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Amyotrophic lateral sclerosis is a devastating disease characterized primarily by motor system degeneration, with
clinical evidence of cognitive and behavioural change in up to 50% of cases. Amyotrophic lateral sclerosis is both
clinically and biologically heterogeneous. Subgrouping is currently undertaken using clinical parameters, such as
site of symptom onset (bulbar or spinal), burden of disease (based on the modified El Escorial Research Criteria)
and genomics in those with familial disease. However, with the exception of genomics, these subcategories do not
take into account underlying disease pathobiology, and are not fully predictive of disease course or prognosis.
Recently, we have shown that resting-state EEG can reliably and quantitatively capture abnormal patterns of
motor and cognitive network disruption in amyotrophic lateral sclerosis. These network disruptions have been
identified across multiple frequency bands, and using measures of neural activity (spectral power) and connectiv-
ity (comodulation of activity by amplitude envelope correlation and synchrony by imaginary coherence) on
source-localized brain oscillations from high-density EEG. Using data-driven methods (similarity network fusion
and spectral clustering), we have now undertaken a clustering analysis to identify disease subphenotypes and to
determine whether different patterns of disruption are predictive of disease outcome.
We show that amyotrophic lateral sclerosis patients (n = 95) can be subgrouped into four phenotypes with distinct
neurophysiological profiles. These clusters are characterized by varying degrees of disruption in the somatomotor
(a-band synchrony), frontotemporal (b-band neural activity and cl-band synchrony) and frontoparietal (cl-band
comodulation) networks, which reliably correlate with distinct clinical profiles and different disease trajectories.
Using an in-depth stability analysis, we show that these clusters are statistically reproducible and robust, remain
stable after reassessment using a follow-up EEG session, and continue to predict the clinical trajectory and dis-
ease outcome.
Our data demonstrate that novel phenotyping using neuroelectric signal analysis can distinguish disease subtypes
based exclusively on different patterns of network disturbances. These patterns may reflect underlying disease
neurobiology. The identification of amyotrophic lateral sclerosis subtypes based on profiles of differential impair-
ment in neuronal networks has clear potential in future stratification for clinical trials. Advanced network profiling
in amyotrophic lateral sclerosis can also underpin new therapeutic strategies that are based on principles of
neurobiology and designed to modulate network disruption.
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Introduction
Amyotrophic lateral sclerosis (ALS) is a heterogeneous neurodege-
nerative disorder that primarily affects the motor system, causing
varying degrees of upper and lower motor neuron dysfunction,1

with additional involvement of extra-motor regions2 presenting as
cognitive and/or behavioural impairment that overlaps with fronto-
temporal dementia (FTD).3,4 The ALS population is clinically hetero-
geneous both in presentation and prognosis, and with variability in
underlying disease pathobiology.5 Current clinical phenotypes are
based on the predominant site of symptom onset (spinal, bulbar
and respiratory), family history (sporadic and familial) and relative
degree of upper and lower motor neurone involvement (lower and
upper motor predominant). In addition, patients with ALS are often
categorized on the basis of their survival period (short, average and
long).5 Quantitative measurements that correlate with the clinical
subgroups have been sought using structural and functional MRI,6

PET7,8 and neurophysiological (EEG and EMG) data.9–12

Additional refinements in clinical phenotyping in ALS include
the interrogation of behavioural subphenotypes,13 data from early
clinical consultation to determine ranges of survival probability14

and genomic characterization. At least 30 identified genes and
three main pathophysiological processes (i.e. RNA biology, protein
turnover and axonal transport) have been associated with ALS.15

Taken together, these observations, along with the absence of a
clear correlation between ALS-associated genes, and highly dis-
tinctive molecular neuropathological and clinical subtypes,16 pro-
vide evidence that ALS can no longer be considered as a single
disease with a singular pathophysiology and clinical course.

Current imaging and neurophysiology evidence suggests that dif-
ferential disruption of neural networks, underpinned by biological
pathology and genetic factors,17,18 is likely to reflect heterogeneous
clinical presentations. This heterogeneity cannot be fully discerned
using existing clinical tools, such as the revised ALS Functional Rating
Scale (ALSFRS-R),19 which measures motor decline, and the Edinburgh
Cognitive and Behavioural ALS screen (ECAS),20 which screens for

cognitive and behavioural change.21 Though validated as a primary
outcome measure in clinical trials, the ALSFRS-R is ordinal, semiquan-
titative and the subscales within the instrument are subject to floor
and ceiling effects.22

Technological improvements in neuro-electro-physiological meas-
ures, and more specifically EEG, can provide additional insights into
functional changes associated with different neurodegenerative dis-
eases at a network level.21 Using this approach with task-based para-
digms, we have shown changes implicating dysfunction of the
frontoparietal network.9,23,24 Furthermore, we have shown that resting-
state EEG, which can provide distinct measures that reflect different
processes in the brain,25 can quantitatively capture both motor and cog-
nitive networks affected in ALS. More specifically, using sensor-space
analysis, we have found resting-state EEG changes that are correlated
with structural changes in MRI10 and in line with other EEG studies.26–28

In a follow-up study using advanced source-space analysis, we further
delineated dysfunctional networks and corroborated the findings with
both structural MRI and clinical data.29

Here, we hypothesize that patient subgroups can be identified based
on patterns of network disruption that could be used to reveal poten-
tially different responses to therapy and thus, should be monitored and
studied as complementary profiling measures. We show how the EEG
measures of activity and connectivity in the brain networks provide the
information for forming stable clusters of ALS patients and the distinct
neurophysiological profiles associated with these patient clusters.

Materials and methods
Ethical approval

Approval was obtained from the ethics committee of Beaumont
Hospital, Dublin, Ireland (reference: 13/102) and the Tallaght
Hospital/St. James’s Hospital Joint Research Ethics Committee (ref-
erence: 2014 Chairman’s Action 7) for St James’s Hospital, Dublin,
Ireland. The experimental procedure conformed to the Declaration
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of Helsinki. All participants provided written informed consent be-
fore taking part in the experiments.

Participants
Patient recruitment

Patients with ALS were recruited from the National ALS clinic in
Beaumont Hospital Dublin. Healthy controls included neurologic-
ally normal, age-matched individuals recruited from an existing
population-based control bank.

Inclusion criteria

All ALS patients were within the first 18 months from diagnosis and
fulfilled the revised El Escorial diagnostic criteria for Possible,
Probable or Definite ALS.30 All patients underwent cognitive screen-
ing and were classified according to the revised Strong Criteria.31

Exclusion criteria

Patients diagnosed with primary lateral sclerosis, progressive
muscular atrophy, flail arm/leg syndromes, previous transient is-
chaemic attacks, multiple sclerosis, stroke, epilepsy, seizure dis-
order, brain tumours, structural brain abnormalities, other
neurodegenerative conditions and other medical morbidities, such
as human immunodeficiency virus, were excluded.

The demographic profiles

A total of 95 ALS patients: 70 with spinal onset [male/female: 52/18;
mean ± standard deviation (SD) age: 59±12 years], 21 patients with
bulbar onset (male/female: 14/7; age: 60±11) and four patients with
respiratory onset (male/female: 3/1; age: 62± 4) were included, along
with 77 healthy controls (male/female: 29/48; age: 60± 11). Five
patients (male/female: 2/3; age: 70±9) were diagnosed as ALS-FTD
(based on the Strong criteria)31 and 11 patients (male/female: 6/5;
age: 61±6) had the hexanucleotide repeat expansion in the C9orf72
gene. Patients and controls were matched for age (Mann–Whitney U-
test, P = 0.73), but not for gender (Fisher’s exact test, P5 0.001).

Experiment
Experimental paradigm

The experiment was resting-state with eyes open, divided into
three 2-min recording blocks, allowing for rest between blocks and
to ensure patients remained awake. Subjects were seated in a
comfortable chair, asked to relax, while they fixated their gaze at
the letter X (6 � 8 cm) printed on an A4 sheet of paper placed �1 m
in front of them.

EEG data

EEG data with 128 channels were collected using the BioSemi
Active Two system (BioSemi B.V.) and sampled at 512 Hz, after a
lowpass anti-aliasing filter (0–104 Hz) was applied by the acquisi-
tion hardware. Additional filtering was applied during the ana-
lysis. Recordings were conducted in a dedicated laboratory with a
Faraday cage isolation at St. James’s Hospital, Dublin. Besides the
initial recording session for 95 ALS and 77 healthy controls, 36 ALS
patients had one follow-up EEG session after 4–6 months.

Disease severity and neuropsychology data

The scores from ALSFRS-R (n = 88),19 ECAS (n = 72)20 and Beaumont
behavioural inventory (BBI, n = 87)32 were used to provide clinical
profiles of clusters based on neurophysiological patterns. All

clinical subscores were either normalized or standardized:
ALSFRS-R subscores were normalized by dividing by the maximum
possible value in each subscore and subtracting it from one; ECAS
subscores were z-score standardized using age and education
matched normative data from an Irish population33,34 and multi-
plied by minus one; and BBI score was normalized by dividing by
the maximum possible value. This ensured that all subscores had
the same direction of change, wherein an increased subscore
means an increased impairment in the corresponding function.

In addition to this, King’s staging (n = 84),35 which assesses the
disease burden in patients in stages from one (single region
involved) to four (ventilatory support and/or gastrostomy), was
used.

Data analysis
EEG data

The preprocessing and processing procedures were identical to
those described in our cross-sectional study.29 Briefly, we have
applied the linearly constrained minimum variance beamformer36

on the bandpassed (1–97 Hz) EEG data to obtain time-varying
signals originating from 90 brain regions (excluding the cerebel-
lum) based on the automated anatomical labelling atlas
(Supplementary material).37 Using the 90 source-reconstructed sig-
nals, we estimated normalized spectral power (with respect to
total spectral power), comodulation (amplitude envelope correl-
ation) and synchrony (imaginary coherence). Spectral power was
estimated for each region, while comodulation and synchrony
were estimated between all pairs of brain regions resulting in a
90 � 90 symmetrical connectivity matrix, wherein 4005 (90 � 89/2)
connectivity features were unique. All three measures were esti-
mated in six frequency bands: d (2–4 Hz), h (5–7 Hz), a (8–13 Hz), b

(14–30 Hz) and c (cl: 31–47 Hz, ch: 53–97 Hz). The analysis resulted in
three groups of EEG features: spectral power (90 � 6 = 540 features),
comodulation (4005 � 6 = 24 030) and synchrony (24 030). This
analysis was applied on both healthy control and ALS data
(Supplementary material).

Clustering

Without previous knowledge of the EEG features that distinguish
one ALS patient from the other, an unsupervised clustering ap-
proach was chosen and applied on all available EEG features. First,
the similarity network fusion (SNF) method38 was used for com-
bining and preparing the high-dimensional dataset and subse-
quently the spectral clustering39 was used for inference of the
clusters.

For preparation of the data before the clustering, each EEG fea-
ture was z-scored. Three patient similarity matrices (one for each
group of EEG features) based on the Euclidean distance, were con-
structed with multiple Gaussian kernels40 and fused into one simi-
larity matrix using the SNF method. The SNF method iteratively
updates each matrix with the information from the other matrices,
thus fusing in the complementary information. To ensure that the
irrelevant associations between patients emerging from the accu-
mulated noise over many features are removed, the fused similar-
ity matrix was denoised using the network enhancement
method.41 Finally, subgrouping of patients was undertaken using
spectral clustering.39 For additional information, see the
Supplementary material. This clustering pipeline was selected
based on the non-parametric and robust nature of these methods
pertinent for clustering, especially in combining the EEG measures,
which served to avoid finding clusters that heavily depend on spe-
cific mathematical assumptions or individual data values.

Subphenotyping ALS using EEG 623|BRAIN 2022: 145; 621–631

https://academic.oup.com/brain/article-lookup/doi/10.1093/brain/awab322#supplementary-data
https://academic.oup.com/brain/article-lookup/doi/10.1093/brain/awab322#supplementary-data
https://academic.oup.com/brain/article-lookup/doi/10.1093/brain/awab322#supplementary-data


Statistical significance of clusters

The optimal number of patient subgroups (k = 2, . . ., 7) was chosen
using a statistical approach applied on the eigengap and rotation
cost indices,42 which are based on the eigenvalues and eigenvec-
tors in the spectral clustering method, respectively. The biggest
eigengap and the smallest rotation cost indicate the optimal num-
ber of clusters in the dataset (Supplementary material).

Taking a conservative approach, a statistical procedure that tests
whether the two indices are likely to give such high (eigengap) and
low (rotation cost) values under a null hypothesis of no actual clusters
in data (i.e. homogenous data) was applied. In our Monte Carlo proced-
ure, the null hypothesis was that the data come from the same data-
set but with randomly permuted values within each EEG feature. The
clustering was performed on the permuted dataset and the two indi-
ces were calculated. This procedure was repeated 5000 times to obtain
the empirical null distributions and the P-values.43 In addition to this,
bootstrapping was used to estimate the non-null distribution of the in-
dices, statistical power at a = 0.05 (1 – b0.05) and Cliff’s delta (a non-
parametric measure of effect size).44 All the statistical measures were
calculated for each clustering solution, k = 2, . . ., 7.

Neurophysiological profiles

For each participant, 90 ‘EEG networks’ were defined based on the
networks that are known to be activated at rest45 and affected in
ALS.9,29,46,47 Namely, the 90 networks were constructed by separ-
ately averaging spectral power, comodulation and synchrony in
five anatomical networks (somatomotor, frontotemporal, fronto-
parietal, default mode and salience) and in six frequency bands
(3 � 5 � 6 = 90 Supplementary material). For each combination (i.e.
‘EEG network)’ an AUC (area under the curve of the receiver operat-
ing characteristics curve) was used to make the comparison
between each ALS cluster and the control data. To further infer
statistical significance in the multidimensional space and to con-
trol for multiple comparisons (q = 0.1, false discovery rate, FDR),29

empirical Bayesian inference (EBI)43 was applied on the AUC test
statistics. This statistical tool exploits both the original (non-null)
observations and null-permuted data to estimate the probability
density function of the data and null, respectively.

The obtained AUC values were then used to determine brain net-
works that are strongly and exclusively associated with each of the
identified clusters. An EEG network was considered as a potential
and exclusive characteristic of a cluster if it was statistically signifi-
cant compared to controls, and unique or directionally opposite in its
change compared to other clusters (Supplementary material). Here,
we reported the most characteristic EEG network that is affected for
each cluster. Additionally, for each EEG network, the statistical differ-
ence between clusters (v2-statistic, Kruskal–Wallis one-way ANOVA)
was tested, while accounting for multiple comparisons (q = 0.05,
FDR),48,49 and a Monte Carlo permutation procedure was applied to
estimate the associated statistical power (1 – b0.05).

Additionally, complete brain maps for each EEG measure and
frequency band were obtained in a similar manner using AUC and
EBI between each cluster and the control data. These maps were
then masked using P-values from Kruskal–Wallis one-way ANOVA
to distinguish the EEG abnormalities that are shared by all identi-
fied clusters and those specific to each cluster.

Clinical profiles

Clinical profiles of subgroups were compared using the subscores
of motor (ALSFRS-R), cognitive (ECAS) and behavioural (BBI) dys-
function. Significant difference of scores across the clusters was
tested using Kruskal–Wallis one-way ANOVA. In addition to this,

associations between the identified EEG clusters and known clinic-
al factors (type of initial diagnosis, site of disease onset and
C9orf72 gene status) that could influence our findings were tested
using the Fisher’s exact test. Survival probability was analysed
using the Kaplan–Meier method, wherein patients that were alive
at the time of analysis were right-censured and survival was
measured from the time of the reported symptom onset. The log
rank test was used for testing of the difference between the sur-
vival curves.

Cluster validation

For a reliable interpretation of the derived clusters, we have
assessed the accuracy, robustness and stability of clusters math-
ematically as well as experimentally. Specifically, four validation
approaches were implemented using: a different clustering
method (the Louvain method for community detection),50 a classi-
fication approach and by inspecting the reassignment of patients
under small perturbations of data and when using a single follow-
up EEG assessment (after 4–6 months following the initial session,
n = 36 ALS patients). These validation methods are detailed in the
Supplementary material.

Clustering using clinical data

To assess whether the derived EEG clusters simply recapitulate the
subtypes that can be derived directly from the clinical data, the
clustering procedure was applied on n = 60 patients with the com-
plete clinical dataset. A fused similarity matrix was constructed
from three similarity matrices based on 12 ALSFRS-R, five ECAS
and one BBI subscores (n = 18 subscores in total). The optimal
number of clusters was determined using the statistical approach
as in the main analysis. Furthermore, the accuracy and the robust-
ness of the clustering solution was evaluated using the same pro-
cedures that were described previously.

Additionally, for comparison with our identified EEG clusters,
we inspected the clinical profiles of ALS subgroups that are based
on four stages of King’s staging system.

Data availability

The data that support the findings of this study are available from
the corresponding author on reasonable request from qualified
investigators, and are subject to the approvals by Data Protection
Officer and The Office of Corporate Partnership and Knowledge
Exchange in Trinity College Dublin.

Results
EEG measures identify four clusters of amyotrophic
lateral sclerosis patients

Four distinct clusters were identified based on analysis of spectral
EEG patterns of neural activity and connectivity. As assessed by
eigengap and rotation cost indices (Fig. 1), the solution of four clus-
ters had high statistical power (0.85 and 0.52, respectively) and a
large to medium (0.92 and 0.69, Cliff’s d, respectively) effect size,
suggesting reproducible findings. The demographics of the identi-
fied clusters are shown in Table 1.

EEG clusters show distinct neurophysiological
profiles

Analysis of neurophysiological profiles of the four clusters based
on EEG measures revealed evidence of distinctly impaired neural
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Figure 1 EEG measures identify four ALS clusters: Fused similarity matrix and the optimal number of ALS clusters. (A) Fused similarity matrix of ALS
patients is sorted based on the clusters, which were identified using spectral clustering. (B) At k = 4, both measures reflecting the optimal number of clus-
ters (eigengap, black; rotation cost, grey) reach the highest significance (P5 0.008, Bonferroni corrected; red dashed line) with statistical power (1 – b0.05)
0.85 and 0.52, and effect size (Cliff’s d) 0.92 and 0.69, respectively. The number of patients in clusters 1–4 are n = 23, 28, 19 and 25, respectively.

Table 1 Breakdown of cluster characteristics

Group n Gender
Male/female

Age (years) Disease duration
(months)

Site of onset
(S/B/T)

Diagnosis
(ALS/ALS-FTD)

C9orf72
( + /–)

All 95 69/26 59.2 ±11.6 21.9 ± 17.5 70/21/4 90/5 11/84
Cluster 1 23 14/9 61.0 ±12.7 21.3 ± 16.8 17/5/1 23/0 0/23
Cluster 2 28 22/6 56.6 ±13.0 25.7 ± 24.3 23/2/3 28/0 3/25
Cluster 3 19 14/5 58.5 ±11.5 17.8 ± 8.9 14/5/0 16/3 2/17
Cluster 4 25 19/6 60.7 ±9.0 22.8 ± 20.2 16/9/0 23/2 6/19

Disease duration: time interval between the estimated symptom onset and the EEG recording; site of onset: spinal/bulbar/thoracic (S/B/T); C9orf72: presence ( + ) or absence (–)

of the repeat expansion in C9orf72; age and disease duration: mean ± SD.

Figure 2 Distinct neurophysiological profiles of ALS clusters. For each cluster, a unique neurophysiological change (brain network, frequency band
and EEG measure) was identified using AUC statistics estimated between the ALS clusters and control data (Supplementary material). The networks
vary significantly across clusters in all four cases (Kruskal–Wallis one-way ANOVA, P5 0.001, FDR). The potential effects of age and gender on the
identified changes were rejected based on the linear model analysis (Supplementary material). AUC = area under the receiver operating characteristic
curve centred around zero; positive values indicate an increase, whereas negative values indicate a decrease compared to healthy controls.
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networks for each cluster (Fig. 2). For example, cluster 1 shows a
characteristic increase in b-band spectral power in the frontotem-
poral network, whereas clusters 3 and 4 show decreased power
in the same network. Similarly, cluster 2 shows a characteristic
increase in a-band synchrony in the somatomotor network, clus-
ter 3 decrease in cl-band synchrony in the frontotemporal
network and cluster 4 increase in cl-band comodulation in the
frontoparietal network. The Kruskal–Wallis one-way ANOVA
showed that the four networks vary significantly across clusters
(P50.001, FDR).

The EEG abnormalities associated with all four clusters were
identified as increased comodulation (d- to a-band oscillations)
and decreased synchrony (d- to b-band) in the somatomotor and
frontotemporal brain regions (Supplementary Fig. 1).

EEG clusters have concordant clinical and
neurophysiological profiles

The analysis of clinical profiles using the functional scores shows
clinical characteristics of each cluster (Fig. 3A and B, see also
Supplementary Fig. 2). Although none of the clinical scores vary
significantly across the clusters (P4 0.05, FDR), the changes are
concordant with altered neurophysiological profiles. More specific-
ally, cluster 1 (which has a uniquely increased b-band spectral
power in the frontotemporal network) shows moderate limb and
mild verbal fluency, executive and memory dysfunction, but no
apparent change in the language domain; cluster 2 (which has a
uniquely increased a-band spectral power in the somatomotor
network) is characterized by mild impairment of limb and verbal

Figure 3 Clinical profiles of ALS clusters derived from EEG measures are concordant with the neurophysiological profiles. The four EEG clusters (col-
our-coded) suggest different trends in functional/clinical scores in different domains: (A) normalized ALSFRS-R (bulbar, limb and respiratory) and (B)
z-scored ECAS (language, fluency, executive, memory and visuospatial) and normalized BBI (behaviour) score are all non-significant (P4 0.05, FDR).
(C) Kaplan–Meier survival curves corresponding to the ALS clusters. (D–F) Clinical characteristics. Clinical subscores (A and B) are all normalized or
standardized, see the ’Materials and methods’ section. Note that there are in total: five ALS-FTD, 11 C9orf72-positive and four respiratory-onset
patients. Statistical tests: Kruskal–Wallis one-way ANOVA (A and B), logrank test (C) and Fisher’s exact test (D–F); all FDR corrected.
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fluency, and moderate language and memory impairment, with
preservation of executive domain; cluster 3 (which has a uniquely
decreased cl-band synchrony in the frontotemporal network) was
characterized by marked impairment of limb, language and verbal
fluency; cluster 4 (which has a uniquely increased cl-band como-
dulation frontoparietal network) was primarily characterized by
impairments in bulbar function, verbal fluency, executive and
memory. None of the clusters has notable impairment in the
visuospatial domain, whereas all but cluster 2 exhibited mild
aspects of behavioural impairment.

In addition to clinical subphenotypes, the clusters were associ-
ated with significant differences in overall survival (log rank v2 =
13.84; P = 0.003). The survival probability curves (Fig. 3C) show that
cluster 4 has the shortest survival (median: �3 years), whereas
cluster 2 has the longest survival (�6 years).

Although the associations between the clusters and commonly
used clinical stratification parameters (type of initial diagnosis,
site of disease onset and C9orf72 gene status; Fig. 3D–F) are not sig-
nificant (P40.05, FDR), the results are consistent with clinical pro-
files of clusters. Specifically, clusters 3 and 4 (which have the
greatest degree of impairment across most cognitive subscores;
Fig. 3B) included all patients with the initial diagnosis of ALS-FTD
(3/19 and 2/25; ALS-FTD/total). Furthermore, cluster 4 has the high-
est proportion of C9orf72-positive patients (6/25), compared to
clusters 2 and 3 (3/28 and 2/19).

There were no significant between-group differences in disease
duration, King’s staging, age, gender or riluzole usage, which could
have affected EEG measures and the reported results
(Supplementary Fig. 2). Additionally, we demonstrated that King’s
staging cannot explain the clusters identified by EEG networks nor
how the progression patterns differ in the EEG clusters
(Supplementary Fig. 3). The potential effects of age and gender on
the identified changes in neurophysiological profiles were tested
and rejected based on the linear model analysis (Supplementary
material).

Patient clusters show stability across multiple tests

Further analysis revealed that each cluster has high accuracy, ro-
bustness and remained stable at reassessment. Specifically, the
clustering solution based on the Louvain community detection
method converged to the same number of clusters (k = 4) and had
a very high overlap with the spectral clustering solution from the
main analysis, wherein only seven patients were assigned differ-
ently. Furthermore, the estimated clustering accuracy reached
89%, and the analysis of robustness showed that in the presence of
data perturbation 82% of the cluster labels remain stable (both
tests are conservatively quantified by the average adjusted Rand
index, which controls for chance level). Last, using the longitudinal
dataset (n = 36, with one follow-up EEG measurement 4–6 months
after the initial recording session), the overall cluster (re)assign-
ment is 72% (P50.001, Fisher’s exact test; Fig. 4), showing an ex-
perimental stability of the discovered clusters.

Clustering based solely on clinical data does not
identify stable subgroups

Using the same methodology, all the clinical measures were com-
bined and underwent statistical analysis of the indices that esti-
mate the optimal number of clusters. No significant clusters were
identified, demonstrating that commonly applied clinical determi-
nants were not driving the neurophysiological clustering data
(Supplementary material and Supplementary Fig. 4).

Discussion
We have shown that analysis of network disturbance using multi-
dimensional quantitative EEG can identify subgroups within ALS
that are not discoverable using standard clinical assessment tools.
Each of the subgroups, identified by data-driven clustering, dem-
onstrates a distinct neurophysiological profile that in turn recapit-
ulates a different combination of clinical attributes. These
neurophysiological profiles are stable at reassessment and are
associated with different prognostic outcomes.

Identified EEG clusters characterize distinct brain
network impairments

Clinical heterogeneity has emerged as a major obstacle in under-
standing the pathophysiology of neurodegenerative diseases. This
has implications for drug development as clinical stratification
parameters remain relatively insensitive as predictors of disease
progression and survival. While it is not surprising that the net-
work disruptions that characterize our identified clusters do not
strongly correlate or overlap with the commonly defined clinical
phenotypic subtypes of disease, our results are in alignment with
the observations from previous studies. For instance, cluster 4 in
this study has the highest proportion of patients with C9orf72 ex-
pansion, which is known to implicate frontotemporal, temporo-
parietal and subcortical MRI6,51 and EEG9 changes, and is
frequently associated with cognitive and behavioural impair-
ment.52 Accordingly, in our study the neurophysiological profile of
this cluster is characterized by the distinctive abnormal changes in
cl-band comodulation within the frontoparietal network (also
commonly known as central executive network), while the clinical
profile of this cluster shows marked dysfunction in the verbal flu-
ency, executive and memory domain. Similarly, this cluster has
the highest proportion of bulbar patients, in which MRI studies
have shown extensive thinning in frontotemporal, temporoparie-
tal and subcortical brain regions.6 Furthermore, while cluster 4 has
the highest proportion of patients with C9orf72 expansion, which
is associated with both ALS and FTD, clusters 3 and 4 include all

Figure 4 Clusters show high stability at reassessment. The overall sta-
bility is 72% and statistically significant (P5 0.001, Fisher’s exact test).
Total number of patients with a follow-up (mean ± standard deviation:
5.1 ± 1.8 months after the initial recording session) is n = 36, wherein 9,
13, 4 and 10 patients belong to clusters 1–4, respectively.
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the ALS-FTD patients. Consistent with other studies,53 these two EEG
phenotypes show the lowest survival probability in our analysis.
Considering the presence of notably increased dysfunction in cogni-
tive and behavioural profile of these two clusters, these ALS patients
are likely to have clinical features that align with the FTD-side of the
ALS-FTD spectrum.31 Interestingly, C9orf72 patients did not form one
separate cluster, suggesting diverging network impairments caused by
the same genetic mutation. These findings confirm a complex and
heterogeneous nature of the variables (e.g. gene mutation status and
presence/absence of FTD) currently used in ALS classification systems.
By contrast, subphenotypes derived from EEG measures transcend
traditional classification systems of ALS patients and characterize dis-
tinct brain networks affected in each subgroup.

Our findings are consistent with previous neuro-electro-mag-
netic studies in ALS. For example, a recent resting-state magneto-
encephalography (MEG) connectivity study reports increased
broadband comodulation in the posterior parts of the brain.54

Additionally, studies investigating brain network topology using
graph theory, showed diverging MEG c-synchrony (as assessed by
phase lag index)55 affecting global brain patterns56 and increased
EEG c-synchrony (as assessed by partial directed coherence)57 pat-
terns in the frontal networks.46 These resting-state findings are in
line with the identified connectivity patterns in clusters 3 and 4.

The neurophysiological profiles of clusters 1 and 2 point to the
characteristic changes in the b-band frontotemporal and a-band
motor network, respectively, while the corresponding clinical sub-
scores in the language, verbal fluency and motor domains indicate
relative preservation of these functions. These abnormal network
activations could be attributed either to the topological resilience
or active compensation mechanisms that are unique to each clus-
ter,58,59 or likely, to subtle impairments to which current clinical
tools are not sufficiently sensitive.60–62

Our work emphasizes that not all cluster-specific patterns may
be identifiable when ALS patients are compared to controls as a
single group. This is due to due to the difference in the patterns of
impairment between different clusters. The identified b-band
power changes suggest two diverging patterns, which could ex-
plain the contradictory findings between an MEG study63 that
reported an increased cortical b-desynchronization in ALS patients
and EEG studies that reported decreased27–29 or no difference.64

Additionally, the findings in resting-state studies investigating
brain network topology using graph theory, show globally
increased EEG a-synchrony (as assessed by partial directed coher-
ence)46 and increased a-band comodulation mostly in the central
brain regions.65 Furthermore, our findings support the relevance of
c-oscillations in ALS (Supplementary material).

Clinical relevance

We have shown that clusters based on patterns of disruption in
brain networks are associated with reproducible aggregates of clin-
ical attributes and rate of disease progression, confirming the clin-
ical relevance of our findings. EEG-based subphenotypes with
superior statistical power do not recapitulate phenotypes that can
be found using clinical data or burden of disease (e.g. King’s stag-
ing). This indicates that these neurophysiologic patterns provide
additional information to that which is discerned by clinical evalu-
ation alone. The EEG-based clusters are statistically robust with
distinct patterns, whereas the clinical scores alone could not form
meaningful significant clusters. A more in-depth analysis that fur-
ther explores associations between EEG and clinical observations,
would require larger and detailed clinical and genomic datasets.

The identification of such stable subtypes with high statistical
power has significant biological and clinical implications. Our find-
ings could contribute to modification of the existing stratification

system, which is purely based on the clinical observations. In fact,
simulated analysis resulting in high classification accuracy (89%)
of new patients—where individual patients are classified to clus-
ters—suggests the potential of our clustering approach to render
clinically meaningful findings on an individual patient level. While
the underlying neurobiological processes that determine these
patterns or network disruption cannot be discerned at this point,
the stability of the clusters could reflect premorbid patterns of net-
work function and integrity.

Analysis of cluster stability using follow-up data shows that for
many patients in our dataset the cluster assignment does not
change. This stability further supports that our findings are based
on characteristic pathological changes that are reasonably stable
over a period spanning several months. Notwithstanding, future
studies with more systematic inclusion of the disease stages and
the analysis of longitudinal evolution of clusters (over multiple fol-
low-ups) are warranted.

Limitations

This study is limited by its single-site nature. Alternative solutions
with more than four clusters are likely to exist, especially if add-
itional more sophisticated neurophysiological measures are
included in the clustering analysis. Notwithstanding these limita-
tions, our conservative validation analyses of clustering solutions
show that the findings are both robust and reproducible.

Translation of our findings into a clinical setting will require
medical-grade equipment with equal or lower number of EEG elec-
trodes (e.g. 32 or 19 from the 10–20 system), which warrants an add-
itional validation study. While this could reduce the preparation
time, it should be approached with caution.66 Studies showed that
electrode arrays with 532 sensors lead to severe mislocalizations.67

Moreover, our neurophysiological profiles include c-band findings,
and in this context, decreasing the number of electrodes might
have a negative effect on our ability to capture these oscilla-
tions.68,69 Nevertheless, since localization accuracy starts to plateau
from 64 channels,67,70 a medical-grade 64-channel system could be
considered as a candidate for future translational steps.

Conclusion
Our findings have shown for the first time that EEG measures of
neural activity and connectivity can be used to reproducibly group
ALS patients into subphenotypes with distinct clinical patterns
and neurophysiological signatures. Replication of our findings in
an independent population with additional clinical and genomic
data will be required to further understand the neurobiological fac-
tors that underpin these different patterns of network disruption.
The demonstration that each cluster is associated with a different
disease trajectory and outcome opens a new path towards the dis-
covery of quantitative biomarkers of disease heterogeneity.

Taken together, our results highlight the strengths of using EEG
data in identifying ALS subtypes that have distinct clinical and
neurophysiological profiles. The identification of data-driven ALS
subtypes based on patterned changes in neuronal networks can fa-
cilitate the identification of targeted therapies that are effective
across the subtype. The development of reliable biomarkers to
identify subtypes will also provide much needed prognostic infor-
mation for patient stratification.
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