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Abstract Gamma-band synchronization coordinates brief periods of excitability in oscillating

neuronal populations to optimize information transmission during sensation and cognition.

Commonly, a stable, shared frequency over time is considered a condition for functional neural

synchronization. Here, we demonstrate the opposite: instantaneous frequency modulations are

critical to regulate phase relations and synchronization. In monkey visual area V1, nearby local

populations driven by different visual stimulation showed different gamma frequencies. When

similar enough, these frequencies continually attracted and repulsed each other, which enabled

preferred phase relations to be maintained in periods of minimized frequency difference. Crucially,

the precise dynamics of frequencies and phases across a wide range of stimulus conditions was

predicted from a physics theory that describes how weakly coupled oscillators influence each

other’s phase relations. Hence, the fundamental mathematical principle of synchronization through

instantaneous frequency modulations applies to gamma in V1 and is likely generalizable to other

brain regions and rhythms.

DOI: https://doi.org/10.7554/eLife.26642.001

Introduction
Synchronization, the ability of oscillators to mutually adapt their rhythms (Pikovsky et al., 2002;

Winfree, 1967), is a ubiquitous natural phenomenon. Neural synchronization in the gamma-range

has been reported both in subcortical structures (Akam et al., 2012; Steriade et al., 1993;

Zhou et al., 2016) and in cortical areas (Fries, 2015; Gray and Singer, 1989; Gregoriou et al.,

2009). Gamma rhythms emerge in activated neural circuits in which fast-spiking inhibitory neurons

play a central role (Cardin et al., 2009; Tiesinga and Sejnowski, 2009; Traub et al., 1996). A prime

example is the emergence of gamma rhythms in the early visual cortex during visual stimulus proc-

essing (e.g. Brunet et al., 2015; Gail et al., 2000; Gray and Singer, 1989; Hermes et al., 2015;

Ray and Maunsell, 2010; Roberts et al., 2013). Gamma synchronization has been related to the for-

mation of neural assemblies within (Gail et al., 2000; Gray and Singer, 1989; Havenith et al.,

2011; Vinck et al., 2010) and across brain areas (Bosman et al., 2012; Gregoriou et al., 2009;

Grothe et al., 2012; Jia et al., 2013a; Roberts et al., 2013; Sirota et al., 2008; Zhou et al., 2016).

The precise temporal coordination of presynaptic spikes increases their effectiveness on postsyn-

aptic targets (Fries et al., 2001; Tiesinga et al., 2004) and can thereby modulate the effectiveness

of neural communication (Börgers et al., 2005; Cannon et al., 2014; Womelsdorf et al., 2007), as

shown between V1 and V4 during visual attention (Bosman et al., 2012; Grothe et al., 2012). Tem-

poral coordination in terms of spike timing (phase code) might be an efficient and robust mechanism

for information coding (Havenith et al., 2011; Jensen et al., 2014; Maris et al., 2016; Tiesinga and
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Sejnowski, 2009; Vinck et al., 2010). Further, gamma rhythmic inhibition might increase coding effi-

ciency through sparsening (Chalk et al., 2015; Jadi and Sejnowski, 2014; Vinck and Bosman,

2016) and normalization (Gieselmann and Thiele, 2008; Ray et al., 2013) of neural activity. These

network consequences of gamma have led to influential hypotheses about the function of gamma in

sensation and cognition (Buehlmann and Deco, 2010; Buzsáki and Wang, 2012; Eckhorn et al.,

2001; Fries, 2015; Gray and Singer, 1989; Maris et al., 2016; Miller and Buschman, 2013), includ-

ing a role in perceptual grouping (Eckhorn et al., 2001; Engel et al., 1999; Gray and Singer, 1989)

and in visual attention (Bosman et al., 2012; Fries, 2015; Gregoriou et al., 2009; Miller and Busch-

man, 2013).

Surprisingly, in spite of important scientific advances, it is not well understood how gamma

rhythms synchronize and what the underlying principles of synchronization are. For example, recent

experimental observations of large variability in gamma oscillation frequency have raised doubts

about the robustness and functionality of gamma synchronization in the brain. It has been observed

that frequency fluctuates strongly over time (Atallah and Scanziani, 2009; Burns et al., 2010;

2011) and that different cortical locations can express different preferred frequencies at a single

moment in time (Bosman et al., 2012; Ray and Maunsell, 2010). That these observations have led

to doubts on the functionality of gamma synchronization reveals a stationary view of synchronization,

which assumes that the underlying oscillatory dynamics are stable at a fixed phase-relation and

shared frequency. This is also reflected in the widespread use of stationary methods to assess

gamma synchronization, of which spectral coherence is a prime example (Carter et al., 1973). From

a dynamic systems perspective, however, synchronization is primarily a non-stationary process (Izhi-

kevich, 2007; Izhikevich and Kuramoto, 2006; Kopell and Ermentrout, 2002; Pikovsky et al.,

2002; Winfree, 1967), because oscillators mutually adjust their rhythms through phase shifts (i.e.

through changes in the instantaneous frequency).

Here, by using a combination of theoretical and experimental techniques, we studied the dynam-

ical principles of gamma synchronization in monkey visual area V1. We simultaneously recorded

gamma-rhythmic neural activity at different V1 cortical locations and studied their synchronization

properties while using local stimulus contrast (Ray and Maunsell, 2010; Roberts et al., 2013) to

modulate the frequency difference averaged over time (detuning). Strikingly, even when the mean

frequencies did not match (detuning > 0), we often observed that gamma rhythms synchronized.

This was achieved by continuously varying their instantaneous frequency difference, which permitted

the temporary maintenance of a preferred phase relationship during reoccurring periods of mini-

mized instantaneous frequency difference. The interplay between the detuning and the amount of

instantaneous frequency modulations regulated the phase-locking strength and the preferred phase-

relation between V1 locations. Furthermore, to achieve a principled understanding of our observa-

tions, we applied the theoretical framework of weakly coupled oscillators to our data

(Ermentrout and Kleinfeld, 2001; Hoppensteadt and Izhikevich, 1998; Kopell and Ermentrout,

2002; Kuramoto, 1991; Pikovsky et al., 2002). We found that a single differential equation

accounted well for the non-stationary frequency modulations and further allowed for precise predic-

tions of how the phase-locking and the phase-relation between gamma rhythms changed across

conditions.

Results

Frequency differences regulate the phase synchronization process
between local monkey V1 gamma rhythms
We first asked how synchronization within V1 was influenced by mean frequency differences, and by

the distance between recording sites. To this aim, we recorded simultaneously from two to three

laminar probes (each with 16 recording contacts spaced along the recording shaft, see Supplemen-

tary Materials for alignment procedure) in cortical area V1 of two macaques (M1 and M2)

(Figure 1A). We used distances between probes of 1–6 mm, matching approximately the extent of

V1 horizontal connectivity (Stettler et al., 2002). Notably, horizontal connectivity strength declines

strongly with distance between cortical locations (Stettler et al., 2002), so that increasing inter-

probe distance indexes decreasing horizontal connectivity strength. The monkeys fixated centrally

while a full-screen static square-wave grating with spatially varying contrast was shown (Figure 1B).
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Figure 1. Experimental setup and contrast-dependent V1 gamma frequencies. (A) Schematic rendering of recording location. Two to three laminar

probes were inserted with 1–6 mm separation in cortical area V1. (B) The visual paradigm consisted of a 1 s baseline period with a gray background and

2 s visual stimulation with a full-screen static grating characterized by spatially varying local contrast. During both periods the monkeys maintained their

gaze on a fixation point (controlled by eye tracking). For analysis, the stimulation period (0.2–2 s) was used, not including the first 200 ms to avoid

stimulus-evoked transients. Two receptive fields (RF) from different probes are shown on the grating stimulus (blue and red circles). The aim was to

modulate (detune) the local frequencies of gamma rhythms using local contrast differences. (C) Spectral power relative to baseline as a function of V1

cortical depth (36.5% contrast, population average, M1). Data for gamma analysis are taken from granular and superficial layers (dashed box) unless

stated otherwise. (D) Local contrast modulated gamma frequency (population average, M1) as shown in the power spectral profile for three of the five

contrast values employed. Width of shaded area represents SE.

DOI: https://doi.org/10.7554/eLife.26642.002

The following figure supplements are available for figure 1:

Figure supplement 1. Cortical depth alignment and analysis.

DOI: https://doi.org/10.7554/eLife.26642.003

Figure 1 continued on next page
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The local contrast varied periodically over visual space such that different contrasts were presented

to different cortical locations. The magnitude of contrast difference (ranging from 0% to ~43%, see

Table S1) was manipulated by varying the sign and amplitude of the spatial variation in contrast. The

stimulus gratings induced gamma power in layers 2–4 and in the deepest layer (Figure 1C, Fig-

ure 1—figure supplement 1; van Kerkoerle et al., 2014; Xing et al., 2012). The gamma frequency

increased systematically with higher local contrast (linear regression, single contact level, M1:

R2 = 0.38, M2: R2 = 0.27, both p<10�10, Figure 1D, Figure 1—figure supplement 2). The range of

the frequency shift in our data (~5 Hz) was smaller than in Roberts et al., 2013, reflecting a narrower

contrast range used here; from ~20% to ~60% (Table 1). The tight relationship between contrast

and gamma frequency allowed us to induce different mean frequencies in nearby cortical locations

separated by as little as 1–6 mm (e.g., Figure 2A).

The close positions of recording sites may have led to a contribution of volume condition to syn-

chronization measures. The LFP, despite being local in comparison to extracranial electrical field

measure like EEG, still might integrate signals over a scale of up to 1 cm horizontally (Kajikawa and

Schroeder, 2011; Lindén et al., 2011; Xing et al., 2009), which may affect the interpretability of

layer-dependent analysis (Kajikawa and Schroeder, 2015). Using laminar probes enabled us to

reduce the influence of volume conduction by calculating current-source density (CSD), as the sec-

ond spatial derivative of LFP signals measured along each probe (Mitzdorf and Singer, 1977;

Schroeder et al., 1991a; Vaknin et al., 1988). The success in reducing volume conduction using

CSD favors its use over LFP for spectral analysis at high spatial resolution. Next, we used a singular

spectrum decomposition technique (SSD, (Bonizzi et al., 2014)) to extract gamma components from

the CSD. From these single-trial gamma signals, we estimated the instantaneous frequency and

phase at individual recording sites and the instantaneous phase difference between sites. In the

example shown of a single pair of recording sites (Figure 2A), the stimulus induced a gamma fre-

quency of 36 Hz at one probe and 32 Hz at the other, because different contrasts appeared in the

respective receptive fields. As shown in the raw trace of the instantaneous phase differences in

Figure 2B, the gamma phase difference was not constant over time, but continuously exhibited

modulations and shifts. Sometimes, the phase difference changed slowly and at other times, it

changed faster. The change of phase difference over time is called ‘phase precession’

(Pikovsky et al., 2002). Note that this should be distinguished from a phenomenon of the same

name: the precession of preferred spiking phase in the theta cycle observed in rats moving through

hippocampal place fields (Skaggs et al., 1996). In the present study, the ‘rate’ or ‘speed’ of preces-

sion is expressed as the instantaneous frequency difference in Hz (Figure 2C–D). We found that the

observed modulations in phase difference were not random as would be expected if different fre-

quencies precluded synchronization. Instead, the instantaneous phase difference was related to the

instantaneous frequency difference. In Figure 2E, we plotted the instantaneous frequency difference

Figure 1 continued

Figure supplement 2. Effect of contrast and eccentricity on macaque V1 gamma frequency.

DOI: https://doi.org/10.7554/eLife.26642.004

Table 1. Range of contrast difference conditions used for the experimental task for monkeys M1 and M2.

The top sub-table shows the contrast difference conditions (in %) used for M1, and the bottom sub-table shows the values for M2.

Contrast difference condition (monkey M1)

Range 44.7 35.9 24.8 13.3 0 �13.3 �24.8 �35.9 �44.7
RF 1 66 58.6 51.7 44.3 36.5 31 27 22.7 21.2

RF 2 21.2 22.7 27 31 36.5 44.3 51.7 58.6 66

Contrast difference condition (monkey M2)

Range 42.7 34 24.5 13.6 0 �13.6 �24.5 �34 �42.7
RF 1 62.7 57.5 52.2 46 39.2 32.5 27.7 23.5 20

RF 2 20 23.5 27.7 32.5 39.2 46 52.2 57.5 62.7

DOI: https://doi.org/10.7554/eLife.26642.005
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as a function of the instantaneous phase difference. Each black point represents one momentary

observation and the blue line the average using binning of 0.25 rad width. The plot shows that the

instantaneous frequency difference (DIF) tends to be lower at certain phase differences than at

others. We observed that the average frequency difference was close to 0 for phases differences

between 0 and 2 radians, but was much higher at other phase relationships. The key to understand-

ing how this dynamic relationship leads to synchronization is that phase relationships associated with

lower frequency differences are maintained longer over time (slower precession) than phase

p
h

a
s
e

 

 (
ra

d
) 

IF
 (

H
z
)

Time from stimulus onset (s)

CSD sig1

CSD sig2

take derivative, express in Hz

compute instant. phase difference

single trial (stimulation period)
IF traces for all trialsA D

E

mean =

36Hz

mean =

32Hz

Gamma-band

Gamma-band

0.7 1.2 1.7

0.7 1.2 1.7

0.7 1.2 1.7

 -2       0       2
phase  (rad) 

-20

IF
 (

H
z
)

-10

0

10

20

mean IF

modulation

( )

 

tr
ia

l 
1

-3
3

Time from stimulus onset (s)
0.7 1.2 1.7

B

C

Figure 2. Instantaneous frequency modulation. (A) Example CSD (blue and red) traces recorded during visual stimulation from which gamma-band

components were extracted using singular-spectrum decomposition. (B) We computed the phase difference (black) between signals 1 and 2 by

computing the circular difference of their instantaneous phases. The instantaneous phase was derived by applying the Hilbert transform on the gamma-

band components. (C) Taking the derivative, and scaling the result as the instantaneous frequency difference (DIF) gives the rate of phase precession.

Notice the modulations over time. Note further that DIF variations are the result of IF variations occurring simultaneously at the two contact points that

together constitute a contact pair. (D) Shows the DIF traces for all trials in a single session and stimulus condition for a single contact pair. (E) The DIF

points (N = trial number*samples = 33*1800 = 59400) are plotted as a function of phase difference. A clear modulation of DIF values (blue line

represents the mean) with phase difference can be observed showing that DIF modulations are not random. This means that phase precession depends

on the momentary phase-difference (phase-relation) between contrasts. It is worth noting that the DIF values tend to be positive, which is related to the

sign of the contrast difference and resulting detuning. If for the same pair the contrast difference had been reversed, DIF values would have tended to

be negative.

DOI: https://doi.org/10.7554/eLife.26642.006
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relationships associated with higher frequency differences. This can be readily appreciated by the

higher density of dots in Figure 2E between 0 and 2 radians.

Three key examples from our results nicely illustrate the dynamics of the relationship between

instantaneous frequency difference and phase difference (Figure 3). These examples were derived

from our experimental design, in which we varied the cortical distance between probes in a pair

(varying horizontal connectivity strength), and in which we systematically varied for each pair the con-

trast difference (9 levels), and hence the mean gamma frequency difference. We show in these

examples positive frequency differences for illustration, but negative differences were also present

for single contact pairs in our data, depending on the sign of the contrast difference (see Figure 3—

figure supplement 1). In the first example (Figure 3 column 1), we show two cortical locations sepa-

rated by a relatively large distance of ~5 mm, presented with a visual contrast difference of 17%

(Figure 3A). This yielded an overall mean frequency difference of 5 Hz (Figure 3B). If this frequency

difference were constant, the phase difference would advance at a phase precession rate of 2p every

200 ms, which would preclude synchronization. However, the frequency difference was not constant.

Instead, the instantaneous frequency difference changed as a function of phase difference

(Figure 3B, Figure 3—figure supplement 1) with a modulation amplitude of ~1 Hz (approximately

(max-min)/2; see Appendix). At the smallest frequency difference (4 Hz, yellow point), the phase pre-

cession was slowest (2p every 250 ms). As a result, the probability distribution of phase differences

over time (Figure 3C) was non-uniform giving a phase-locking value (Lachaux et al., 1999) (PLV) of

0.11. The peak of the distribution, the ‘preferred phase’, was at 1.3 rad, in line with the minimum of

the instantaneous frequency modulation shape. In the second example, we chose a pair with a simi-

lar frequency difference of 4.8 Hz but a reduced distance (~2.5 mm, Figure 3D). The instantaneous

frequency modulation was larger with a modulation amplitude of 1.8 Hz (Figure 3E) and a minimum

around 3 Hz at the preferred phase. Because a lower minimum frequency difference corresponds to

slower phase precession at the preferred phase than in the previous example, the preferred phase

was maintained for longer. This resulted in a narrower phase difference distribution, indicating

higher synchrony (PLV = 0.32, Figure 3F). The peak of the distribution was centered at a smaller

phase difference (0.78 rad). In the third example, the cortical distance remained the same as in

Figure 3D but the frequency difference was reduced (2.8 Hz) by eliminating the contrast difference

(Figure 3G and Figure 1—figure supplement 2). Compared to example 2, the magnitude of the

instantaneous frequency modulation did not change (modulation amplitude 1.8 Hz, Figure 3H), but

showed a lower mean difference and a minimum close to zero (1 Hz, Figure 3H). Thus, the associ-

ated phase difference (0.48 rad) could be maintained for even longer periods and the phase differ-

ence probability distribution became even more pronounced and narrower (PLV = 0.51, Figure 3I).

The three examples illustrate how the mean frequency difference and cortical distance (a proxy of

the strength of horizontal interactions) determine the dynamic relationship between the instanta-

neous frequency difference and the phase difference during synchronization. In the following sec-

tions, we will show how these observations were characteristic of the whole dataset comprising 805

recorded across-probe contact pairs in monkey M1 and 882 pairs in monkey M2.

Before framing the relationship between instantaneous frequency modulations and the phase dif-

ference distribution in a mathematical manner (next section), we illustrate that relationship by an

analogy with two cyclists on a circular circuit. Their speed is calculated as the number of circuits they

complete in a given time, hence speed is analogous to frequency. Phase is equivalent to position on

the track and phase difference is equivalent to the distance between the cyclists. Phase locking

therefore is analogous to the amount of time they spend at a consistent distance from each other.

The phase precession rate is analogous to the speed with which the distance between the cyclists

changes. If the cyclists maintain constant speeds as they go around the track, the distance between

them will vary at a constant rate, and they will only maintain a consistent distance (phase difference)

if they both cycle at the same speed. Hence with stable instantaneous speed (i.e. frequency), phase

locking is either absent or complete. If the cyclists do vary their speed, more complex patterns

become possible. If they vary their speeds independently, the phase-difference distribution will be

flat. However, suppose the slower cyclist can travel faster in the slipstream of the faster cyclist, then

the amount of time the cyclists travel close to each other will be greater than the time they spend

far away. They might cycle around the whole circuit this way (complete phase locking), but more

likely the faster cyclist will get away and the cyclists will travel at their natural speed until they come

together again allowing the slower cyclist to speed up. Hence, all phase differences are represented,
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Figure 3. Illustration of V1 gamma-band dynamics. (A–C) Example 1 showing synchronization despite frequency difference (data from Monkey M1,~30

trials per condition). (A) Schematic figure of the contacts used from two laminar probes in V1. Below is a section of the stimulus grating with the

corresponding RFs. The arrows’ thickness indicates the strength of contrast-dependent input to the corresponding V1 location. (B) Instantaneous

frequency difference (DIF), equivalent to the phase precession rate, as a function of phase difference. Yellow dot indicates the modulation minimum,

equivalent to the preferred phase difference, shading is ±SE (C) The phase difference probability distribution and phase-locking value (PLV). (D–F)

Example 2; probes were closer and the gamma peak frequency difference was similar. Conventions as in A-C. (G–I) Example 3; same distance, reduced

frequency difference. Compare B, E, H; the RF distance determined IF modulation amplitude, whereas contrast difference determined mean gamma

frequency difference. Note that the instantaneous phase difference at which the instantaneous frequency difference is minimal (yellow dot) is smaller for

greater amplitudes of instantaneous frequency difference variation (compare E, H to B).

DOI: https://doi.org/10.7554/eLife.26642.007

The following figure supplements are available for figure 3:

Figure supplement 1. Instantaneous frequency modulations during gamma synchronization.

DOI: https://doi.org/10.7554/eLife.26642.008

Figure supplement 2. PING network simulations and intermittent synchronization.

DOI: https://doi.org/10.7554/eLife.26642.009
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but some are over-represented – specifically phases where the faster cyclist is just in the lead. In our

experiment, we measured the instantaneous gamma frequency, similar to looking on the speedome-

ter of each bike, and the instantaneous phase difference, corresponding to the distance between

the cyclists. This allowed us to understand the resultant probability distribution of phase differences

(yielding the phase locking value and the average phase difference). We found that the average

speed difference and the speed modulation strength defined the probability distribution.

The theory of weakly coupled oscillators (TWCO): A framework for
cortical gamma synchronization
We now show how the observed synchronization behavior can be accounted for within the mathe-

matical framework of the theory of weakly coupled oscillators (Ermentrout and Kleinfeld, 2001;

Hoppensteadt and Izhikevich, 1998; Kopell and Ermentrout, 2002; Kuramoto, 1991;

Pikovsky et al., 2002; Winfree, 1967). Many oscillatory phenomena in the natural world represent

dynamic systems with a limit-cycle attractor (Winfree, 2001). Although the underlying system might

be complex (e.g. a neuron or neural population), the dynamics of the system can be reduced to a

phase-variable if the interaction among oscillators is weak. If interaction strength is weak, amplitude

changes are relatively small and play a minor role in the oscillatory dynamics. In this way, V1 neural

populations can be approximated as oscillators, ‘weakly coupled’ by horizontal connections

(Figure 4A). The manner in which mutually coupled oscillators adjust their phases, by phase-delay

and phase-advancement, is described by the phase response curve, the PRC (Brown et al., 2004;

Canavier, 2015; Izhikevich, 2007; Kopell and Ermentrout, 2002; Schwemmer and Lewis, 2012).

The PRC is important, because if the PRC of a system can be described, the synchronization behav-

ior can be understood at a more general level and hence predicted across various conditions.

According to the theory, the synchronization of two coupled oscillators can be predicted from

the forces they exert on each other as a function of their instantaneous phase difference. The

amount of force is here defined as interaction strength, which is modulated as a function of phase

difference by an interaction function that is closely related to the PRC (for a detailed discussion of

the relationship between the two functions, please see TWCO predicts synchronization properties of

V1 cortical gamma rhythms). In addition, each oscillator has an intrinsic (natural) frequency and its

own source of phase noise, making the oscillators stochastic. Hence, the phase precession of two

oscillators is given by:

�
:

¼ D!þ "G �ð Þþ h (1)

where �
:

is the time derivative of the phase difference � (the rate of phase precession), D! the detun-

ing (the intrinsic frequency difference), e the interaction strength (scalar function), G(�) the interaction

function (mutual PRC), and h the combined phase noise, where h~N 0;
ffiffiffi

2
p

s2
� �

, see (Figure 4B).

Phase noise is defined here as variation that is unrelated to interaction, which occurs for neural oscil-

lators due to inherent instabilities of the generative mechanism (Atallah and Scanziani, 2009;

Burns et al., 2010). This type of variation is distinct from measurement noise, which is unrelated to

the dynamics of the system. We express !, e and h in units of Hz (1Hz = 2p*rad/s). The time deriva-

tive �
:

is also expressed in Hz (instantaneous frequency, IF).

Note that here, detuning D! is the intrinsic or natural frequency difference between two oscilla-

tors, which is the frequency difference oscillators would have without any interaction. The measured

detuning can differ from the intrinsic detuning D! if the oscillators exhibit synchronization. In model

simulations or while solving analytical equations, intrinsic frequencies and frequency differences are

known, whereas in empirical data the intrinsic detuning D! needs to be estimated from the mea-

sured detuning. Likewise, whereas e and h are variables that can be set in analytical equations or

simulations, they are not directly given in empirical data and need to be estimated. The issue of esti-

mation is treated in the next section. Note that throughout the text, the symbols !, e and h are used

to refer to known variables in analytical or modeling contexts, and to estimates of those variables in

the description of our empirical data.

Below, we discuss the results of solving Equation 1 analytically (see Appendix for more informa-

tion), which allowed us to study changes in the phase-difference probability distribution as a function

of detuning D! and interaction strength e. The phase-difference probability distribution was
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Figure 4. Theory of weakly coupled oscillators (TWCO). (A) Schematic illustration of the model. Two limit-cycle oscillators (here symbolized by

metronomes) that mutually interact with strength e and dependent on function G(q). Each oscillator has its own intrinsic frequency w and the difference

is termed detuning Dw. Each oscillator additionally had phase noise h. (B) The single differential equation used for analysis. (C) Output example from

numerical simulation of Equation 1. The phase precession is shown above and the DIF is shown below. Notice the DIF modulations over time. (D) DIF

modulations averaged as a function of Dphase. (E–J) Equivalent behavior as in the examples shown in Figure 3. Top panels E-G show the modulation

of the instantaneous frequency difference as a function of phase difference. Note that the instantaneous Dphase at which the DIF is minimal (yellow dot)

is smaller when the interaction strength is larger (compare F, G to E). Bottom panels (H–J) show the phase difference probability distributions. Black

bars are numerical simulation results, red lines indicate the analytical solutions. (E.H) Large detuning and low interaction strength. (F,I) Large detuning

and strong interaction strength. (G,J) Small detuning and large interaction strength.

DOI: https://doi.org/10.7554/eLife.26642.010
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characterized by the PLV and the mean (preferred) phase difference. The analytical solutions as a

function of detuning Dw and interaction strength e can be understood more easily by first consider-

ing the noise-free case. In the noise-free case (s = 0), one can solve the equation for zero-points

(equilibrium points), meaning that the phase precession is zero (�
:

¼ 0, i.e. zero frequency difference).

To reach equilibrium, the detuning Dw and the interaction term eG(q) need to be counterbalanced,

and three cases can be considered. First, when detuning is smaller than the interaction strength (|D!|

<=e), there is a particular phase difference at which an equilibrium can be reached. At equilibrium,

there is no phase precession and thus PLV equals 1 (full synchronization). Second, when interaction

strength is zero (e = 0), the asynchronous oscillators display continuous linear phase precession and

have zero PLV, with the exception of zero detuning. Third, when detuning is larger than a nonzero

interaction strength (|D!|>e, e >0), oscillators exhibit nonlinear phase precession over time, charac-

teristic for the intermittent synchronization regime (Ermentrout and Rinzel, 1984b; Izhike-

vich, 2007; Pikovsky et al., 2002, Figure 4C). The phase precession rate (instantaneous frequency

difference) is determined by the detuning Dw, the modulation shape G(q), and the modulation ampli-

tude e. Around the preferred phase-relation, the instantaneous frequency difference is reduced

(‘slow’ precession in Figure 4C), whereas away from the preferred phase-relation, the instantaneous

frequency is larger (‘fast’ precession in Figure 4C). For a given Dw and e, a characteristic relationship

can be predicted between DIF and Dphase (Figure 4D), indicative of the interaction function G(q).

Note that in the noiseless regime, a PLV between 0 and 1 can be obtained, varying between inter-

mittent and full synchronization. However, including phase noise (s > 0) has important effects on the

synchronization behavior (Izhikevich, 2007; Pikovsky et al., 2002). The noise flattens the phase-

relation distribution and can induce full cycles of phase precession (phase slips) that also lead to

instantaneous frequency modulations. For noisy oscillators, the intermittent synchronization regime

is the default regime for a large parameter range.

To show the applicability of the theory, we first reproduced the three empirical examples shown

in Figure 3 by numerical simulations of Equation 1 and by varying detuning Dw and interaction

strength e. We assumed a sinusoidal G(q) (see Kuramoto model, Breakspear et al., 2010; Kura-

moto, 1991) and a phase variability of SD = 18 Hz (similar to our experimental data). As we did also

with empirical data (see Figures 5 and 6), detuning was estimated here from the mean frequency

difference at which the instantaneous frequency difference (DIF) modulations were centered,

whereas the interaction strength was estimated from the amplitude of the modulations (Figure 4D).

As shown in Figure 4E–J, our simulations showed the same relation between the instantaneous fre-

quency difference modulations and the properties of the phase difference probability distribution as

observed for V1 gamma (Figure 3B–I).

To test whether the same synchronization properties could be reproduced by simulation data

from a more biologically plausible model, we constructed a model consisting of two mutually cou-

pled pyramidal-interneuron gamma network (PING) networks (Figure 3—figure supplement 2). The

PING network captures essential biophysical properties of cortical gamma rhythmicity

(Börgers et al., 2005; Fries, 2015; Tiesinga and Sejnowski, 2009) and can be considered a biologi-

cally plausible instantiation of an oscillator in V1. As excitatory input drives gamma frequency

(Buia and Tiesinga, 2006; Jia et al., 2013b; Llinás et al., 1991; Ray and Maunsell, 2010;

Roberts et al., 2013), detuning was manipulated by independently varying the excitatory synaptic

input strength to the two networks. The interaction strength was manipulated by changing the

cross-network excitatory synaptic strengths. Using this more detailed model, we fully reproduced

the synchronization properties obtained with the Kuramoto oscillator model (Figure 3—figure sup-

plement 2). This shows that the latter model, despite its simplicity, captures essential aspects of

neural synchronization.

Estimating the underlying parameters and function of TWCO in
observed data
To demonstrate the value of TWCO for understanding V1 gamma synchronization, we first assessed

the ability of the theory to accurately predict monkey V1 recording data quantitatively (Figure 5A).

Second, we tested whether we could reconstruct the Arnold tongue, which is a central prediction of

the theory. The Arnold tongue describes the synchronization region in the parameter space of
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Figure 5. .General approach to derive and evaluate the theoretical predictions. (A) Schematic illustration of the main procedure to derive and evaluate

the theoretical predictions for gamma PLV. From the experimental data (instantaneous frequency difference, top) we needed to estimate the function G

(q) and the parameters e, Dw and s to solve Equation 1 (bottom), obtaining PLV predictions. We extracted (left) the function and parameters using

observed DIFð�Þ(for G(q),e, Dw) and the gamma frequency distribution (for s). We then solved Equation 1 for each contact pair and compared directly

Figure 5 continued on next page
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detuning and interaction strength (Figure 5B) and provides a general intuitive description of the

gamma synchronization behavior.

To achieve the first goal, the theoretical parameters of Equation (1) need to be estimated. This

equation can then be solved to predict the expected phase-difference probability distribution. Here,

we were interested in two key properties of the distribution, the phase-locking value (PLV) and the

mean phase difference. The theory predicts that the phase-difference-dependent modulation of the

instantaneous frequency difference (DIF(q)) is determined by the detuning Dw and the interaction

term eG(q). As shown above, we consistently observed modulations in DIF(q) in our experimental

datasets (Figure 3). Importantly, the time-averaged modulation of the instantaneous frequency

DIFð�Þ directly relates to the deterministic term D!+eG(�), as noise is averaged out (see more in the

Appendix). Based on this relation, the two parameters (Dw and e) as well as the shape of function G

(q) were estimated from the experimentally observed modulation of DIF(q) (Figure 5A, Figure 5—

figure supplement 1). Equation (1) contains a white noise process h determined by variance s2

(mean = 0). The variance was determined by estimating the overall observed frequency variability in

our gamma-band signal (taking SNR into account, see Appendix).

Based on these theoretical considerations, we estimated Dw and e separately for each contact

pair between probes in each experimental condition. The interaction strength e was estimated by

the modulation amplitude of the averaged modulation in the intrinsic frequency difference DIFð�Þ.
The detuning D! was estimated by the average of the intrinsic frequency difference DIFð�Þ com-

puted over the full range of instantaneous phase differences [-p p]. By contrast, we estimated a sin-

gle G(q) function and s value from each monkey separately, therefore assuming stability of

underlying PRCs and of the noise sources. The function G(�) was estimated by the normalized DIFð�Þ
modulation shapes. We validated the approach using phase-oscillator simulations (Figure 5—figure

supplement 1). Note that the function G(�) was estimated from data with absolute detuning of

more than 4 Hz. This was done based on the observation that interaction functions became

deformed when detuning was close to (see for more in Appendix). Further, it avoided smearing due

to phase shifts occurring mainly within ±4 Hz. Given G(q) and the value s, the equation could be

mathematically (analytically) solved for any values of detuning Dw and interaction strength e. This

means that for each contact pair and condition, we could derive precise predictions of differences in

instantaneous frequency, phase relation, and phase locking (PLV) for comparison with the observed

data.

A potential problem is that SNR influences both the PLV and the interaction strength estimate

(problem of circularity). Further, the variables detuning and interaction might not be completely

independent, due to factors like SNR. We therefore did not directly use the individual interaction

strength values for comparison, but first binned contact pairs according to cortical distance (±0.25

mm). For each cortical distance, we then computed the averaged interaction strength. All contact

pairs within a cortical distance bin were then assigned the same interaction strength. This step cir-

cumvented the problem of circularity and dependence of variables, but it also limited the maximum

prediction accuracy that could be achieved.

To achieve the second goal, reconstructing the Arnold tongue, we mapped the observed PLV

and mean phase differences as a function of detuning and interaction strength (using cortical dis-

tance binned as above) to obtain the Arnold tongue (Pikovsky et al., 2002). To demonstrate the

expected shape of the synchronization region (Figure 5B), we mapped the analytically derived PLV

Figure 5 continued

the predicted and observed PLV (right, where each point represents one condition and contact pair) (B) The prediction of the Arnold tongue. In the

parameter-space of e and Dw, a characteristic inverted triangular-shaped synchronization region is as expected from TWCO. Left is the analytically

derived PLV from Equation 1 (where G(q) being a sinusoid function and s = 18 Hz). The black line represents the equality (e=|Dw|), which sharply

defines the Arnold tongue in the noise-free case. Right the mean phase difference is mapped showing a gradual change of phase-difference along the

detuning dimension.

DOI: https://doi.org/10.7554/eLife.26642.011

The following figure supplement is available for figure 5:

Figure supplement 1. Testing the accuracy of the interaction function reconstruction.

DOI: https://doi.org/10.7554/eLife.26642.012
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and mean phase difference from TWCO Equation (1) in the Dw-e parameter space. We observed a

triangular synchronization region (Figure 5B) described as the Arnold tongue. This reflects the fact

that stronger interaction strengths ‘tolerate’ larger detuning (|D!|<=e). Further, a clear phase gradi-

ent along the detuning dimension can be observed. The oscillator with a higher frequency led the

oscillator with a lower frequency in terms of their phases.

Figure 6. Predicting V1 gamma synchronization in monkeys M1 and M2. (A) Illustrative schema showing how detuning Dw and interaction strength e of

V1 gamma relate to local stimulus contrast and cortical distance respectively. (B) Example plots of averaged phase-dependent modulation of the

instantaneous frequency difference (DIF) used for estimating e and Dw for monkey M1 (brown) and M2 (green). The shape of the modulation indicates

the G(q). (C) Plots showing that the interaction strength e decreased with cortical distance in both monkeys M1 and M2. (D, E) Each gray dot represents

one single contact pair data and condition plotted as function of the observed PLV (y-axis) and the analytical predictions (x-axis). The red line shows

unity line. The black dots represent the population means binned according to predicted PLV (+-SE). (F, G) The observed PLV population means (dots)

and the analytical predictions (gray line) as a function of detuning Dw for one level of interaction strength (e = 1.7 in M1; e = 1.6 in M2). (H, I) Same as in

(D, E), but now for mean (preferred) phase differences. (J, K) Similar to (F, G), but now for mean phase difference.

DOI: https://doi.org/10.7554/eLife.26642.013
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TWCO predicts synchronization properties of V1 cortical gamma
rhythms
We then assessed whether the theory predicted the experimental gamma-band PLV values recorded

from V1 (focusing on layers 2–4) using the estimation procedure as described above. We estimated

for each contact pair and stimulus condition their detuning values (ranging from about �6 Hz to 6

Hz) as well as their interaction strength. The phase noise parameter and the interaction function G(q)

were estimated for the two monkeys separately.

The interaction function G(q) was estimated as being approximately a sinusoidal function

(Figure 6B) with relatively symmetric negative and positive components (Akam et al., 2012). This

means that phase precession was accelerated (increase in frequency) or reduced (decrease in fre-

quency) depending on the precise phase-difference. This type of interaction function allows for

robust phase-locking for negative as well as positive detuning values (see symmetric Arnold tongue

below). This is because negative detuning can be counterbalanced by the positive component of G

(q) and the positive detuning by the negative component of G(q). It is worth noting that the interac-

tion function G(q) is not identical with the PRC. This is because the interaction function G(q) is the

convolution of the PRC with the coupling function (Ermentrout, 1996). In the present data, the

exact form of the underlying (mainly synaptic) coupling function underlying V1 gamma synchroniza-

tion was out of reach, and we only estimated here its overall strength e. This contrasts with modeling

data where synaptic coupling strengths are known and the coupling function can be computed. Nev-

ertheless, the synaptic/electrical dynamics that underlie gamma rhythms are relatively fast, and we

therefore expect that the interaction function G(q) is closely related to the PRC. Hence, whenever

we use the terms PRC and G(q) in the context of our empirical data analysis, we keep their concep-

tual distinction in mind while considering them similar for practical purposes.

The phase noise parameter s was found to be relatively large (M1: s = 19 Hz, M2: s = 20 Hz) indi-

cating substantial frequency variability not explained by the interaction function (likely due to inher-

ent noise and interactions with other cortical locations). The detuning Dw was positively correlated

with the local contrast difference (linear regression, M1: R2 = 0.28, M2: R2 = 0.25, both p<10�10)

and with MUA rate difference between probes (linear regression, M1: R2 = 0.53, M2: R2 = 0.36, both

p<10�10) in line with Ray and Maunsell, 2010. The interaction strength e was found to be inversely

correlated with the cortical distance between probes (linear regression, M1: R2 = 0.41, M2:

R2 = 0.29, both p<10�10, Figure 6C), in line with the known decrease of V1 horizontal connectivity

with distance (Stettler et al., 2002).

To test further the idea that the interaction strength e is a biologically meaningful measure of neu-

ral interaction more thoroughly, we repeated the analysis of interaction strength e over cortical dis-

tance between probes with trial-shuffled data. A large interaction strength e surviving the shuffling

may reveal an influence of a stimulus-locked component on e. This permutation analysis led to popu-

lation-averaged IF modulation curves that were nearly flat, with values on average of e = 0.31 Hz ±

0.002 in M1 and e = 0.28 Hz ± 0.006 in M2. This is much lower than the e values of 1–2 Hz observed

without shuffling (Figure 6C). This may have been due to the fact we had only ~30 trials to shuffle

per condition. This likely was not enough to obtain optimal randomization. Indeed, applying the

same procedure to phase-oscillator simulations with 30 simulation trials also led to a remaining value

of e = 0.2 Hz ± 0.009. Furthermore, the higher the trial number, the closer the value got to zero (100

trials = 0.1 Hz ± 0.004, 500 trials = 0.05 Hz ± 0.002, 1000 trials = 0.03 Hz ± 0.004). Nevertheless, we

cannot exclude that the small remaining non-zero value of e after shuffling to some extent reflected

a minor contribution of stimulus-dependent dynamics in our data. In an attempt to empirically test

interaction strength in a case where no or weak anatomical connectivity is expected, we analyzed

additional V1-V2 pair recordings with far-removed RFs in monkey M1 (Fig S9, G-I). The interaction

strength we observed (e = 0.3 Hz) was very small, not different from shuffled trials, in line with the

expected weak connectivity between involved recordings sites. Altogether, these analyses support

the conclusion that e is a biologically meaningful measure of neural interaction. Having estimated

detuning Dw, interaction strength e, the interaction function G(q), and the phase noise h, we were in

a position to predict the properties of synchronization for each contact pair by solving the Kuramoto

equation (Figure 5A).

We found that the gamma PLV variations over single contact pairs were significantly captured by

the analytical predictions as a function of Dw and e (model accuracy: M1: R2 = 0.18, n = 7245, M2:
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R2 = 0.32, n = 7938, Figure 6D,E). This is particularly striking, given that the model predictions were

derived out of first principles and single contact data were noisy. We also tested whether the model

predicted variation of PLV evaluated for each single contact pair separately, where variation is

induced mainly by detuning (model accuracy: M1: R2 = 0.27 ± 0.0002, n = 802, M2:

R2 = 0.1 ± 0.0001, n = 882). The population means, defined as the averaged PLV values of contacts

pairs with a similar detuning and cortical distance (bin size: ±0.35 Hz, ±0.3 mm), were very well pre-

dicted (model accuracy: M1: R2 = 0.83, M2: R2 = 0.86, both n = 638). To illustrate this, we plotted in

Figure 6F,G the population means and the predictions for different detuning values for a single,

medium interaction strength bin (M1: e = 1.7, M2: e = 1.6). The observed PLVs (dots) corresponded

very well to the predictions (red line).

We also analyzed the mean phase difference (preferred phase-relation). A positive phase differ-

ence (phase X – phase Y) means that contact X leads (precedes in time) contact Y in terms of the

phase of its oscillatory activity. Note that the temporal differences were smaller than the time scale

of a full cycle, justifying the use of phase differences to indicate temporal ordering. The phase differ-

ence ranged nearly between –pi/2 to pi/2 in both M1 and M2. Again, single contact pair data was

substantially captured by the analytical predictions as a function of Dw and e (model accuracy: M1:

R2 = 0.56, n = 7245, M2: R2 = 0.3, n=7938 Figure 6H,I). Furthermore, we tested whether the model

predicted variability of phase difference evaluated for each single contact pair separately. This vari-

ability mainly represents variability induced specifically by detuning (model accuracy: M1:

R2 = 0.52 ± 0.0002, n = 802, M2: R2 = 0.44 ± 0.0004, n = 882). The observed population means for

different Dw and e values followed the analytical predictions precisely (model accuracy: M1:

R2 = 0.92, M2: R2 = 0.88, both n = 638). In Figure 6J, K, we plotted the population means and the

predictions, but this time as a function of a range of detuning values for a medium interaction

strength, further illustrating a good correspondence. The gamma rhythm with the higher frequency

in a pair had the leading phase and the mean phase difference increased with increased detuning.

To our knowledge, this is the first demonstration that phase locking values and preferred phase dif-

ferences in primate cortex can be quantitatively predicted based on theoretical principles and lim-

ited knowledge of the system.

To further test the ability of TWCO to predict observed neural synchronization behavior, we plot-

ted the observed CSD-CSD gamma PLVs in V1 as a function of Dw and e for both M1 and M2. In this

manner, we tested whether we would observe an Arnold tongue in the V1 data, which is a synchroni-

zation region with the shape of an inverted triangle defined by its regulative parameters Dw and e

and a core prediction of TWCO (See Figure 5B). Figure 7A shows the observed PLV (color-coded)

plotted as a function of Dw and e, revealing a structure that fitted the predicted Arnold tongue in

both monkeys. As predicted, conditions of high interaction strength and low detuning showed

strong gamma synchronization, whereas conditions of low interaction strength and high detuning

yielded weak gamma synchronization. Notably, a model consisting of two coupled PING networks,

in which interaction strength was manipulated by changing synaptic connectivity between the net-

works, and detuning by imposing differential excitatory drive, also yielded the Arnold tongue (Fig-

ure 7—figure supplement 1).

Using the estimated parameters, we also predicted the borders of the Arnold tongue analytically

(black lines), which captured the outline of the observed Arnold tongue well. Due to intrinsic fre-

quency variability (phase noise), the PLV values were not expected to decrease as sharply as

expected from noiseless coupled oscillators (see Figure 5B). Further, in both monkeys (Figure 7A

bottom), the map of mean phase difference showed a clear phase gradient across the detuning

dimension as expected from the TWCO (Figure 5B). The results show that gamma rhythms with a

higher frequency in a pair had the leading phase. Furthermore, for a given detuning, stronger inter-

action strength led to a reduction of the phase difference (see also yellow dots in Figure 3B,E,H and

Figure 4E,F,G).

As an additional test of the robustness of our findings and their applicability to neural spiking

data, we replicated our analysis in spike-CSD coupling measurements (see for more in the Appen-

dix). We computed the PLV and mean phase difference between multi-unit activity (MUA) recorded

from a contact of one probe and the CSD recorded from a contact of another probe. MUA activity

was smoothed with a Gaussian kernel (s = 4 ms) and demeaned to obtain a continuous spike density

signal that was then analyzed similar to CSD signals. As shown in Figure 7B, we observed a similar
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Arnold tongue structure for spike-CSD measurements. The same analysis using Spike-Spike measure-

ments also resulted in a similar Arnold tongue structure (Figure 7—figure supplement 2).

We have thus far confined analysis to pairs in middle and superficial layers. We therefore further

separately investigated interactions between deep layers (Figure 7C). CSD-CSD analysis between

deep contacts (L5-6) confirmed a similar Arnold tongue structure showing that the Arnold tongue

properties do apply across the cortical layers. Our laminar probes reached also cortical area V2 lying

beneath of V1 (Figure 1—figure supplement 1). We tested for V1-V2 pairs whether they exhibited

similar phase-dependent instantaneous frequency modulations. We found that this was indeed the

case (Figure 7—figure supplement 3).
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Figure 7. Arnold tongues. Combining different detuning Dw and interaction strengths e, we observed a triangular region of high synchronization, the

Arnold tongue. Black lines mark the predicted Arnold tongue borders as expected from the noise-free case (e=|Dw|). (A) CSD-CSD PLV from V1 layers

2–4 are shown for both monkeys. Notice the inverted triangular shape of PLV values. Below, the mean phase difference is mapped in the same

parameter space exhibiting a clear gradient with detuning. (B) Same analysis as in (A), but using MUA spikes from one contact and the CSD from the

other contact. Here combined for both monkeys. (C) The same analysis as in (A), but using contacts from deep layer 5–6 in V1. We separated the

analysis for L5/6 and L2/3, because we found strong coherence within each group, but weak coherence between the groups (see more in the

Appendix).

DOI: https://doi.org/10.7554/eLife.26642.014

The following figure supplements are available for figure 7:

Figure supplement 1. Applying the theory of weakly coupled oscillators to coupled PING networks.

DOI: https://doi.org/10.7554/eLife.26642.015

Figure supplement 2. Arnold tongue mapping for CSD-MUA and MUA-MUA signals.

DOI: https://doi.org/10.7554/eLife.26642.016

Figure supplement 3. Phase-dependent instantaneous frequency modulation (and hence interaction strength ") decreases with receptive field distance

(and hence anatomical connectivity strength).

DOI: https://doi.org/10.7554/eLife.26642.017

Figure supplement 4. Gamma amplitude modulation as a function of phase-difference.

DOI: https://doi.org/10.7554/eLife.26642.018
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The systematic variation of the phase difference between contact pairs by detuning indicates that

detuning can affect the information flow between gamma rhythms (Besserve et al., 2015;

Buehlmann and Deco, 2010; Cannon et al., 2014; Lowet et al., 2016). This is because spikes from

a neural rhythm that leads another neural rhythm in time are more effective (Buehlmann and Deco,

2010; Cannon et al., 2014; Fries, 2015). To test this further, we mapped the main direction of

Granger causal influence (see more in the Appendix) in the (CSD-CSD) gamma band (XfiY vs X Y)

as a function of detuning and interaction strength. We observed that a change in the sign of detun-

ing and phase difference was linked to a change in the direction of strongest granger causality

(Figure 8).

We observed one property of synchronization that was not accounted by the model equations.

We found that gamma (instantaneous) amplitude (the absolute of analytical signal) varied weakly or

moderately as a function of phase difference (Figure 7—figure supplement 4) in our experimental

V1 data These amplitude variations were replicated also in simulation data of two mutually coupled

PING spiking networks. The gamma amplitude variation became stronger with interaction strength.

It has been shown before that increased mutual entrainment of synchronizing local gamma rhythms

can enhance their amplitudes (Womelsdorf et al., 2007). However, TWCO remains highly predictive

even in conditions of weak-to-moderate amplitude variations as long these variations do not strongly

change the phase trajectory (Izhikevich, 2007; Kopell and Ermentrout, 2002; Pikovsky et al.,

2002).

In Figure 9, we summarize schematically our main findings of how gamma synchronization

between cortical locations is determined by their interaction strength and detuning and how it

relates to the theory of weakly coupled oscillators, exemplified by the Arnold tongue. We propose

that anatomical coupling is an important factor defining the interaction strength, however by itself is

not sufficient to fully predict the amount of functional gamma-band interactions. Critical in addition

is the amount of detuning that can functionally couple or decouple anatomically connected cortical

locations. The crucial combined contribution of detuning D! and anatomical connectivity (related to

") to synchronization is illustrated in three specific cases (Figure 9A–C), two of which yielding very

low synchronization (with D!, " coordinates falling just outside the Arnold tongue), and one of which

yielding strong synchronization (with a D!, " coordinate falling inside the Arnold tongue)

(Figure 9D–F). Furthermore, Figure 9A–C (see arrows) illustrate that in the case of mutually anatom-

ically coupled cortical locations, detuning influences the temporal relationship and possibly the

direction of information flow between synchronized gamma rhythmic neural assemblies.
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Discussion
The present study shows that gamma synchronization in awake monkey V1 adheres to theoretical

principles of weakly coupled oscillators (Ermentrout and Kleinfeld, 2001; Hoppensteadt and Izhi-

kevich, 1998; Kopell and Ermentrout, 2002; Kuramoto, 1991; Pikovsky et al., 2002; Win-

free, 1967), thereby providing insight into the synchronization regime of gamma rhythms and its

principles. Given the generality of the synchronization principles, they are likely to also apply to

other brain regions and frequency bands.
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Intermittent synchronization: the role of non-stationary frequency
modulations
Our findings reveal the importance of phase-dependent frequency modulations for synchronizing V1

gamma rhythms. These modulations show that a fixed and common frequency is not required for

phase coordination. To the contrary, stronger non-stationary frequency modulations led to stronger

synchronization, and thus to more reliable phase coordination. Frequency modulations arise naturally

in the intermittent synchronization regime (Ermentrout and Rinzel, 1984b; Izhikevich, 2007;

Pikovsky et al., 2002), when oscillators cannot remain in a stable equilibrium due to detuning and

noise. Given the variable nature of gamma rhythms in vivo (Atallah and Scanziani, 2009;

Burns et al., 2010; Ray and Maunsell, 2010; Roberts et al., 2013), intermittent synchronization is

the most likely regime for their phase coordination. Although complete synchronization is not

achieved in this regime, phase coordination remains sufficiently robust to influence the strength and

directionality of information flow, by rendering particular phase-relations more likely than others

(Battaglia et al., 2012; Buehlmann and Deco, 2010; Fries, 2015; Maris et al., 2016). The observa-

tion of non-stationary frequency modulations also has methodological implications. Gamma rhythms

are often studied with stationary methods, for example spectral coherence or stationary Granger

measures, yet our findings are not in line with the (weak-sense) stationarity assumption

(Lachaux et al., 1999; Lowet et al., 2016). Time-resolved non-stationary methods are therefore

more appropriate to study the dynamics underling gamma synchronization (Bonizzi et al., 2014;

Huang, 2005; Lachaux et al., 1999).

The Arnold tongue and the regulative parameters of gamma
synchronization
Previous studies have established diversity in the phase-locking (Eckhorn et al., 2001; Gray and

Singer, 1989; Ray and Maunsell, 2010) and in the phase-relations (Maris et al., 2016; Vinck et al.,

2010) of gamma rhythms in the primate visual cortex. However, how this observed diversity in

phase-relation and phase-locking is regulated was not well established. Here, we show that mainly

two parameters determined gamma synchronization: the detuning D! and the interaction strength e.

This was highlighted in the mapping of the Arnold tongue, offering a graphical understanding of

how these parameters shape gamma-band synchronization. Detuning represents a desynchroniza-

tion force, whereas the interaction strength represents a synchronization force. In our experiment,

the former was modulated by input drive differences associated with different local contrasts, and

the latter by changes in connectivity strength associated with horizontal cortical distances between

electrodes. Their interplay defined the resultant phase-locking strength and the preferred phase-

relation between gamma rhythms. The observed role of detuning is in agreement with a previous

study in the rat hippocampus (Akam et al., 2012), in which optogenetic entrainment strength and

phase of gamma rhythms were dependent on the frequency-detuning. The results also agree with

theoretical concepts of oscillatory interactions (Ermentrout and Kopell, 1984a; Hoppensteadt and

Izhikevich, 1998; Sancristóbal et al., 2014; Tiesinga and Sejnowski, 2010). We suggest that small

detuning values (mainly <D10 Hz) reported in the present study and much larger shifts in the gamma

frequency-range (25–50 Hz to 65–120 Hz) as reported in the rat hippocampus (Colgin et al., 2009)

represent different but complementary mechanisms for controlling gamma synchronization. On the

one hand, only a small difference in gamma frequency will leave a possibility for synchronization

while a large difference will preclude synchronization. So, large shifts in detuning open or close

opportunities for synchronization. On the other hand, at small levels of detuning that offer opportu-

nities for synchronization, small changes in instantaneous frequency will modulate the exact strength

and direction of the gamma-mediated information flow. Hence, instantaneous frequency modula-

tions, which define the interaction strength, reflect the overall ability of two cortical locations to

engage in gamma-band synchronization. These modulations are mediated by anatomical connectiv-

ity and further modified by oscillation amplitude. Hence, an important source of instantaneous V1

gamma frequency modulations is the underlying network (intermittent) synchronization process,

which means that variations in gamma frequencies do not argue against a functional role of gamma

synchronization (see Bosman et al., 2009; Burns et al., 2011; 2010; Roberts et al., 2013). Further-

more, we show that the shape of the instantaneous frequency modulations reflects the underlying

interaction function G(q), which in our recording data likely is closely related to the PRC
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(Hoppensteadt and Izhikevich, 1998; Kopell and Ermentrout, 2002; Kuramoto, 1991;

Pikovsky et al., 2002; Winfree, 1967). The interaction function describes how the oscillators

advance or delay each other’s phase development to coordinate their phase-relation. We observed

approximately symmetric sinusoidal-like functions in V1 gamma that resemble the basic function of

the widely-used Kuramoto-model (Breakspear et al., 2010). This is in agreement with the biphasic

PRC of gamma rhythms observed in the rat hippocampus (Akam et al., 2012) and fits with our

observed symmetric Arnold tongues (Izhikevich, 2007; Kopell and Ermentrout, 2002;

Pikovsky et al., 2002). Importantly, here we estimated the bidirectional interaction function G(q).

This function can be symmetric despite the presence of asymmetric individual (unidirectional) PRCs

(Cannon and Kopell, 2015; Wang et al., 2013), as long as the rhythms interact approximately

equally strongly, which is a plausible assumption between V1 locations.

The interaction functions we estimated here might be smoother than they really are due to limita-

tions of our analysis arising from noise, averaging, and steps taken to reduce volume conduction.

Future studies are required to characterize in more detail the (unidirectional/bi-directional) gamma-

band interaction functions. Unidirectionally connected neural groups, for example between certain

cortical areas, might have asymmetric interaction functions and an asymmetric Arnold tongue. In this

situation, a frequency difference between cortical areas (Bosman et al., 2012; Cannon et al., 2014)

might be favorable for optimal information transmission.

We found small-to-moderate phase-dependent variations of oscillation amplitude, which were

not accounted for by the model equations. They were observed both in V1 data and PING simula-

tions, indicating they are of biological origin. Future work is necessary to better understand their rel-

evance. In addition, we assumed that synchronization between V1 locations emerged due to mutual

horizontal interactions, yet common input fluctuations might further shape V1 gamma synchroniza-

tion (Wang et al., 2000; Wiesenfeld and Moss, 1995; Zhou et al., 2013), especially for neurons

with similar receptive fields. Although we did not investigate the possible effects of common input,

the observation that gamma synchronization occurred between V1 locations with distinct receptive

fields and with a dependence on cortical distance as expected from anatomical connectivity

(Gail et al., 2000; Gieselmann and Thiele, 2008; Palanca and DeAngelis, 2005; Ray and Maunsell,

2010; Stettler et al., 2002) indicates that cross-columnar gamma-band synchronization depends

strongly on direct mutual horizontal interactions (Veit et al., 2017).

Role of V1 gamma synchronization for visual processing and broader
relevance
In our experiment, detuning was dependent on the local contrast difference (Ray and Maunsell,

2010; Roberts et al., 2013), known to change neural excitation in V1 (Sclar et al., 1990), while the

interaction strength was dependent on the underlying horizontal connectivity strength, here varied

by cortical distance (Stettler et al., 2002). Gamma synchronization is therefore informative about

the sensory input (Besserve et al., 2015) and about the underlying structure of connectivity. Indeed,

the frequency of gamma rhythms is modulated by various sensory stimuli (Fries, 2015) and by cogni-

tive manipulations (Bosman et al., 2012; Buzsáki and Wang, 2012; Fries, 2015) suggesting that

frequency control is a potential avenue for modulating functional gamma-band coordination and

information transfer (Besserve et al., 2015; Buehlmann and Deco, 2010; Lowet et al., 2016). Fur-

ther, as phase lag is dependent on detuning, detuning may influence the direction of information

flow among mutually coupled oscillators. This is in line with granger causality analysis in our paper

(Figure 8), but also with network simulations published by us and others (Besserve et al., 2015;

Buehlmann and Deco, 2010; Cannon et al., 2014; Lowet et al., 2016) showing that detuning will

shape the information flow between model networks as measured by information theoretical tools

(e.g. transfer entropy). Nevertheless, much more work is needed to explore the influence of detun-

ing on directionality of information flow, and the results in the present paper are only suggestive.

The effect of detuning on synchronization was strongly modulated by interaction strength, which

we demonstrated to relate strongly to the strength of horizontal connectivity. Horizontal connectivity

in V1 is not only local, but also exhibits remarkable tuning to visual features, orientation being a

prime example (Stettler et al., 2002). Hence, innate and learned connectivity patterns likely affect

the interaction strength and hence the synchronization patterns of gamma rhythms within V1. These

properties suggest V1 gamma as a functional mechanism for early vision (Eckhorn et al., 2001;

Gray and Singer, 1989) by temporally coordinating local neural activity as a function of sensory
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input and connectivity. In agreement with previous studies (Eckhorn et al., 2001; Palanca and

DeAngelis, 2005; Ray and Maunsell, 2010), V1 gamma synchronization was found to be mainly

local and limited to a narrow range of frequency differences. It is therefore not likely that gamma

within V1 ‘binds’ whole perceptual objects. Instead, it is more likely to bind features locally at the

level of surround receptive fields. Furthermore, recent studies on the gamma-band response during

natural viewing (Brunet et al., 2015; Hermes et al., 2015) have found variable levels of synchroniza-

tion power for different natural images. In accordance with these observations, the revealed Arnold

tongue of V1 gamma implies that natural image parts with high input/detuning variability (heteroge-

neity) will induce no or weak synchronization, whereas parts with low input/detuning variability

(homogeneity) will induce stronger synchronization. This is also in line with proposals linking gamma

synchronization with surround suppression/normalization (Gieselmann and Thiele, 2008; Ray et al.,

2013) and predictive coding (Vinck and Bosman, 2016). Our findings and theoretical interpretation

shed new light onto the operation of gamma synchronization in the brain and will permit new and

more detailed descriptions of the mechanisms by which synchronization is regulated by cognitive

and sensory inputs.

Finally, we propose that the mechanism we have described for gamma synchronization in V1 also

holds outside the visual cortex. Gamma synchronization across cortical areas have been observed in

spite of frequency differences (Bosman et al., 2012; Gregoriou et al., 2009), which is further sup-

ported by our additional analysis of V1-V2 interactions. Together, this suggests that similar principles

likely operate for gamma-band inter-areal interactions. Further, the instantaneous gamma frequency

fluctuations that we have shown to be instrumental in regulating synchronization, have also been

observed in the rat hippocampus by Atallah and Scanziani (2009). Their analysis suggested that

these fluctuations, which reflected rapid phase shifts due to changes in excitation-inhibition balance,

might be critical for gamma-mediated information flow. Likewise, Nguyen et al. (2009) observed

instantaneous frequency modulations during ripples in rodent hippocampus, revealing dynamics that

may be indicative of processes related to learning and memory. These findings support our proposal

that cycle-by-cycle modulations in frequency that regulate gamma synchronization also happen in

other frequency bands and in other brain regions or structures. Nevertheless, future studies are

required to test to what extent weakly coupled oscillator principles apply to different frequency

bands across brain regions. Importantly, as long as the instantaneous phase of a neural rhythm can

be determined, the methods used in this study can be applied. Instantaneous phase extraction has

been for example applied to theta rhythms (Belluscio et al., 2012; Buzsáki, 2002) or alpha rhythms

(Lakatos et al., 2005; Samaha and Postle, 2015; Schwabedal et al., 2016). In future studies, opto-

genetic tools (Boyden et al., 2005; Fenno et al., 2011; Zhang et al., 2007) will be highly useful to

modify oscillation properties like detuning in a precise manner. Variation of sensory or cognitive vari-

ables can also be a powerful and natural way of modulating network states if enough is known about

the system (e.g., Bosman et al., 2012). Interaction strength could be estimated from anatomical

knowledge or manipulated by optogenetics (e.g. by targeting cell-types involved in a specific type

of anatomical connectivity and varying oscillation amplitude). Aside of emerging new technological

possibilities for network state modulation, a tight combination of experimental and dynamic systems

theory will be critical for fruitful analysis and interpretation of neural oscillatory data.

In summary, the present paper offers the first predictive theory of synchronization, which we sug-

gest can be used to assess the mechanisms of synchronization in various frequency bands, and to

assess their contribution to diverse forms of cognition.

Materials and methods

Species used and surgical procedures
Two adult male rhesus monkeys were used in this study. A chamber was implanted above early visual

cortex, positioned over V1/V2. A head post was implanted to head-fix the monkeys during the

experiment. All the procedures were in accordance with the European council directive 2010/63/EU,

the Dutch ‘experiments on animal acts’ (1997) and approved by the Radboud University ethical com-

mittee on experiments with animals (Dier Experimenten Commissie, DEC).
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Recording methods
V1 recordings were made with 2 or 3 Plexon U-probes (Plexon Inc.) consisting of 16 contacts (150

mm inter-contact spacing). We recorded the local field potential (LFP) and multi-unit spiking activity

(MUA). For the main analysis, we used the current-source density (CSD, (Vaknin et al., 1988)) to

reduce volume conduction. We aligned the neural data from the different laminar probes according

to their cortical depth and excluded contacts coming from deep V2. Layer assignment was based on

the stimulus-onset CSD profile (Schroeder et al., 1991a) and the inter-laminar coherence pattern

(Maier, 2010b). Receptive field (RF) mapping was achieved by presenting at fast rate high-contrast

black and white squares pseudorandomly on a 10 � 10 grid (Roberts et al., 2013). For RF mapping

we used CSD signals and spikes.

Task and visual stimuli
The monkeys were trained for head-fixation and were placed in a Faraday-isolated darkened booth

at a distance of 57 cm from a computer screen. Stimuli were presented on a Samsung TFT screen

(SyncMaster 940bf, 38˚x30˚ 60 Hz). During stimulation (2 s) and pre-stimulus time (1 s) the monkey

maintained a central eye position (measured by infra-red camera, Arrington, 60 Hz sampling rate).

The monkey’s task was to passively gaze on a fixation point while a stimulus was shown. The monkey

was rewarded for correct trials. The local stimulus contrast was manipulated in a full screen static

square-wave grating (2 cycles/degree, presented at two opposite phases randomly interleaved).

Contrast was varied smoothly over space such that different RFs had different contrast values. The

direction of the contrast difference was parallel to the arrangement of RFs and orthogonal to the ori-

entation of the grating. The stimulus was isoluminant with the pre-stimulus grey screen. We pre-

sented 9 different contrast modulation conditions (Table.S1). Cortex software (http://dally.nimh.nih.

gov/index.html) was used for visual stimulation and behavioral control.

Data analysis
We analyzed gamma rhythms in the visual stimulation period (0.2 s - 2 s). We discarded the first 200

ms to avoid stimulus-onset transients. To investigate dynamical changes in the gamma phase and

frequency over time, we estimated the instantaneous gamma phase and frequency using the singular

spectrum decomposition of the signal (SSD [Bonizzi et al., 2014]) combined with Hilbert-Transform

or wavelet-decomposition. The phase-locking value (PLV) was estimated as the mean resultant vector

length (Lachaux et al., 1999) and the preferred phase-relation as the mean resultant vector angle.

For experimental data, we estimated the signal-to-noise ratio (SNR) to reduce the influence of mea-

surement noise on estimates. Phase flipping due to CSD computation was corrected.

Theoretical and computational modeling
Using the theory of weakly coupled oscillators, we investigated the phase-locking as well as the

mean phase difference of two mutually coupled noisy phase-oscillators with variable frequency dif-

ference (detuning) and interaction strength. The stochastic differential equation was solved analyti-

cally (Pikovsky et al., 2002). The analytical results correctly predicted the numerical simulations.

Statistics
The accuracy of the theoretical predictions for the experimental data was quantified as the explained

variance R2.

Data availability
Experimental data sets, modeling and analysis tools are available to all interested researchers upon

request from the corresponding author. For singular spectrum decomposition visit https://project.

dke.maastrichtuniversity.nl/ssd/.
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Markram H, Gerstner W, Sjöström PJ. 2012. Spike-timing-dependent plasticity: a comprehensive overview.
Frontiers in Synaptic Neuroscience 4:2. DOI: https://doi.org/10.3389/fnsyn.2012.00002, PMID: 22807913

Masquelier T, Hugues E, Deco G, Thorpe SJ. 2009. Oscillations, phase-of-firing coding, and spike timing-
dependent plasticity: an efficient learning scheme. Journal of Neuroscience 29:13484–13493. DOI: https://doi.
org/10.1523/JNEUROSCI.2207-09.2009, PMID: 19864561

Miller EK, Buschman TJ. 2013. Cortical circuits for the control of attention. Current Opinion in Neurobiology 23:
216–222. DOI: https://doi.org/10.1016/j.conb.2012.11.011, PMID: 23265963

Mitzdorf U, Singer W. 1977. Laminar segregation of afferents to lateral geniculate nucleus of the cat: an analysis
of current source density. Journal of Neurophysiology 40:1227–1244. PMID: 925725

Nguyen DP, Wilson MA, Brown EN, Barbieri R. 2009. Measuring instantaneous frequency of local field potential
oscillations using the Kalman smoother. Journal of Neuroscience Methods 184:365–374. DOI: https://doi.org/
10.1016/j.jneumeth.2009.08.012, PMID: 19699763

Oostenveld R, Fries P, Maris E, Schoffelen JM. 2011. FieldTrip: Open source software for advanced analysis of
MEG, EEG, and invasive electrophysiological data. Computational Intelligence and Neuroscience 2011:1–9.
DOI: https://doi.org/10.1155/2011/156869, PMID: 21253357

Palanca BJ, DeAngelis GC. 2005. Does neuronal synchrony underlie visual feature grouping? Neuron 46:333–
346. DOI: https://doi.org/10.1016/j.neuron.2005.03.002, PMID: 15848810

Picinbono B. 1997. On instantaneous amplitude and phase of signals. IEEE Transactions on Signal Processing 45:
552–560. DOI: https://doi.org/10.1109/78.558469

Pikovsky A, Rosenblum M, Kurths J, Hilborn RC. 2002. Synchronization: A Universal Concept in Nonlinear
Science. American Journal of Physics 70:655. DOI: https://doi.org/10.1119/1.1475332

Ray S, Maunsell JH. 2010. Differences in gamma frequencies across visual cortex restrict their possible use in
computation. Neuron 67:885–896. DOI: https://doi.org/10.1016/j.neuron.2010.08.004, PMID: 20826318

Ray S, Ni AM, Maunsell JH. 2013. Strength of gamma rhythm depends on normalization. PLoS Biology 11:
e1001477. DOI: https://doi.org/10.1371/journal.pbio.1001477, PMID: 23393427

Roberts MJ, Lowet E, Brunet NM, Ter Wal M, Tiesinga P, Fries P, De Weerd P. 2013. Robust gamma coherence
between macaque V1 and V2 by dynamic frequency matching. Neuron 78:523–536. DOI: https://doi.org/10.
1016/j.neuron.2013.03.003, PMID: 23664617

Samaha J, Postle BR. 2015. The Speed of Alpha-Band Oscillations Predicts the Temporal Resolution of Visual
Perception.
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Appendix

DOI: https://doi.org/10.7554/eLife.26642.022

Surgical procedures
Two adult male rhesus monkeys (Macaca mulatta) were used in this experiment. Two

chambers were implanted above early visual cortex, one positioned over V1/V2 and the

second over V4. For the experiment reported here we used data from the V1/V2 chamber

only. A head post was implanted to head-fix the monkey during the experiment. All the

procedures were in accordance with the European council directive 2010/63/EU, the Dutch

‘experiments on animal acts’ (1997) and approved by the Radboud University ethical

committee on experiments with animals (Dier-Experimenten-Commissie, DEC).

Recording techniques
V1 recordings were made with Plexon U-probes (Plexon Inc.) consisting of 16 contacts (10 mm

diameter, 0.5–1 mW impedance, and 150 mm inter-contact spacing). Three probes were

inserted through a sharp guide tube, which was lowered through granulation tissue to just

above the level of the dura surface. The probes were arranged in a linear manner separated

from each other by ~2–3 mm. The probes were then advanced by separate microdrives (Nan

Instruments LTD.). The probes were connected to headstages of high input impedance, and

data were acquired via the Plexon ‘Multichannel Acquisition system’ (MAP, Plexon Inc.). The

measured extracellular signal was filtered online between 150 Hz and 8 kHz to extract spiking

activity and filtered between 0.7 Hz and 300 Hz to obtain the’ local field potential’ (LFP). The

signal was amplified and digitized with 1 kHz for the LFP and 40 kHz for the spike signal. The

data was converted from Plexon to Matlab file format and cut into trials from fixation onset to

stimulus offset using the fieldtrip toolbox (Oostenveld et al., 2011). For the LFP data, the line

noise was removed using the fieldtrip toolbox dft filter, which fits a sine and a cosine at 50,

100 and 150 Hertz and subtracts these components from the data. We collected 7 recording

sessions in monkey M1 and 6 sessions in M2. Each recording session had on average ~590

trials in M1 and ~718 trials in M2.

Current source density (CSD)
First for extrapolating the CSD to the outermost contacts of our probes, at the top and

bottom of the probe, a replica of the LFP of respectively the first and last contact was

appended (Vaknin et al., 1988). The LFP was then smoothed with a Gaussian (zero-phase)

filter of a SD of 1.2 and range of 5 (effectively weighting signals around the centre electrode

by 24% in the centre, 20% immediate neighbours, 12% 2 contacts away, 5% 3 contacts away).

Then the standard CSD algorithm was applied for each contact position x, our inter-contact

spacing h of 150 mm and a conductivity C of 0.3 S/m:

CSD xð Þ ¼�C �LFP x� hð Þ� 2LFP xð ÞþLFP xþ hð Þ
h2

(1)

We used CSD signals for the main analysis to reduce effects of volume conduction (see also

section MUA-CSD and MUA-MUA analysis).

Receptive field mapping
Receptive fields (RFs) were mapped using both spiking and LFP information as described in

(Roberts et al., 2013). Briefly, monkeys fixated centrally while high-contrast black and white

squares of sizes 0.1-1degree were presented pseudorandomly on a 10 � 10 grid. The

locations where the spiking or the LFP response exceeded the 75th percentile of the response

distribution were defined as the RF. Other than in Roberts et al. (2013), the LFP response was

also used based on the envelope of the broadband gamma power (30–150 Hz) in the CSD,

which we found to produce a localized result in line with spiking RFs. CSDs were computed as
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described above, but with a smaller Gaussian filtering of SD 0.6 and a filter range of 2,

meaning that only the two neighbouring electrodes of the centre electrode had some

iAcademic Pressnfluence on the RF estimate of a given contact. This was done to avoid

mislocalization of RF shifts in size or position that are indicative of a shift to a different column

or to V2 (Gattass et al., 1981) (see Figure 1—figure supplement 1B, rightmost plots for an

example of CSD and spiking RFs with such a shift). To obtain estimates of cortical distance (in

mm) between the probes we took advantage of the well-known retinotopy of V1. We

measured the distance between RF centres and calculated the cortical distance by converting

differences in visual degrees using a cortical magnification factor (CMF, [Schwartz, 1980;

Sereno et al., 1995]). The CMF was estimated individually for each monkey where we used

the measured the physical distance between the laminar probes (fixed to the holder) before

insertion into cortex (M1:~2.7 mm/deg, M2:~2.5 mm/deg).

Laminar alignment
We inserted the laminar probes on each recording day. The exact laminar positions of the

probes (Figure 1—figure supplement 1) differed within and between sessions and hence we

depth-aligned the probes based on their stimulus-evoked response and inter-laminar

coherence characteristics (Maier, 2010b). For depth-alignment (to assign each contact a

particular cortical depth value) we used the following procedure:

1. We computed the CSD-VEP response. The different sink-source profiles were aligned using a

parallel-tempering technique (Frenkel and Smit, 2001). This is an iterative procedure that

minimizes the squared error between all probes, shifting the position of one probe by one

position on each iteration. Central to the parallel tempering algorithm is the parallel start of

the procedure at multiple ‘temperatures’, each of which in our case starts with a different ini-

tial, random offset in the probes. Higher temperatures accept higher increases in error with a

shift in the position of a probe. If a procedure running at a high temperature achieves a lower

error than another temperature (overcoming a local minimum), it swaps the achieved shift

vector with a lower temperature to find the new minimum around it. Similar to

(Godlove et al., 2014) (using a genetic algorithm), we implemented a lenient maximum shift

constraint between electrodes (allowing by shifts of 4 channels upwards and downwards,

which for any two probes enforces a minimal overlap of 50%) to prevent trivial solutions. For

our data, we used 3000 iterations at 4 different temperatures and different error tolerances

per temperature (log spaced between zero and 1). The procedure showed asymptotic behav-

iour (no further decrease in error) at <= 1500 iterations. Note that the optimal number of

iterations required for this algorithm will depend on the number of probes/sessions entered.

2. We then computed the within laminar probe LFP coherence matrix (Carter et al., 1973). It

has been shown that there is sharp decrease in coherence around the L4/L5 border

(Maier, 2010b). We chose this to refine the depth alignments of step 1 using the coherence

matrix and again parallel tempering with the initial values defined by the output of step 1.

An advantage of the coherence matrix is that it is a robust feature and insensitive to possible

gain differences among contacts.

3. We manually checked for outliers of which none were found in this dataset.

Layer assignment
Channels were labelled as supragranular, granular and infragranular based on the location of

the initial sink-source reversal (as established by the position of the reversal in the aligned

grand average) in relation with known anatomy. We consider the position of the sink-source

reversal to correspond to the edge of layers 4 and 5 (Mitzdorf and Singer, 1977;

Schroeder et al., 1991a). Specifically, given our intercontact spacing of 150 micrometres and

about 500 micrometres width generally used per layer (van Kerkoerle et al., 2014;

Maier, 2010b), channels from this border to 450 micrometre below it were labelled

infragranular, channels up to 450 micrometre above as granular, and channels 600 above it

and higher as supragranular. Data were averaged within supra- and granular layers or

infragranular layers in agreement with the two separable sites of gamma-power

synchronization as indicated in the text.
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Definition of the V1-White Matter-V2 borders
The depth probes often collected signals beyond the lower V1 layer 6 border and often

reached the deep V2 infragranular layers. When the probes reached deep V2 the RFs shifted

abruptly several degrees as expected form V1-V2 retinotopy (Figure 1—figure supplement

1B, rightmost plots) (Gattass et al., 1981). The white matter situated between the two areas

appeared relatively thin, often comprising 1–2 contacts (150-300 microns).

To estimate the lower V1 Layer 6 boundary, we first used spiking RFs to determine the

transition. We computed a RF centre distance measure, referenced to L4-L5 border, to

determine at which contact the transition to deep V2 occurred. Before the transition, often 1

or 2 contacts did not show spike RFs at all and were thus likely to represent white matter. V1

Layer 6 border was then defined as the contact with the last low RF centre distance

(threshold <0.5 deg). In probes with low spiking quality; we used CSD signals (filtered in the

gamma range (30–150 Hz) for determining the V1 L6 border.

Single-session RF and CSD evaluation
For each session and probe, the CSD from full-screen checkerboard flashes (37), the task and

RF data were plotted side-by-side. CSDs from flashes and the grating onset were very similar

in the initial response (data not shown). The task-data from a single, high-contrast condition

was split in an early and a later half to detect any changes in depth over the session and also

compared with flash CSDs before and after the task (where available). Recordings were stable

in depth according to this measure. The RF mapping was used to detect changes in the size or

location of RFs over depth and to ascertain that there were no gradual drifts in RF location,

indicative of a probe not inserted fully orthogonal to cortex. In cases were noticeable shifts

were observed, the affected deeper channels were removed from the analysis. The final cut-off

between deep V1 and white matter/V2 was determined based on the distance from the layer

4/5 reversal (see Layer assignment). This border, 450 microns below the 4/5 reversal, was

typically above the level where RF shifts were observed, leading to removal of further deep

channels from the analysis.

Visual stimulation paradigm
The monkeys were trained to accept head-fixation and were placed in a Faraday-isolated

darkened booth at a distance of 57 cm from a computer screen. Stimuli were presented on a

Samsung TFT screen (SyncMaster 940bf, 38˚ x 30˚ 60 Hz). The screen was calibrated to

linearize luminance as function of RGB values. During stimulation and pre-stimulus time the

monkey maintained eye position (measured by infra-red camera, Arrington 60 Hz sampling

rate) within a square window of 2 � 2˚. This window was relatively large to allow for noise

associated with the camera, recording with a second high-speed high-resolution camera

showed that eye position was generally held more stable than the window required. The

monkey was rewarded if for keeping gaze within the eye window during the whole trial.

We aimed to manipulate gamma frequency differences between three recorded locations

in V1 each separated by ~2–3 mm, corresponding to receptive fields (RF) separated by ~1

degree in visual space. The probes were arranged linearly either perpendicularly or parallel to

the lunate sulcus, thus receptive fields were arranged respectively either horizontally or

vertically. To manipulate gamma frequency differences, we manipulated local stimulus contrast

differences in a large square-wave grating (2 cycles/degree, presented at two opposite phases

randomly interleaved). Contrast was varied smoothly between the three locations. The

direction of the contrast difference was parallel to the arrangement of RFs and orthogonal to

the orientation of the grating. To avoid that the contrast manipulation would attract

exogenous and endogenous attention (possibly appearing as an object or object boundary),

we manipulated contrast differences in a repeating symmetric pattern over the entire screen.

Additionally, the stimulus was isoluminant at all points and was isoluminant with the pre-

stimulus grey screen. The contrast at the location of the centre RF, was constant over all

conditions. We presented 8 levels of contrast difference and one stimulus where contrast was
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the same at all points. The exact contrasts differed slightly between the two monkeys since we

used different screens (of the same type) which had somewhat different luminance levels.

Contrast levels are given in Table 1.

We aimed to align the stimulus so that receptive fields at the three cortical locations would

align with the highest, lowest and midpoint of one cycle of the contrast variation. However,

RFs did not always fall exactly as we wished and there was often some variability in RFs within

each probe. To get the best alignment that we could on a given session, we placed the

stimulus such that receptive fields from the upper portion of the central probe fell on the

midpoint between the peak and trough of the contrast variation. We then selected a stimulus

where the distance between the peak and trough best matched the distance between RFs

from the flanking probes. In most cases this lead to a peak-to-trough distance of 2 degrees. In

some cases, we used a distance of 1 or of 3 degrees. In some sessions we recorded with only

two probes in V1. In those cases, the stimulus was aligned so that the midpoint was midway

between the RFs of the two probes.

Most analysis was based on the measured gamma frequency rather than the stimulus

contrast and so any mismatch between the stimulus contrast a particular RF received and the

contrast we planned to present did not affect our conclusions. Where statistical analysis (see

sections below ‘Effects of visual contrast and eccentricity on gamma frequency’) was based on

stimulus contrast we took the stimulus contrast which was present at the centre of the

measured RF of each single electrode contact. For Figure 1 and Figure 1—figure

supplement 2 the data is shown binned by stimulus contrast values for illustration.

Effects of visual contrast and eccentricity on gamma
frequency
Local stimulus contrast had a significant effect on the V1 gamma frequency (linear regression,

M1: R2 = 0.38, n = 1179 M2: R2 = 0.27, n = 1134, both p<10�10, slope: ~0.15 Hz/contrast, see

Figure 1—figure supplement 2) in both monkey M1and M2 confirming previous studies of

monkey and human visual cortex (Hadjipapas et al., 2015; Hall et al., 2005; Jia et al., 2013a;

Ray and Maunsell, 2010; Roberts et al., 2013; Self et al., 2016). Stimulus contrast lead to a

monotonic increase of the frequency, here measured as the mean of the instantaneous gamma

frequency (similar results were obtained using the conventional frequency of the power

spectral peak). Both LFP and CSD gamma gave the same result. The frequency increase was

approximately linear in the range tested, however it might deviate from linearity if the whole

contrast range is considered. Further, in comparison to prior studies (Hadjipapas et al., 2015;

Jia et al., 2013a; Ray and Maunsell, 2010; Roberts et al., 2013), we used here whole-field

gratings with local spatially varying contrast. The MUA spike rate also significantly increased

with stimulus contrast (linear regression, M1: R2 = 0.14, n = 1179, M2: R2 = 0.12, n = 1134,

both p<10�10), which has been well established by previous work (Contreras and Palmer,

2003; Sclar et al., 1990). It suggests that the frequency change is due to a change of network

excitation (Tiesinga and Sejnowski, 2009; Traub et al., 1996). We inserted laminar probes

acutely into the visual cortex and the different probes, depending on their arrangement,

recorded from cortical location coding for different visual eccentricities. There was also

variation across sessions. It has been shown in previous work that the V1 gamma frequency is

modulated by eccentricity (Lima et al., 2010; van Pelt and Fries, 2013). We confirmed these

observations. The gamma frequency significantly decreased with visual eccentricity (linear

regression, M1: R2 = 0.12, n = 1179, M2: R2 = 0.15, n = 1134, both p<10�10). We also

observed that the MUA spike rate decreased with visual eccentricity (linear regression, M1:

R2 = 0.04, n = 1179, M2: R2 = 0.08, n = 1134, both p<10�10) similarly to gamma frequency.

Frequency differences (detuning) between all V1 pairs were here a function of both stimulus

contrast, being the strongest factor, and visual eccentricity (multiple linear regression, M1:

Dcontrast, R2 = 0.28, Deccentricity, R2 = 0.09, n = 7245; M2: Dcontrast, R2 = 0.25,

Deccentricity, R2 = 0.11, n = 7938, all p<10�10). We observed that the frequency difference

was closely related to MUA spike rate difference among probes (linear regression, M1:

R2 = 0.53, n = 7245, M2: R2 = 0.36, n = 7938, both p<10�10) indicating that gamma frequency

differences (and hence detuning) between locations are related to excitability differences. The
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lower excitability in more eccentric locations could reflect network differences or that stimulus,

with a spatial frequency of 2 cycles/degree, was better suited to more foveal sites.

Estimation of instantaneous gamma phase, frequency and
amplitude
For quantifying the phase-locking value and the preferred phase difference we relied on the

reconstruction of the instantaneous phase (Picinbono, 1997). Methods based on the

instantaneous phase deal better with non-stationary dynamics (than e.g. spectral coherence),

which were present in the gamma-band signals investigated here. The main challenge is to

decompose the often complex, multi-component measured LFP/CSD signal, into a well-

defined gamma oscillatory component from which the instantaneous phase can be extracted

(i.e., after a Hilbert-Transform or directly from a time-frequency representation (TFR),[Le Van

Quyen et al., 2001]). We used a method based on the singular spectrum decomposition of

the signal (SSD, see https:// project.dke.maastrichtuniversity.nl/ssd/) (Bonizzi et al., 2014).

SSD is a recently proposed method for the decomposition of nonlinear and non-stationary

time series (Bonizzi et al., 2012; Bonizzi et al., 2014) in a completely data-driven manner.

The method originates from singular spectrum analysis (SSA), which is a nonparametric

spectral estimation method used for analysis and prediction of time series. For a given signal x

(t) we applied SSD for each trial separately to extract the gamma oscillatory components

(SSDg). Here a short overview is presented. For more information see (Bonizzi et al., 2014).

The following steps were implemented to retrieve the gamma oscillatory component SSDg

(Bonizzi et al., 2012), where each iteration reproduces one component. The iteration stopped

when 10 components were extracted or only 1% residual variance remained.

1. The signal x(t) is embedded giving a trajectory matrix X:

X ¼

x1 x2 . . . xN�Mþ1

x2 x3 . . . xN�Mþ2

..

. ..
. ..

. ..
.

xM xMþ1 . . . xN

2

6

6

6

6

4

3

7

7

7

7

5

(2)

Particular to the SSD approach, the embedding dimension M is automatically estimated in

a completely data-driven manner as 1.2*Fs/fmax, with fmax being the dominant frequency in

the power spectral density (PSD) of x(n), and Fs the sampling frequency. The factor 1.2 allows

M to cover a time span 20% larger than the average period of the wanted component (to

account for a variable period).

2. The singular value composition (SVD) of the trajectory matrix X is then computed:

X ¼UDVT ; with U ¼ MxMð Þ and V ¼ NxNð Þ (3)

3. Out of the M principal components of X, an approximated version of X is obtained by

selecting those principal components with a dominant frequency in the range [fmax - df; fmax

+ df], where the width of the dominant peak df is estimated by means of a Gaussian

interpolation of the power spectral density of the time series x(t). Then signal is then

reconstructed by diagonal averaging. The reconstructed component signal is subtracted from

the original signal and a new iteration of steps is started.

The SSD procedure results in a set of components representing rhythmic variation of the

signal with different dominant frequencies. We were interested in the component which

represented the gamma-band. We therefore selected the component which had the largest

fraction of spectral power in gamma frequencies [25 Hz-60Hz] for each single trial. In the large

majority of cases, there was a single dominant component representing gamma-band

fluctuations in the LFP/CSD signals. To get an estimate of the percentage of outlier SSD trials,

we counted trials with an instantaneous frequency variation exceeding 1.5 times the

interquartile range from either the 25th or 75 percentile of the distribution. We found that

according to this criterion, 1.46% in M1% and 1.25% in M2 of the SSD decomposed trials

could be considered as outliers, with high frequency variations indicating that for those trials
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the SSD decomposition was likely not optimal. As the percentage of outliers was small, we did

not remove them from analysis.

For deriving the instantaneous phase of a SSD component, the Hilbert transform (HT) was

applied using the Matlab implementation.

SSDag ¼ SSDg þ iHT SSDg

� �

(4)

where HT(SSDg) is the Hilbert-Transform of the selected SSD gamma component. The HT of a

real-valued signal is added as imaginary component to the real-valued signal itself to obtain

the analytic signal. SSDag is the analytical signal of the SSDg. The instantaneous phase j can

then easily be derived from the analytic signal:

’¼Arg SSDag

� �

(5)

Arg is the argument of the complex value SSDag. The instantaneous frequency (IF) can be

determined as the derivative of the instantaneous phase. The phases need to be unwrapped

before applying the derivative. However, the IF might exhibit strong outliers if the signal is

noisy. We used therefore a Savitzky-golay filter (Schafer, 2011) to smooth the phase trajectory

(and hence the IF) using a polynomial fitting approach (kernel = 31 ms).

The HT is a standard approach for reconstruction of the instantaneous phase, however a

problem of HT is its sensitivity to low SNR. We therefore used another approach for

estimating instantaneous phase that is more robust against noise, but remains valid

(Lowet et al., 2016). We approximated the instantaneous phase by using the time-frequency

representation (TFR) of the signals using Morlet wavelets (Le Van Quyen et al., 2001). This

approach was used mainly for estimating phase-locking strength (PLV). Morlet wavelet

approach was defined as follows:

WSSDg
t;!ð Þ ¼

Z

þ¥

�¥

SSDg 	
�
t;! xð Þdx (6)

where WSSDg
t; !ð Þ is the wavelet coefficient of the gamma SSD component and 	*

t,! is the

complex conjugate of the Morlet wavelets, both as a function of time t and frequency !.

Morlet wavelets were defined as:

 ðt;!Þ ¼
ffiffiffi

!
p

ei2p!ðx�tÞe�
ðx�tÞ2
2!2 (7)

Where s defines the width of the wavelet which also defines the number of cycles

(nc = 6fs). Here we used 6 cycles. The argument of the complex wavelet coefficients gives the

instantaneous phase for each frequency-time point:

’W t;!ð Þ ¼Arg WSSDg
t;!ð Þ

� �

(8)

Estimation of phase-locking strength and mean phase
difference
The mean phase difference was defined as the mean circular phase difference between two

oscillations (averaged in the complex domain), where q = f1- f2:

��¼Arg
1

T

X

T

t¼1
ei� tð Þ

 !

(9)

with a range of [-p, p]. Arg is the argument function and q is the instantaneous phase

difference derived from the Hilbert transform. For estimating phase-locking we computed the

phase-locking value (PLV, [Lachaux et al., 1999]) based on the instantaneous phase derived

from the wavelet TFR. The PLV was computed by averaging the complex values with unit

amplitude:
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PLV ¼ j 1
T

X

T

t¼1
ei� tð Þj (10)

� tð Þ ¼ ’W1 t;!1ð Þ�’W2 t;!2ð Þ (11)

where T is total number of time points (trials were concatenated). The frequencies w1 and w2

were chosen based on the frequency of the gamma spectral power peaks of the respective

contacts. The PLV ranges from 1, corresponding to full phase consistency, to 0, corresponding

to fully random. Importantly, the PLV measure allows that oscillations have different

frequencies (a form of cross-frequency coupling measure, [Lowet et al., 2016]). Both, HT-PLV

or wavelet TFR-PLV gave similar results. However, the wavelet TFR-PLV is more robust for SNR

changes over different probes or sessions and we chose this as our preferred method for the

main analysis. The main results were also not dependent on applying SSD and similar results

could be obtained by combining filtering and HT or wavelet TFR on raw signals. For the MUA

signals analysed (see below) we used wavelet TFR-PLV on the raw MUA signals.

Correction for CSD-induced phase shifts
When applying CSD on a laminar probe the resultant signal from a given contact will likely

show a constant (artificial) phase shift relative to the phase of the original LFP. This is because

the CSD computes the difference among nearby LFP contacts which can change the polarity.

For statistical analysis on single contact level these shifts are not problematic (as they are

constant for a given contact pair) nor for the directionality measures, but it would give a

scrambled picture for the Arnold tongue mapping, where all contact pairs are needed for

analysis. To reduce the effect of the phase shifts, we normalized the phase-differences for

each given contact pair to the condition having the smallest frequency difference (this

corresponds to a parallel translation). Hence, for CSD the phase-difference is by definition 0 at

frequency difference (detuning) zero. This was done because gamma oscillations had zero

phase difference at zero frequency difference shown by 1) LFP-LFP analysis 2) confirmed by

MUA-MUA analysis. An alternative correction of the CSD phase difference using the estimated

time-lags from the PSI gave similar results.

SNR estimation and SNR-correction
For experimental data it is important to consider (external) measurement noise. Measurement

noise is noise that adds to the biological signal and is completely unrelated to the underlying

dynamics. The amount of measurement noise is often expressed as the signal-to-noise ratio

(SNR). Despite the fact that the SNR from invasive LFP or MUA measurements is higher than

non-invasive EEG/MEG measures, the SNR is still a limiting factor and needs to be considered

for a better interpretation of the data. At low SNR, the PLV is largely underestimated. For

example, a SNR of 3 can reduce the PLV more than half. Further, it also important for

separating effects of true gamma amplitude from effects by SNR. A further important

motivation for considering SNR correction was to be able to compare experimental PLV to the

analytical predictions from the coupled oscillator equations which are SNR free.

In the data the exact amount of biological signal and external noise is unclear and needs to

be approximated. We approximated the gamma-band SNR by using the fact that most of the

gamma power is induced by stimulation. We therefore compared gamma power during

stimulation to gamma power during baseline period. The power spectra in the baseline period

looked similar to 1/f indicating that the approximation is plausible. The gamma SNR was

defined as follows:

SNR !ð Þ ¼ PowStim !ð Þ� PowBase !ð Þð Þ
PowBase !ð Þ

(12)

To obtain PLV values that are relatively SNR independent, we simulated artificial oscillatory

synchronization data using phase-oscillator equations (Lowet et al., 2016) for different SNR
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levels. We applied the exact same PLV estimation procedure as used for experimental data

and quantified how SNR level does change the PLV estimate. The PLV estimates were

compared to analytical derived expected PLV by solving the phase-oscillator equations. From

these analyses we derived a SNR inverse function which gives a correction factor for the PLV

measured at a particular SNR.

In addition, we performed the same procedure for the estimation of the interaction

strength e in experimental data which is also sensitive to SNR. At low SNR, the interaction

strength e is underestimated. Also here we computed a correction factor based on simulated

data with different level of SNR.

Theory of weakly coupled oscillators
Detailed reviews and mathematical descriptions of the theory, also its extensions and

limitations, can be found in a number of publications (Ermentrout and Kleinfeld, 2001;

Hoppensteadt and Izhikevich, 1998; Kopell and Ermentrout, 2002; Kuramoto, 1991;

Pikovsky et al., 2002; Winfree, 1967). According to the theory of weakly coupled oscillators,

the phase evolution of two given cortical V1 locations is reduced to:

’
:

1
¼ !1þ "21H21 ’1�’2ð Þþ h

1
(13)

’
:

2 ¼ !2þ "12H12 ’2�’1ð Þþ h2 (14)

where ’1,2 is the phase, ’
:

1;2 its temporal derivative, !1,2 is the preferred frequency, e12 and e21

are the interaction strengths, H12 and H21 are the single PRCs and h1,2 is a phase-noise term

with h1,2 ~ N(0, s2) N being the normal distribution. The two equations, as given in the main

text Equation 1, can be further simplified to:

�
:

¼ D!þ "G �ð Þþ h (15)

where � = ’1 –’2 is the phase difference, D! = !1 – !2 the detuning, eG(�)= e21H21(�)-e12H12(-�)

the combined interaction term with e being the interaction strength and G(q) the mutual PRC

(odd-parts) and h= h1 –h2 the phase noise with h ~N(0,
ffiffiffiffiffiffiffiffi

2s2
p

).

Analytical derivation of phase-locking and mean phase
difference
Equation 15 is a stochastic differential equation (Langevin equation) and was solved as

described in (Pikovsky et al., 2002). Equation 15 can be rewritten in the form of a Fokker-

Planck equation that has been developed to give an analytical solution for the evolution of a

probability distribution P of a particle influenced by a drag force (first term on the right side of

the equation) and a random Gaussian noise process (second term). The drag force is here the

combined systematic force of detuning Dw and the interaction function eG(q):

qP

qt
¼ q D!þ "G �ð Þð ÞP½ �

q�
þs2

q
2P

q�2
(16)

The stationary (time-independent) solution �P �ð Þ of the Fokker-Planck equation which is:

�P �ð Þ ¼ 1

C

Z

�þ2p

�

exp
V �

0� �� V �ð Þ
s2

 !

d�
0

(17)

V �ð Þ ¼ D!�þ "
Z

�

0

G xð Þdx (18)
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�P �ð Þ ¼ 1

C

Z

�þ2p

�

exp
V �

0� �� V �ð Þ
s2

 !

d�
0

(19)

where C is a normalization constant defined by
R

2p

0

�P �ð Þd� ¼ 1. V(�) represents the influence of

systematic force as a function of phase difference. �P �ð Þ is the phase difference probability

distribution and describes how likely a particular phase difference is to occur. A uniform

distribution means that every phase difference is equally likely and the oscillator are hence

asynchronous. If the distribution approximates a delta distribution (meaning only one phase

difference has non-zero probability), then the oscillators are completely synchronized. All other

distributions in between signify intermittent (partial) synchronization (also called cycle slipping

or phase walk-through, [Izhikevich, 2007; Pikovsky et al., 2002]). To quantifying the

narrowness of the distribution, we use the phase-locking value (the mean resultant vector

length, [Lachaux et al., 1999]) defined here as:

PLV ¼
Z

2p

0

�Pð�Þ ei�d�

�

�

�

�

�

�

�

�

�

�

�

�

(20)

Further, we were also interested in the mean phase difference, also described as the

preferred phase difference, defined here as:

��¼ arg

Z

2p

0

�P �ð Þ ei�d�

0

@

1

A (21)

A phase difference between oscillators in neural networks implies spike timing differences.

It has been shown that spike-timing is an important characteristic in addition to spike

synchrony (Dan and Poo, 2004; Heitmann et al., 2013; London and Häusser, 2005;

Markram et al., 2012; Masquelier et al., 2009; Tiesinga et al., 2008).

Biophysical modelling of coupled gamma-generating
neural networks
To demonstrate that the results from the phase-oscillator equations are generalizable to more

biophysically realistic neuronal network oscillations (see Figure 3—figure supplement 1), we

simulated two coupled excitatory-inhibitory spiking neural networks generating pyramidal-

interneuron gamma (PING, [Tiesinga and Sejnowski, 2009]) oscillations.

The neural voltage dynamics v were of the Izhikevich-type (Izhikevich, 2003) and defined

as follows:

dv

dt
¼ 0:04v2þ 5vþ 140� uþ I (22)

du

dt
¼ a bv� uð Þ (23)

if v � 30mV ; then
v  c

u  uþ d

�

The coupled differential equations were numerically solved using the Euler method (1 ms

step size). The networks were both composed of two types of neurons: 200 regular spiking

neurons RS (a = 0.02, b = 0.2, c=-65mV, d = 8) and 50 fast-spiking interneuron FS (a = 0.1,

b = 0.2, c=-65mV, d = 2). RS were excitatory neurons and FS inhibitory neurons (ratio 4:1). The

neural networks were all-to-all synaptically connected. Synapses were modelled as exponential

decaying functions, reset to 1 after the presynaptic neurons fired. Synaptic connection values
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had a maximum synaptic connection strength (max syn). The synaptic strengths were chosen

from a random uniform distribution defined between the 0 and the maximal connection

strength.

Within a network, RS neurons projected excitatory synaptic AMPA (decay constant = 2 ms)

connections onto FS neuron (max syn = 0.45) and among themselves (max syn = 0.05). FS

neurons projected synaptic GABA-A (decay constant = 8 ms) connections onto RS neurons

(max syn = �0.35) and among themselves (max syn = �0.2). For cross-connections between
the networks, we included RSfiFS connections (EfiI, max syn(default)=0.015) and RSfiRS

connections (EfiE, max syn(default)=0.007)1450011. We did not include inter-network FSfiFS

or FSfi RS connections to reflect that V1 horizontal connectivity is dominated by excitatory

connections originating from pyramidal cells(Angelucci and Bullier, 2003; Angelucci et al.,

2002; Bosking et al., 1997; Boucsein et al., 2011; Stettler et al., 2002).

The input drive to RS neurons was composed of a fixed input current to each neuron (=10),

unique Gaussian input noise for a given neuron (SD ±3) and Gaussian input noise shared

among neurons (SD ±1) of the same network. Thus each network received Gaussian input

noise to RS neurons with the effect of inducing instantaneous frequency variation in the

network over time (similar to intrinsic phase noise in the phase-oscillator model). For FS

neurons, each received a fixed input current (=4) and Gaussian input noise (SD ±3). FS neurons

received further excitatory drive from the RS neurons. For estimating the instantaneous phase,

phase difference and frequency of the network oscillation we used a population signal defined

as mean membrane voltage of all RS neurons of a given network. We simulated in total

n = 697 conditions (17 coupling and 41 detuning conditions) to compare it to analytical

predictions.

Instantaneous frequency modulations by phase-difference
Synchronization counteracts the phase precession by either accelerating or decelerating the

precession depending on the form of the phase-response curve (PRC). Hence, phase

difference dependent frequency modulations are expected from synchronization theory. To

quantify the phase difference dependent frequency modulation in simulation/experimental

data, we first computed for each pair of oscillations their instantaneous phases and their

derivative (instantaneous frequency). To estimate the modulation, we computed the mean

instantaneous frequency for a given instantaneous phase difference. For this, we binned the

instantaneous phase difference data into equal bin sizes (bin size = 0.1 rad), and for each bin

we estimated the mean instantaneous frequency, here for contact 1.

IF1 �ð Þ ¼
1

T�

X

T�

t�¼1
IF t�ð Þ (24)

where IF the instantaneous frequency, Tq is the maximal number of time points having phase

difference q, tq are individual time points with phase difference q.

DIF �ð Þ ¼ IF1 �ð Þ� IF2 �ð Þ (25)

Estimation of detuning value Dv

The intrinsic frequency, the frequency an oscillator would have without interactions with other

oscillators, could not be directly measured experimentally. The simple mean (emergent)

frequency difference between oscillations will change as a function of synchronization. The

stronger the synchronization, the closer the (emergent) frequency difference will be become;

up to the point they are complete synchronized (common frequency).

Yet, the intrinsic frequency can be approximated from the phase difference dependent

instantaneous frequency fluctuations. If there are no interactions among oscillators, the

measured frequency is equal to the intrinsic frequency. However, if the oscillators synchronize,

the instantaneous frequency will fluctuate as a function of the phase difference. At the

preferred phase difference, the IF difference between oscillators is minimal, whereas at the

anti-preferred phase it is maximal. Importantly, if both the interaction strength and the PRC
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are similar for both oscillators, then the mean of DIF �ð Þ will be equal to the detuning. Hence to

derive the detuning, we first assumed that the interaction functions between oscillations were

symmetric, which seems plausible, considering the isotropic horizontal connectivity properties

in V1 (Stettler et al., 2002). The detuning value was then defined as follows:

D!¼ 1

N

X

N

n¼1
DIF nð Þ (26)

assuming that (1) e12 » e21 and (2) H12» H21. The validity of the approach was tested using

phase-oscillator model as well as the coupled PING network model. In the former, the true

detuning was a given parameter and in the latter the detuning could be measured by

decoupling the two PING networks. Both modelling types showed that the detuning could be

robustly retrieved, if interaction strengths were approximately symmetric. The Equation 26

can be adapted to deal with cases of interaction asymmetry (e12 6¼ e21) using the individual

interaction strengths e12 and e21 for a weighted averaging. In our experimental V1 data we

observed covariation and similarity of individual interaction strengths e12 and e21 that is in line

with the isotropic connectivity structure of V1. We observed systematic deviations from

symmetry in cases when the PING networks or V1 contacts had large amplitude differences.

Oscillation amplitude can influence the interaction strength e, because a network that can

send a larger amount and more synchronized spikes to another network will have a stronger

influence(Fries, 2015; Tiesinga et al., 2004; Womelsdorf et al., 2007).

Estimation of interaction strength e

A straightforward method is for each contact pair to estimate the modulation amplitude e as

the (min-max)/2 of the modulation. Even though the method works in many cases, especially

for the PING simulation data, it is not very robust against SNR and has a tendency of

overestimating the interaction strength as tested with phase-oscillator simulations where the

true interaction is known. We therefore used another approach (used in the main analysis)

based on the Fourier transform (FFT) of the modulation function:

F !ð Þ ¼ jFFT jDIF �ð Þjð Þj (27)

where w is frequency. The first Fourier coefficient is the mean offset of the modulation. Since

we observed an approximately sinusoidal shape of the frequency modulation that was periodic

over a phase differences of 2p, the amplitude of the modulation is captured in the second

Fourier coefficient. We also included the third Fourier coefficient to capture to some extent

the asymmetries observed in the modulation shape. The higher Fourier coefficients should

mainly represent noise. For estimating modulation strength e we summed the second and

third Fourier coefficient and subtracted the estimated noise. This noise was assumed to be

uniform across all Fourier components. It was therefore estimated as the mean amplitude of

the second quadrant of N Fourier coefficients (N defined by number of phase bins of the

modulation function).

"¼ F 2ð ÞþF 3ð Þð Þ� 2

N

X

N=2

j¼N=4
F jð Þ (28)

This gave much more robust estimates for lower SNR data and reduced the tendency of

overestimation for lower interaction strengths. Rather it had a weak tendency of

underestimation (especially if the modulation shape is more asymmetric). However, for both

methods the estimation of interaction strength e systematically decreased with lower SNR.

For the experimental data, we scaled the e values for the analytical predictions to account

for the SNR in macaque V1 data. For this, as described above, we estimated the known

interaction strengths of the phase-oscillator data and added different level of external noise to

mimic SNR seen in monkey data. This yielded a curve giving the accuracy of the interaction

strength estimates as a function of SNR. The inverse of the curve gave us the rescaling values

to compensate for SNR. Based on the estimated SNR of monkey M1 and M2 data, we
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rescaled the estimate of e to make it approximately SNR independent. For the main analysis

conditions, with larger detuning were chosen to estimate the modulation function of

instantaneous frequency by phase difference because data points were more equally

distributed over different phases for these conditions. For each contact pair we used all

conditions with a detuning value larger than 4 Hz and took the mean of those estimated e

values.

In our experimental data we always had cases of large detuning, owing to our experimental

manipulation of contrast difference. In cases where only small detuning values are recorded,

we suggest that estimations of e can be based on the absolute instantaneous frequency

differences. This will avoid cancellation of fluctuations around zero which would give severe

underestimation of the true underlying interaction strength. The price will be a tendency of

overestimation for very low interaction strengths.

Estimation of the G(�)
Given that the detuning value (Dw) and the interaction strength (e) were estimated from the

mean instantaneous frequency modulation by phase-difference (DIF �ð Þ), then G(�) can be

simply estimated by following equation:

G �ð Þ ¼ DIF �ð Þ�D!

"
(29)

This approach was tested using the phase-oscillator model (Figure 5—figure supplement

1), where G(q) was a known function. Using the described approach any shape of G(q) could

be estimated from the simulation data assuming the oscillators were mutually connected with

approximately similar interaction strengths (hence being symmetric).

The G(q) describes how the rate of phase precession (equivalent to instantaneous frequency

difference) between oscillator is altered as a function of phase-difference, whereas the single

PRC H(q) describes how the phase evolution of a single oscillator (=instantaneous frequency) is

altered as a function of phase-difference. The H(q) in the PING networks were asymmetric with

a stronger positive (advancing) component and a weak negative (delaying) component, hence

being more of the so-called PRC Type 1 (Cannon and Kopell, 2015; Schwemmer and Lewis,

2012). When PING networks were unidirectional coupled, they exhibited asymmetric Arnold

tongues due to the asymmetric H(q). Whether these applies to unidirectional coupled brain

areas needs to be tested. For the main analysis, the PING networks were mutually connected

with the same strength. The resultant G(q) had therefore symmetric negative and positive

components.

For making predictions of the PLV or mean phase-difference we assumed that the

underlying interaction properties (the shape of the PRCs) did not change over the different

conditions. We therefore used one estimation of G(q) function for the whole dataset for each

monkey 14500111450011or for all PING simulations. We assumed that the underlying

interaction properties (the shape of the PRCs) did not change over the different conditions.

To obtain a G(q) population estimation for a whole dataset we averaged single absolute |G

(q)| from all contact pairs that had a sufficient level of detuning (|Dw|>4 Hz). We took the

absolute to make G(q) independent of sign and so avoid cancelling each other out during

averaging. Taking only conditions where |Dw|>4 Hz was necessary first to assure low

synchronization and therefor to have a more uniform phase-difference probability distribution

to ease the estimation of the instantaneous frequency difference for all phase-differences.

Second, the minima of the G(q) shifted in its mean (preferred) phase difference mainly within

the range of �4 Hz to 4 Hz. This would lead to smearing of the obtained population

estimation. Restricting to conditions of |Dw|>4 Hz ensured that the individual minima

approximately overlapped.

While we used the population G(q) for the main analysis, using a G(q) from a single contact

pair led to good prediction values of the whole dataset in many cases. However, there were

also individual cases that deviated from the norm. Generally, estimation of G(q) in contact

pairs with low detuning that show very high level of synchronization is difficult as the

oscillators remain constantly around their preferred phase-relation. This was the case
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especially in PING simulation with low phase noise levels. In this case, perturbation techniques

might be more appropriate. Further, in cases of strong amplitude differences between

contacts, we observed asymmetries at the level of single PRC leading to different G(q)

properties. Further, we observed small to moderate amplitude modulations as a function of

phase difference (Figure 7—figure supplement 4) that might have affected the shape of G(q)

of contact pairs with strong interaction values. The use of CSD for reducing volume

conduction led to additional noise due to artificial phase shifts. Given all these considerations,

single G(q) could be noisy for experimental single contact pairs. The population average G(q)

was a better representation of the interaction properties of V1 horizontal connections.

The use of IF(q) for estimating single PRC or G(q) needs careful considerations. However,

our work shows how much important information these modulations can contain about the

underlying synchronization process. Our approach can be applied to other brain regions and

frequency-bands to improve understanding of the underlying synchronization properties.

Estimation of noise variance s
2

The estimation of the phase noise variance s of the noise process h(t) from data is not trivial

due to measurement noise and general complexity of LFP/CSD signals. The phase noise is

intrinsic to the oscillatory process (dynamic noise) and relevant for the understanding of the

dynamics and therefore distinct to external measurement noise. Phase noise implies variability

in the instantaneous frequency of oscillators (see Equation 13-15) and the overall variability of

instantaneous frequency should scale with the noise variance s2. We approximated the noise

variance s2 by determining in the phase-oscillator model what s2 value would produce the

same observed instantaneous frequency difference distribution as observed in the PING or

experimental V1 data. This approach was more robust than estimating the phase noise

variance around the interaction function. It is important to note that the observed frequency

variance is not the same as the (intrinsic) variance going into Equation 13-15. This is because

synchronization also counteracts the intrinsic variability. The procedure involved two main

steps:

1. Estimate the (population average) standard deviation of the observed instantaneous fre-

quency difference distribution of SSD gamma.

2. Using phase-oscillator equations find the value for s that can reproduce the observed stan-

dard deviation of the observed instantaneous frequency difference distribution giving the

observed signal-noise-level.

Analytical predictions for PING and experimental V1
gamma
Using the Equations 17 and19 and the estimated G(q) and noise variance s from the data we

could make predictions for any value of detuning Dw and interaction strength e. The phase

difference probability distribution �P �ð Þ was analytically predicted, from which we quantified

the phase-locking strength (PLV, see Equation 20) and the mean phase difference

(Equation 21). The predicted PLV and mean phase difference was compared to the observed

PLV and mean phase difference from the data with the same detuning and interaction

strength.

For PING networks we modulated the interaction strength e by changing the inter-network

connectivity strength and the detuning Dw by given different excitatory input drive to the two

networks. For each simulation we had an estimate of interaction strength e and detuning Dw.

For experimental V1 gamma, interaction strength e was modulated by cortical distance and

detuning Dw by local contrast and to a weaker extent eccentricity (see above). For each

contact pair, we had their interaction strength e and their detuning Dw.

Mapping of the Arnold tongue
For PING data, we mapped the data corresponding to their detuning and internetwork

synaptic connectivity strength. For data corresponding to particular connectivity strength, we

estimated the interaction strength e and used these values for the rescaling of the y-axis,
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because the interaction strength e was the parameter we wanted to compare to the

theoretical model.

For experimental V1, we binned the contact pairs according to their detuning (±bin

size = 0.35 Hz, bin steps = 0.2 Hz) and cortical distance (±bin size = 0.6 mm, bin steps = 0.3

mm). This average data binned according to detuning and cortical distance is what is termed

population data. For data corresponding to a particular bin, we estimated the interaction

strength e and use these values for the rescaling of the y-axis. This was done to make sure that

the interaction strength e dimension was independent of the detuning Dw dimension, because

binning directly using interaction strength e and detuning had a potential risk of inducing

dependencies between dimensions (e.g., due to SNR fluctuation) as both were based on

estimation of DIF(q).

Evaluation of prediction accuracy of analytical model
We estimated the accuracy of the model predictions using the coefficient of determination, R2,

for phase-locking strength (PLV) and the mean phase difference. Notice that here we evaluate

the model accuracy without optimizing the parameters to enhance fitting.

R2 ¼ 1� SSres

SSTot
(30)

SSres is sum of square of the prediction error, the residuals of the difference between

observed data and the predicted data, and the SSTot is sum of square of the demeaned

observed data.

For the PING networks we observed that for both PLV (R2 = 0.93, n = 697) and mean phase

difference (R2 = 0.94, n = 697) the model predictions explained a large significant part of the

variance.

For experimental V1 gamma data we observed that the model predictions captured also a

large significant part of the PLV (population level: M1:R2 = 0.88, n = 638, M2: R2 = 0.9,

n = 638; level of single contact pairs: M1: R2 = 0.18, n = 7245, M2: R2 = 0.32, n = 7938) and

mean phase difference variance in both monkeys (population level: M1: R2 = 0.94, n = 638,

M2: R2 = 0.88, n = 638; level of single contact pairs: M1: R2 = 0.56, n = 7245, M2: R2 = 0.27,

n = 7938). The population-level data represent the binned and averaged single-contact pairs

and conditions according to detuning and cortical distance (see section Mapping of the

Arnold tongue).

Analysis of L2-L4 and L5-L6 gamma-band synchronization
For the main analysis of synchronization, we limited the analysis to data recorded from L2-L4

representing most the gamma power in V1 (Buffalo et al., 2011; van Kerkoerle et al., 2014;

Maier, 2010b; Roberts et al., 2013; Xing et al., 2009). The lowest gamma power was

observed around the L4-L5 border. We observed a second gamma peak around L5-L6

(van Kerkoerle et al., 2014; Xing et al., 2012) and gamma power going into deep V2. To

distinguish L6 from deep V2 we used marked receptive fields shifts (as described above) as

indicator for the transition from V1 to V2.

We did the exact same analysis for quantifying synchronization between pairs of L5-6

gamma as used for L2-4 gamma (Figure 7C). We could confirm the observation of an Arnold

tongue in terms of PLV and mean phase difference also for the deep gamma showing that the

observed synchronization properties can be generalized over different laminar compartments.

We propose that calculating the PRC and Arnold tongue between various cortical locations

would be a fruitful way to understand the connectivity between brain networks.

MUA-CSD and MUA-MUA analysis
We also computed gamma PLV and the mean phase difference using multi-unit activity (MUA)

by computing both CSD-MUA locking and MUA-MUA locking (Figure 7B and Figure 7—

figure supplement 2). The MUA represent a local population spike rate signal and it is

thought to reflect more the ‘output’ of the network, whereas LFP/CSD represent the synaptic
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input of the network (Buzsáki and Schomburg, 2015; Buzsáki et al., 2012). Further, in the

main analysis we estimated the synchronization gamma behaviour by using current-source

density (CSD) signals derived from our V1 16-contact laminar probes. The important

advantage of CSD compared to the local field potential (LFP) is the strong reduction of

volume conduction which would substantially bias the PLV as well as the mean phase

difference the closer the laminar probes are. The local second spatial derivation of nearby

contact on the laminar probes for deriving CSD (Einevoll et al., 2013; Vaknin et al., 1988)

reduced the effect of far electrical fields. However, application of CSD can likely not

completely eliminate the influence of volume conduction of very near probes. Therefore, we

used the more local MUA signal to test whether we can confirm a similar gamma

synchronization behaviour as observed with CSD. A disadvantage of MUA signal in our

recording data was its much lower SNR than LFP/CSD signals. We analysed the aggregate

MUA signals of all L2-L4 contacts of a single laminar probes, converted the spikes into spike

densities smoothed using a Gaussian filter (s = 4 ms). In Figure 7—figure supplement 2 the

results of the MUA-CSD and MUA-MUA analysis are illustrated showing that the Arnold

tongue in terms of PLV and mean phase-difference could be observed in MUA-CSD as well

MUA-MUA signals. The results show that similar gamma synchronization behaviour in V1 can

be observed at the level of CSD, representing mainly synaptic inputs, and spiking data,

representing neural output. It also shows that volume conduction, already minimized for CSD

signals, cannot be an influential determinant.

Instantaneous amplitude modulation by phase difference
We also investigated whether instantaneous gamma amplitude changed as a function of phase

difference (Figure 7—figure supplement 4). In both, the PING networks as well as V1 gamma

oscillations, we observed small to moderate amplitude modulation (up to ~15% modulation

from mean amplitude). The modulations observed in the PING model looked strikingly similar

to the V1 gamma amplitude modulations (compare Figure 7—figure supplement 4A/B with

Figure 7—figure supplement 4C). These modulations are not expected from the weakly

coupled oscillator theory, but as mentioned above (section Estimation of detuning value D!),

oscillation amplitude can influence the interaction strength e as more synchronized spikes are

more effective in influencing receiving neurons. This might affect synchronization behaviour in

terms of phase-locking and mean phase difference, especially if amplitude modulations

become more substantial. Future work should explicitly address the effect of amplitude on

synchronization (Aronson et al., 1990).1450011

Granger causal analysis
We investigated Granger causal interactions (Granger, 1969) by fitting a full multivariate

autoregressive model.

Xi tð Þ ¼
X

N

n¼1

X

K

k¼1
binkXn t� kDtð Þþai þ hi1 tð Þ (31)

Where a the value of an each discrete time series Xi at time bin t is predicted based on a

linear combination of the past K time intervals (i.e. the maximum lag of the model) of itself

(n ¼ i) and the past of the other simultaneously recorded signals (n 6¼ i) as well as a constant

offset term (ai). Finally the residuals are captured in a noise term (�i1). The coefficients (ai;bink)

were fitted to the data by way of least squares regression.

Besides the full model in Equation 31, a second (restricted) model was fitted, where the

past of signal j was left out.

Xi tð Þ ¼
X

N

n¼1;n6¼j

X

K

k¼1
binkXn t� kDtð Þþai þ hi2 tð Þ (32)

Signal Xj is said to have a Granger causal interaction with Xi if the full model fits statistically

better than the restricted model, since this suggests that the past of signal Xj affects the
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present of signal Xi. The two fitting operations gave two residual noise signals, hi1 tð Þ and
hi2 tð Þ. If either of these models fitted the data significantly better, than the variance of its

respective residual time series should be significantly lower than the other.

For all our analyses of Granger causal interactions of the SSD gamma components we used

a maximum lag (K) of 10 time bins, that is, 10 ms. Figure 7D show the mean differences

between the F-values calculated in a feedforward or feedback direction (i.e. Fj!i � Fi!j) for

signals i and j as a function of detuning and coupling strength (i.e. cortical distance).
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