approach.

First, the model performance depends greatly on the accu-

racy of an estimated target pitch contour. In fact, the clas-

sification of the foreground and the background in the initial

segregation stage is mainly based on the objective quality

assessment of speech (OQAS) algorithm. But, it is still a

machine estimation and the obtained result is more or less

different from the subjective mean open score (MOS). In

addition, the combination of CASA with OQAS is not the

best combination. It is necessary to find an optimal combi-

nation method of CASA and OQAS to ameliorate the sepa-

ration. Moreover, this system just enables voiced speech

segregation based only on pitch. It does not address the

problem of unvoiced speech separation.

Finally, from the previously presented methods, we conclude

that CASA system is introduced to solve the problem of speech

segregation by mimicking the auditory process of source sepa-

ration. In fact, CASA does not make strong assumptions about

interference. Also, it can be used on single channel input.

For harmonics segregation, the earlier CASA systems

employ the human strategy. These systems have good seg-

regation results for resolved harmonics but poor for unre-

solved ones. Besides, in high frequency, the performance is

not as good as in the low frequency because intrusions are

stronger. However, current CASA systems have resolved

these problems by applying different mechanisms to deal

with resolved and unresolved harmonics and using new

techniques which are more robust for the separation process.

Nevertheless, the performance of these systems is still lim-

ited by fundamental frequency estimation errors, residual

noise and in the case of two-speaker situation [10].

5 Conclusion

In this paper, we have focused on CASA for monaural

speech segregation. CASA is based on two stages:

segmentation and grouping. In the segmentation stage, the

input mixture is passed through a bank of bandpass filters in

order to obtain time–frequency units and the application of a

correlogram to extract features that are useful for the fol-

lowing stage. Usually, the ‘gammatone’ filter is used

because it is an approximation of the impulse response of the

physiologically recorded auditory nerve fiber. In grouping

stage, the problem of determining which components should

be grouped together and identified as the same sound is

resolved. There are several methods that used CASA to

separate composite speech such as Hu and Wang, Zhang and

Liu, Zhao and Shao, Li and Guan approaches, etc. These

methods are developed, evaluated and compared too.

6 Prospects

As prospects, we want to propose an approach that ame-

liorates the monaural speech segregation by ameliorating

the method of pitch estimation, dealing well with resolved

harmonics and unresolved ones. Besides, we want to do the

segregation of a monaural mixture containing more than

two speakers.
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