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Abstract: Accumulation of hepatic triacylglycerol (TG) is associated with obesity and metabolic
syndrome, which are important pathogenic factors in the development of type 2 diabetes. In this
narrative review, we summarize the effects of hepatic TG accumulation on hepatic glucose and
insulin metabolism and the underlying molecular regulation in order to highlight the importance of
hepatic TG accumulation for whole-body glucose metabolism. We find that liver fat accumulation is
closely linked to impaired insulin-mediated suppression of hepatic glucose production and reduced
hepatic insulin clearance. The resulting systemic hyperinsulinemia has a major impact on whole-body
glucose metabolism and may be an important pathogenic step in the development of type 2 diabetes.

Keywords: non-alcoholic fatty liver disease (NAFLD); glucose metabolism; insulin resistance; hepatic
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1. Introduction

Obesity is a central component in the development of metabolic syndrome [1,2], which
is characterized and defined by central obesity (i.e., increased waist circumference) or body
mass index (BMI, weight (kg)/height (m)2) > 30 combined with two of the following:
elevated circulating triacylglycerol (TG), reduced high-density lipoprotein (HDL) choles-
terol, hypertension and elevated fasting plasma glucose [3]. Although not included as
a parameter in metabolic syndrome, insulin resistance is considered a core pathogenic
factor in the development of metabolic syndrome, which is often associated with systemic
hyperinsulinemia [4]. Central obesity, determined by the waist to hip ratio or waist cir-
cumference, is closely associated with excess TG accumulation in the liver [4–7] and with
increased visceral fat content [8,9]. Notably, liver TG accumulation, rather than visceral fat,
is suggested to be the primary driver for the above-mentioned metabolic derangements
associated with central obesity and MS [10,11]. This is supported by studies of obese
individuals where higher total body adiposity, including doubling of visceral fat mass,
does not lead to additional metabolic derangements if hepatic TG content is constant [12].
Provided that accumulation of hepatic TG is not attributable to consumption of alcohol, an
excess TG content of > 55 mg/g liver (5.5%) is referred to as non-alcoholic fatty liver disease
(NAFLD), which has an estimated prevalence of 25% in the general population [13,14]. In
line with the importance of central obesity as opposed to total body weight, not all obese
have NAFLD, but obesity is considered an important risk factor for NAFLD [15]. Thus,
in an Italian population, 76% of the obese persons had NAFLD estimated by ultrasound
compared with 16% in the non-obese [16].

Accumulation of hepatic TG can be quantified in liver biopsies, which is considered
the gold reference standard for diagnosis but is inappropriate for repeated monitoring.
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Ultrasound and computer tomography (CT) imaging has limited accuracy, while magnetic
resonance (MR) techniques assess hepatic TG more accurately by decomposing the liver
signal into fat and water signal components [17]. In particular, quantification of hepatic
TG by proton MR spectroscopy ([1H]-MRS) correlates well with the histological grading of
hepatic TG [18,19] and allows for repeated measurements. [1H]-MRS, however, requires
highly advanced equipment, only available at research departments, and trained staff.

In the following, we will summarize the effects of hepatic TG accumulation on hepatic
glucose and insulin metabolism and the underlying molecular regulation in order to
highlight the importance of hepatic TG accumulation for whole-body glucose metabolism.

2. Liver TG Accumulation and Hepatic Glucose Production and Insulin Resistance

Hepatic glucose production (HGP) is regulated by several direct and indirect path-
ways involving hormones, neural regulation and availability of substrates [20]. Importantly,
HGP is highly regulated by insulin, which suppresses the production of glucose by the liver.
Insulin resistance of the liver is therefore characterized by elevated HGP in the basal fasting
state and impaired suppression of HGP in the postprandial state. The gold standard for esti-
mation of whole-body insulin sensitivity is the hyperinsulinemic-euglycemic clamp, which
can be combined with the prior and concomitant infusion of a glucose tracer to estimate
basal endogenous glucose production and the insulin-mediated suppression of endogenous
glucose production during the clamp, respectively [21]. Since most of the endogenous glu-
cose production originates from the liver with only a minor contribution from the kidneys,
endogenous glucose production and HGP are used synonymously. To allow for estimation
of the suppression of hepatic glucose production during the hyperinsulinemic-euglycemic
clamp, lower infusion rates of insulin are typically needed compared with studies aiming
at evaluating skeletal muscle insulin sensitivity [22]. When HGP is only measured in the
basal condition, the hepatic insulin sensitivity index (HISI) can be calculated as the inverse
of the product of basal HGP and plasma insulin concentrations to provide a surrogate index
of hepatic insulin sensitivity [23]. Another often used surrogate index of hepatic insulin
resistance (i.e., the reverse of insulin sensitivity) is the homeostasis model assessment of
insulin resistance (HOMA-IR) calculated from plasma glucose and insulin concentrations
in the fasting state [23–25]. Given the large extraction of insulin, but not C-peptide, by
the liver [19], it seems necessary to use plasma C-peptide rather than plasma insulin con-
centrations for HISI as well as HOMA-IR, as C-peptide is a more reliable measurement of
pre-hepatic insulin concentrations. This is, however, seldomly used.

When HGP was evaluated during a low-dose euglycemic insulin clamp (insulin
infusion: 0.3 mU/kg/min or 12 mU/m2 body surface area (BSA)/min) in overweight
glucose tolerant individuals (BMI 25–28 kg/m2), grouped according to high or low hepatic
TG content (15 vs. 2%), the suppression of HGP by insulin was lower in individuals
with high hepatic TG content whereas basal HGP was similar in a context of higher basal
C-peptide and insulin concentrations (e.g., lower HISI) [19]. Interestingly, the percent
suppression of HGP during the clamp correlated negatively with liver TG (r= −0.4) [19].
Similar results have been reported in individuals with near-normal BMI (25–26 kg/m2),
where a high liver TG content (10.5 vs. 1.7%) was associated with less suppression of HGP
(55 vs. 85%) during a low-dose insulin clamp (0.3 mU/kg/min) and comparable basal HGP
in the context of high basal C-peptide and insulin concentrations [26]. In glucose tolerant
obese individuals with a wide range of hepatic TG (1–46%), an inverse linear relationship
between accumulation of hepatic TG and basal hepatic insulin sensitivity estimated by HISI
was shown, which may be driven by a positive correlation between hepatic TG and basal
insulin concentrations [27]. The link between high hepatic TG and low HISI is independent
of BMI and visceral fat content determined by MR [10]. In line with this, individuals with
equally high liver TG (mean of 14%), despite marked differences in total adiposity (BMI 41
vs. 31 kg/m2) and visceral fat content (two-fold difference), had similar impaired hepatic
insulin sensitivity, measured by HISI and insulin-mediated suppression of HGP (20 mU
insulin/m2 BSA/min) [12]. In a large US cohort of 352 individuals, impaired suppression
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of HGP during a low-dose insulin clamp (10 mU/m2 BSA/min) was observed already in
individuals with hepatic TG exceeding 1.5%, whereas the basal insulin concentration did
not demonstrate a threshold, but increased progressively with higher hepatic TG resulting
in progressively increasing HOMA-IR [28].

In contrast to the normal glucose tolerant subjects, individuals with type 2 diabetes are
characterized by overt elevated basal HGP despite high basal plasma insulin or C-peptide
concentrations [22,29]. In a study of lean and obese individuals with type 2 diabetes, basal
HGP did not correlate with hepatic TG content, whereas HISI and the suppression of HGP
during a low dose insulin infusion (240 pmol/min/m2) correlated negatively with hepatic
TG [29], supporting that hepatic TG is also negatively correlated with hepatic insulin
sensitivity in individuals with type 2 diabetes. In obese NAFLD individuals without known
diabetes, abnormal glucose metabolism, including prediabetes or overt type 2 diabetes
(determined by oral glucose tolerance test, OGTT) was found in 85% of individuals vs.
30% in a control overweight population matched on total body fat [30]. In this population,
HISI was approximately 50% lower in the presence of NAFLD independently of glucose
tolerance, whereas the suppression of HGP during a low-dose insulin clamp (10 mU/m2

BSA/min) was more impaired in NAFLD individuals with prediabetes/diabetes (−44%)
compared with individuals without NAFLD (−61%). Conversely, hepatic TG is 4-fold
higher in individuals with than without metabolic syndrome independently of BMI [4], a
finding that is supported by others [7].

Interestingly, with certain genetic forms of liver steatosis, the link between hepatic TG
and hepatic insulin resistance may not be as clear. In familial hypobetalipoproteinemia,
characterized by dysfunctional apolipoprotein B, which consequently causes reduced
export of TG from the liver, affected children with liver steatosis have markedly lower
HOMA-IR compared with children with NAFLD [31]. However, when compared with
healthy controls, adults with familial hypobetalipoproteinemia tended to have higher
HOMA-IR in a small study (n = 7) [32]. For the polymorphisms in adiponutrin/patatin-like
phospholipase-3 (PNPLA3) and transmembrane 6 superfamily member 2 protein (TM6SF2),
which are closely associated with liver steatosis, results are conflicting, but with several
studies supporting a dissociation between liver fat content and insulin resistance [33–35].

In summary, accumulation of hepatic TG is negatively correlated to hepatic insulin
sensitivity determined as impaired insulin-mediated suppression of HGP both in individ-
uals with and without type 2 diabetes, supporting that accumulation of liver fat in itself
could be responsible for impaired insulin action in the liver. Moreover, the studies support
that accumulation of hepatic TG is closely linked to the metabolic derangements observed
in metabolic syndrome and type 2 diabetes, although the link may be less clear in genetic
variants of NAFLD.

2.1. Mechanisms in Increased Hepatic Glucose Production

The impaired action of insulin in the steatotic liver appears specific to the effects
on HGP [36], but the underlying mechanisms are not fully understood, likely due to the
complexity of regulation of HGP influenced (directly and indirectly) by multiple hormonal
and neural inputs, as well as fluctuations in hepatic substrate availability [20,37].

Several studies have shown that in individuals with hepatic steatosis with and without
type 2 diabetes, HGP is associated with increased hepatic gluconeogenesis rather than
increased glycogenolysis when compared with lean, overweight or obese individuals with
normal liver TG [29,38,39]. The increased gluconeogenesis has been shown to originate
from oxaloacetate (from the pyruvate carboxylase reaction) [39], with possible contributions
from pyruvate, lactate and amino acids [40], while gluconeogenesis from glycerol, on the
other hand, seems to be diminished in liver steatosis [41].

2.2. Liver TG Accumulation and Hepatic Insulin Signaling

Insulin signaling in the liver is effectuated by insulin binding to the hepatic insulin
receptor (IR) and downstream activation of insulin receptor substrate (IRS) and phospho-
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inositide 3-kinase (PI3-kinase), activating Akt that acutely activates glycogen synthase
and inactivates forkhead box-containing protein O subfamily 1 (FOXO1). Insulin binding
thereby results in glycogen synthase activation and transcriptional downregulation of
gluconeogenic enzymes, the latter mediated by FOXO1 nuclear export [42]. RNA sequenc-
ing has demonstrated overall downregulation of insulin signaling genes in the liver of
obese individuals with NAFLD and non-alcoholic steatohepatitis (NASH) liver samples
compared with lean and obese controls without steatosis [43].

In liver biopsies from individuals with NAFLD, gene expression analyses revealed a
lower ratio between the IR isoforms type A and B, with potential implications for down-
stream insulin signaling, and lower IRS-2 mRNA expression compared with individuals
with normal liver TG [44,45], while gluconeogenic enzymes as glucose-6-phosphatase
(G6Pase) and phosphoenolpyruvate carboxykinase (PEPCK) were increased [45,46]. Re-
duced Akt1/2 protein content and increased FOXO1 mRNA and nuclear localization,
indices of increased FOXO1 activity, also has been demonstrated in the steatotic human
liver [46].

The link between increased liver TG content and impaired insulin signaling is not
known. It has been shown that in severely obese individuals with steatosis, the hepatic
content of diacylglycerol (DAG) correlated positively with liver TG content and negatively
with insulin-mediated suppression of glucose production [47], and it was shown in obese
individuals that lipid-droplet associated DAG in liver samples correlated with HOMA-IR,
and with protein kinase C ε (PKCε) activation, the main PKC isoform in human liver,
which impairs insulin signaling [48]. Moreover, increased cytosolic DAG content and
increased PKCε activation was obtained in liver samples from individuals with impaired
versus normal insulin suppression of HGP [49]. These studies support a mechanistic
model in which increasing TG and DAG accumulation in the liver activates PKC, thereby
impairing insulin signaling, which adds to the findings of a more general transcriptional
downregulation of insulin signaling shown by others [43]. Evidence from human studies on
the role of ceramides in the insulin resistance of the steatotic liver is sparse. In individuals
with NAFLD, ceramide content was not increased (while DAG was increased) [50], and
there were no apparent associations between liver ceramide content and insulin sensitivity
or HOMA-IR in any of the associative studies [47–49].

2.3. Increased Gluconeogenic Flux

Hepatic tricarboxylic acid (TCA) flux is positively correlated with the degree of steato-
sis in the human liver [51]. By the use of stable propionate tracers and MR Spectroscopy in
obese individuals with liver steatosis, the TCA cycle flux and pyruvate carboxylase flux
(conversion of pyruvate to oxaloacetate) were elevated when compared with obese controls
without steatosis [38,39]. Thus, there seems to be an increased oxidative metabolism in
the steatotic liver, which leads to increased oxaloacetate-driven gluconeogenesis due to
increased pyruvate cycling (the main pathway in mitochondrial anaplerosis) (Figure 1). El-
evated TCA flux and pyruvate cycling has thus been speculated to function as a progenitor
of the increased gluconeogenesis, which may represent an important mechanism in the
elevated glucose production in NAFLD.

Pyruvate represents the upstream precursor of oxaloacetate and several lines of evi-
dence point to a role of increased pyruvate availability in hepatic TG accumulation. Find-
ings from a metabolomics study of arterial-hepatic venous blood sampling showed elevated
mitochondrial pyruvate transport and flux through pyruvate carboxylase in individuals
with high versus normal liver TG [40]. Furthermore, a recent study showed an increased
gene expression of pyruvate kinase (PK), catalyzing the final step in glycolysis, yielding
pyruvate, in liver biopsies from men with steatosis compared with normal liver fat [52].
Moreover, the gene and protein expression of pyruvate dehydrogenase kinase 4 (PDK4),
which is a negative regulator of pyruvate dehydrogenase (PDH) activity, was shown to
be higher in the liver biopsies of individuals with NAFLD [53]. This would result in less
pyruvate conversion to acetyl coenzyme A (acetyl-CoA), and hence increased substrate for
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the pyruvate carboxylase reaction and hence oxaloacetate substrate for gluconeogenesis.
In contrast, if the glycolytic flux is suppressed, this would lead to lower pyruvate-driven
gluconeogenesis.
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3. Liver TG Accumulation and Systemic Hyperinsulinemia: The Effects on Insulin
Clearance

Impaired action of insulin in the liver, as well as in muscle and adipose tissue, is
central in the pathogenesis of type 2 diabetes, which is typically perceived to develop
when the compensatory systemic hyperinsulinemia is no longer sufficient to overcome the
progressive increase in insulin resistance [21,54]. The compensatory increase in circulating
insulin concentration has been attributed to an increase in pancreatic insulin secretion, but
changes in hepatic insulin clearance are also contributing to the systemic hyperinsulinemia
and may even be of greater importance, although widely debated [55–57].

The liver is the main organ for insulin clearance and, to a lesser extent, kidneys,
muscle and adipose tissue [58,59]. It has been estimated from insulin infusion studies
that approximately 60–70% of insulin is cleared in the liver in the healthy non-diabetic,
and non-steatotic state [60,61], a fractional extraction which may be even higher for en-
dogenous insulin given the first-pass metabolism of portal insulin [62]. Insulin is secreted
from pancreatic beta-cells equimolarly with C-peptide, but unlike insulin, C-peptide is
not extracted by the liver [63]. The ratio of C-peptide to insulin concentrations can there-
fore under steady-state conditions, as in the fasted state, provide an indirect estimate of
hepatic insulin clearance, whereas the use of the C-peptide to insulin ratio during non-
steady state conditions requires integrated measurements such as Area-Under-the-Curves
(AUCs) provided that both C-peptide and insulin concentrations have returned to basal
levels [58,63,64]. Whole-body insulin clearance can be estimated using the insulin clamp
technique by dividing insulin infusion rate by the mean steady-state plasma insulin with
correction for C-peptide concentrations [65].

Hepatic TG accumulation is inversely correlated with whole-body insulin clearance
during the hyperinsulinemic clamp in lean and obese individuals with and without type
2 diabetes [29]. Decreased insulin clearance contributes importantly to the high fasting
plasma insulin concentrations in individuals with hepatic TG accumulation and normal
glucose tolerance [19] as well as early-stage type 2 diabetes [66]. Hepatic insulin clearance,
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measured as the ratio between AUCs of C-peptide and insulin during an OGTT decreased
linearly with increased hepatic TG content and explained the progressive increase in basal
insulin concentration and HOMA-IR in the large US cohort of 352 middle-aged obese indi-
viduals (mean BMI, 33.1 ± 5.3 kg/m2) including a 61% prevalence of type 2 diabetes [28].
In fact, of all components of the metabolic syndrome, systemic insulin concentrations in
the fasting state had the strongest correlation with hepatic TG [4]. In line with this, insulin
clearance measured during the hyperinsulinemic clamp was significantly decreased in
metabolically abnormal obese individuals compared with metabolically healthy obese indi-
viduals with similar BMI [67]. In the above-mentioned study, individuals were classified as
metabolically abnormal obese if they were characterized with insulin resistance, measured
with the insulin clamp, elevated plasma TG, low plasma HDL concentrations, elevated
blood pressure or impaired fasting glucose [67]. Moreover, postprandial hyperinsulinemia
during an OGTT in obese NAFLD individuals has been shown to strongly correlate with
reduced hepatic insulin clearance but not insulin secretion [68]. In a large cross-sectional
study including 532 obese young individuals, it was shown that insulin clearance and the
hepatic insulin resistance index calculated during an OGTT was ~50% lower in individuals
with steatosis [69].

In summary, hepatic insulin clearance is negatively associated with hepatic TG con-
tent and is an important determinator of systemic hyperinsulinemia seen in conditions
characterized by excess hepatic TG accumulation. The close association between hepatic
TG and insulin clearance is important to recognize when estimating insulin sensitivity and
insulin secretion in groups differing in hepatic TG or in response to interventions affecting
hepatic TG content (i.e., diet, bariatric surgery, pharmacological interventions). Indices of
insulin sensitivity or insulin resistance determined by fasting insulin concentrations such
as HOMA-IR will potentially overestimate whole-body insulin resistance in the context
of excess liver TG and impaired insulin clearance [28,70]. The use of C-peptide instead of
insulin concentrations, which can be applied in the HOMA2-model [71], is likely to reduce
this issue. Similarly, when evaluating the beta-cell function, it is crucial to use C-peptide
rather than insulin concentrations since the reduced insulin clearance associated with liver
TG accumulation will lead to an overestimation of insulin secretion and vice versa in the
context of low hepatic TG.

Mechanisms in Hepatic Insulin Clearance

Hepatic insulin clearance involves insulin binding to the insulin receptor on hepa-
tocytes [72] and is therefore closely linked to hepatic insulin action. When it comes to
insulin clearance by the liver, regulation seems to reside at the level of insulin endocyto-
sis and insulin degradation. The protein carcinoembryonic antigen-related cell adhesion
molecule 1 (CEACAM1) promotes internalization of the insulin-insulin-receptor complex,
as shown in vitro [73], by insulin receptor tyrosine kinase-induced phosphorylation of CEA-
CAM1 [74], which subsequently forms part of a protein complex mediating insulin-receptor
endocytosis [75]. It is believed that insulin is then degraded by lysosomal proteolysis in the
hepatocytes, by the actions of an insulin-degrading enzyme (IDE). IDE mRNA expression
is lower in liver samples of individuals with type 2 diabetes and NAFLD compared with
healthy individuals with normal liver TG [75]. A low CEACAM1 activity might thus lead
to reduced insulin receptor endocytosis. In accordance, liver-specific CEACAM1 deletion
in mice leads to impaired insulin clearance, systemic hyperinsulinemia, and impaired
hepatic insulin sensitivity [76]. Long-chain fatty acids provide ligands for the peroxisome
proliferator-activated receptors (PPARs) [77], of which PPARα is the dominant isoform in
the human liver [78]. Activation of PPARα by pharmacological agonists has been shown
to reduce CEACAM1 expression [72], and high-fat feeding in mice led to upregulation
of PPARα and downregulation of hepatic CEACAM1 expression [73]. PPARα activation
could thus represent a link between elevated fatty acid availability in the liver and impaired
insulin clearance. In support of this, hepatic CEACAM1 protein expression was recently
found to be reduced in obese compared with lean individuals [79], and in individuals with
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NAFLD [80]. Insulin clearance may thus, via CEACAM1 expression and activity, play an
important role in determining insulin action in the liver.

4. The Importance of Hepatic Insulin Clearance for Whole-Body Glucose Homeostasis

Liver TG accumulation and the associated reduction in hepatic insulin clearance
results in increased insulin availability to the peripheral tissues. Reduced hepatic insulin
clearance could thus represent an initial homeostatic mechanism to preserve β-cell function
in the context of increased whole-body insulin resistance [81]. However, the systemic
hyperinsulinemia caused by reduced hepatic insulin clearance may also act as a stressor
of peripheral tissues perturbating peripheral insulin sensitivity [55]. A recent study in
adolescents demonstrated a close association between insulin clearance and peripheral
insulin sensitivity measured by glucose disposal during a hyperinsulinemic-euglycemic
clamp [82], which, however, does not clarify whether reduced hepatic insulin clearance is a
cause or consequence of impaired peripheral insulin sensitivity. Interestingly, the study
followed participants for 2 years and demonstrated that low insulin clearance was the
sole predictor of impaired beta-cell function at the follow-up independently of baseline
beta-cell function and BMI [82]. In addition, in a longitudinal 9-year study, lower baseline
insulin clearance and decline in insulin clearance measured as the C-peptide to insulin
ratio during an OGTT were related to the incidence of prediabetes and diabetes [83]. In
line with this, when oral glucose tolerance was assessed in 75 young overweight men
with steatosis, HOMA-IR was the most important predictor (Odds Ratio of 3.4 compared
with no steatosis) of impaired glucose tolerance, with the glucose-intolerant individuals
characterized by 70% higher fasting insulin levels [84], likely related to reduced insulin
clearance.

Impaired insulin clearance may therefore be an early sign of metabolic derangement,
highlighting the need for early intervention of liver fat accumulation to obtain normal-
ization of hepatic insulin metabolism and prevention of type 2 diabetes. The causal link
between hepatic fat accumulation and impaired hepatic gluco-regulation, insulin action
and insulin clearance and the impact on whole-body metabolism requires further studies,
including elucidation of molecular mechanisms. Of interest is the dynamic response of
liver TG and the associated impairments in liver glucose and insulin metabolism, where
studies support rapid reversals in response to initiation of acute caloric restriction. Hence
after gastric bypass surgery, reductions in hepatic TG and improvements in hepatic insulin
sensitivity measured by HISI (using C-peptide) are observed within days before major
weight loss has occurred [85,86], underscoring that the postoperative caloric restriction
rapidly lowers hepatic TG and improves hepatic insulin sensitivity. Concomitantly, insulin
clearance, measured during a hyperinsulinemic-euglycemic clamp and with the C-peptide-
to-insulin ratio, is increased within days after RYGB [85,87]. Similarly, calorie restriction
induced by very-low-calorie diets (600–1400 kcal/day) reduces hepatic TG content and
lowers basal HGP in obese individuals with and without type 2 diabetes within days to
weeks [88–90]. In line with this observation, even a modest diet induced weight loss (<10%
of initial body weight) leads to a marked reduction in hepatic TG (by 60–80%) and concomi-
tant improvements in hepatic insulin sensitivity measured by HISI and insulin-mediated
suppression of HGP [91,92].

Hepatic TG accumulation also seems to be strongly affected by modification of dietary
composition. In obese individuals, carbohydrate restriction was shown to be superior to fat
restriction under hypocaloric conditions (deficit of 1000 calories/day), resulting in a more
pronounced decrease in hepatic TG (−30%) in the group consuming a low carbohydrate
diet (<60 g/day) compared with the high carbohydrate group (180 g/day) (−10%) [90].
Notably, the effects were observed after a remarkably short intervention period of only
48 h [90]. Carbohydrate restriction may even be efficient during eucaloric conditions, as
recently shown in obese individuals with NAFLD, where initiation of a eucaloric low-
carbohydrate diet (<30 g/day) resulted in a significant reduction of hepatic TG within one
day and a mean reduction of 43.8% in hepatic TG content after 14 days [93]. Although
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the diet was aimed to be eucaloric, a minor weight loss was observed (1.8 ± 0.2% of total
body weight). Other studies support lowering of hepatic TG after intake of eucaloric
low carbohydrate diet (30% energy (E%)) compared with a control diet after six weeks in
patients with type 2 diabetes [94]. Conversely, three days of overfeeding with carbohydrates
(and not fat) reduce insulin clearance measured by the hyperinsulinemic-euglycemic clamp
simultaneous with an increase in basal HGP supporting impairments in hepatic insulin
sensitivity after short-term excess carbohydrate intake [95]. These dynamic and major
impacts on liver fat content in response to short-term dietary changes underscore the
importance of controlling diet in the days prior to estimation of hepatic fat content.

5. Conclusions

In conclusion, liver fat accumulation is closely linked to impaired insulin-mediated
suppression of hepatic glucose production and reduced hepatic insulin clearance. The
resulting systemic hyperinsulinemia has major impacts on whole-body glucose metabolism
and may be an important pathogenic factor in the development of type 2 diabetes. More-
over, the liver is a dynamic organ that rapidly adapts to changes in macronutrient and
energy availability within hours or days by adjusting liver fat content, which is associated
with marked changes in hepatic glucose metabolism and insulin clearance. A more detailed
molecular understanding of how the accumulation of liver TG interferes with glucose
regulation and insulin sensitivity and clearance could reveal potential treatment targets to
address important metabolic derangements associated with obesity.
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HGP hepatic glucose production
HISI hepatic insulin sensitivity
HOMA-IR homeostasis model assessment of insulin resistance
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IDE insulin-degrading enzyme
IR insulin receptor
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NAFLD non-alcoholic fatty liver disease
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PNPLA3 adiponutrin/patatin-like phospholipase-3
PPAR peroxisome proliferator-activated receptor
PDH pyruvate dehydrogenase



J. Clin. Med. 2021, 10, 390 9 of 13

PDK4 pyruvate dehydrogenase kinase 4
PEPCK phosphoenolpyruvate carboxykinase
PI3-kinase phosphoinositide 3-kinase
PK pyruvate kinase
PKC ε protein kinase C ε
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