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Abstract
Purpose of Review Over the last few years, the scientific community has made significant progress in understanding the etiology
of rheumatoid arthritis (RA). In this review, we summarize those key findings and trends.
Recent Findings New data strongly implicates respiratory exposures, obesity, diet and microbiome, genetics, and their interac-
tions in the etiology of RA. Furthermore, anti-posttranslationally modified protein antibodies (AMPAs) and abnormal glycosyl-
ation may be additional biomarkers for RA. Finally, functional genomics techniques implicate loss of certain macrophage
populations and proliferation of synovial fibroblasts in RA.
Summary These findings support the notion that RA originates at mucosal sites, augmented by genetic predisposition, and
mediated by certain cell types including macrophages and fibroblasts. Weight loss, physical activity, and diet are additional
modifiable factors beyond smoking cessation that can reduce risk of RA. Future epidemiologic and translational studies leverag-
ing multi-omics approaches will help map the precise sequence of events in RA pathogenesis.
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Introduction

Rheumatoid arthritis (RA) is one of the most common auto-
immune diseases, and globally, its incidence is rising [1].
Although RA has been described for thousands of years, its
etiology remained elusive until Caplan et al. described the first
strong risk factor in the 1950s: coal exposure [2]. Three de-
cades later in 1983, one of the first observations of a possible
genetic association was published, showing 22% of RA pa-
tients had a first-degree relative with RA [3]. We now know
that indeed having a first-degree relative with RA increases
risk for RA nearly threefold [4, 5]. In 1987, another respiratory
exposure, silica, was also found to be a risk factor for RA [6],
with a recent studies confirming it increases odds of RA more

than twofold [7, 8]. That same year in 1987, tobacco smoking
was first found to increase risk of RA [9]. Multiple subsequent
studies have shown tobacco smoking increases odds of RA
over twofold, especially for individuals with increased
smoking duration as compared to intensity [10, 11].

Compared to this relatively slow progress in understanding
RA etiology from the twentieth century, recent years have
seen a relative explosion in risk factors and mechanisms for
RA etiology. In this manuscript, our goal is to synthesize the
key findings and most significant trends from the past 5 years.

Respiratory Exposures

As described above, the first well-established risk factors for
RA were respiratory exposures. One of the most significant
trends from the past several years has been the discovery of
additional respiratory triggers for RA. For example, an in-
creasing number of studies have shown an association be-
tween asthma and development of incident RA [12], with a
recent meta-analysis confirming this association [13]. The
same group performed a meta-analysis of allergic rhinitis,
finding a mild association with incident RA when high-
quality studies alone were examined [14]. Viral infections
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were recently shown to increase risk of RA as well, which
may be of particular relevance given the ongoing coronavirus
pandemic [15]. Mycoplasma pneumonia was also recently
linked to incident RA, especially in the elderly and the two
years following infection [16]. Indeed, a large study within the
Epidemiological Investigation of RA (EIRA) cohort in
Sweden showed all types of respiratory diseases (acute and
chronic, upper and lower) to be associated with incident RA
with odds ratios of two- to threefold in nonsmokers [17].

Not only respiratory diseases but also other types of respi-
ratory irritants have been increasingly shown to be associated
with RA. A cohort study of 7600 Canadians showed an asso-
ciation between industrial fine particulate matter and ACPA
positivity [18], whereas another cohort study in China showed
a significant association between traffic-related air pollutants
and RA readmissions [19]. In two large cohort studies, passive
smoke [20] and fertilizer exposure [21] in childhood were also
linked to RA. Indeed, among adults, inhaled respiratory expo-
sures including not only fertilizers but also solvents and paint-
ing were associated with RA [22]. Furthermore, occupations
with inhalational exposures such as bricklayers, concrete
workers, and electrical workers are also associated with RA
[23]. Together, these data provide further evidence for the
importance of pulmonary irritation and/or inflammation in
the pathogenesis of RA (Table 1).

Obesity

Another significant trend has been the increasing awareness
that obesity contributes to increased risk of RA. A prior study
had showed obesity might account for over half the increase in
RA in the last several decades [24]. More recent studies have
now shown elevated body mass index (BMI) not only

increases risk of RA but also decreases time to RA [25]. In
fact, among individuals with elevated BMI and at least two
anti-citrullinated peptide antibodies (ACPA), odds for RA in-
creased 23-fold compared to controls [25]. Another study also
demonstrated that even being overweight (BMI>25) increased
risk of RA, especially in adults less than 50 years of age [26].
Others have suggested the association between increased BMI
and RA is greatest for women [27–29] or smokers [29].

Factors related to obesity may also increase risk of RA. A
more recent meta-analysis showed not only BMI but also in-
creased weight circumference increased risk of RA [27].
Along similar lines, a large cohort study within the Nurse’s
Health Study showed that physical activity dramatically re-
duced the risk of later developing RA, with BMI mediating
only 14% of this effect [30•]. Although no studies have dem-
onstrated that weight loss reduces RA risk, a recent cohort
study of 114,000 individuals showed that adherence to met-
formin was associated with decreased risk of RA [31].
Together, these findings point towards the exciting discovery
that excess weight potentiates RA development. Thus, weight
loss may be another modifiable risk factor for RA besides
smoking.

Diet

Prompted by the observation that some patients with RA seem
to flare with certain foods, studies in the last few decades
began to investigate whether dietary factors could influence
risk of RA. Indeed, some early studies showed that fish [32],
omega-3 fatty acids [33], and modest alcohol consumption
[34] all decreased risk of RA. However, recent studies have
dampened early enthusiasm that specific foods may potentiate
or protect against RA, showing no association with fish [35],

Table 1 Updated respiratory risk
factors for RA with associated
risk estimates

Respiratory risk factor Risk estimate for RA (95% CI)

Occupational inhalations [23] OR 2.9 (1.4–5.7) in men

Silica exposure [7, 8] OR 2.6 (1.7, 3.5), 2.3 (1.4–3.8)

Tobacco smoking [10, 11] RR 2.0 (1.4–3.8)

Duration > 20 years OR 3.0 (2.7, 3.5) for ACPA +

Intensity > 20 cigarettes/day OR 1.7 (1.2, 2.4) for ACPA+

Any respiratory disease [17] OR 2.1 (1.6, 2.9) in nonsmokers

Fertilizer exposure [21, 22] OR 1.8 (1.1, 2.9), HR 1.5 (1.1–2.0)

Asthma [12, 13, 17] OR 1.3 (1.0–1.6), HR 1.4 (1.2, 1.7), OR 1.7 (1.1, 2.6)

Allergic rhinitis [14] RR 1.4 (1.1, 1.6)

Mycoplasma pneumonia [16] HR 1.4 (0.9, 2.0)

Passive smoke in childhood [20] HR 1.4 (1.0, 2.1)

Solvent exposure [22] HR 1.4 (1.1, 1.8)

Painting exposure [22] HR 1.3 (1.0–1.6)

CI, confidence interval; HR, hazard ratio; OR, odds ratio; RA, rheumatoid arthritis; RR, relative risk
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alcohol [36], coffee [37], meat [38], or dairy products [38]. A
study within the Studies of Etiology of RA (SERA) cohort
found one potential reason for discordant results. They
showed omega-3 fatty acids were inversely associated with
rheumatoid factor (RF) and ACPA positivity, but only in pa-
tients with the human leukocyte antigen (HLA) shared epitope
alleles [39]. Thus, diet and genetics may interact to incite RA
in some fashion.

While specific foods may not yield strong associations with
RA, certain dietary patterns have recently been shown to have
a modest association with RA. For example, a large cohort
study within the Nurse’s Health Study showed long-term di-
etary quality, as assessed by a scoring system for each food,
was associated with reduced risk of RA in women. This asso-
ciation was especially true for women less than 55 years old
and for seropositive RA [40]. A subsequent study showed that
an inflammatory dietary pattern was again associated with
increased risk of seropositive RA in women less than 55 years
of age. However, this association was partially mediated by
BMI [41]. Studies in other populations have also confirmed
Mediterranean diet reduced risk of RA in smokers [42] as well
as RA disease activity [43], whereas a Western dietary pattern
increased risk of RA [44]. More research is needed to deter-
mine which components of these dietary patterns mediate the
association with RA, and to what degree diet may mediate the
association between obesity and RA.

Microbiome

One factor that may mediate the association between dietary
pattern and RA risk is oral and/or intestinal dysbiosis, which
has been increasingly implicated in RA pathogenesis. An in-
creased prevalence of periodontal disease and altered oral mi-
crobiota profile in early-onset RA has been known for several
years [45]. A recent work, however, showed that this alter-
ation occurs before RA onset, with ACPA-positive at-risk
individuals having a higher prevalence of periodontitis and
P. gingivalis compared to both healthy controls and patients
with early RA. Alterations of the gut microbiome in patients
with RA have also been demonstrated for several years [46],
especially with expansion of Prevotella species [47, 48]. In a
recent landmark study, Alpizar-Rodriguez and colleagues ex-
panded these findings to a pre-clinical RA group, demonstrat-
ing alterations of the gut microbiome, particularly enrichment
of Prevotella species, compared to controls [49]. Observing
these microbial changes before RA onset implicates
oral/intestinal dysbiosis in the etiology of RA.

An important follow-up question is when and why the
microbiome changes. While diet could be one reason as
discussed above, antibiotics could be another. Two recent
case-control studies showed that previous antibiotic exposure
increased risk for RA in a dose-response fashion, with odds

ratios of two- to threefold for RA for individuals with ten or
more antibiotic prescriptions before RA onset [50, 51].
Importantly, this association was not mediated by the infec-
tions themselves, as respiratory infections without antibiotics
were shown not to have as strong an association [50]. Chronic
diarrhea was recently shown to increase risk of RA in a large
cohort study within the E3N-EPIC study, especially in
smokers [52].

Together, these findings support the notion that alter-
ations in the microbiome may play a role in RA path-
ogenesis. More broadly, altered immunity at a mucosal
site (e.g., intestines and/or lungs), in the context of a
permissive genetic background, may be important for
development of RA.

Genetics

A growing theme that has begun to permeate all the above
trends is the pivotal role of genetics. Historically, twin studies
suggested that the liability to RA was approximately 15%
genetic [53]. However, increasing discovery of single nucleo-
tide polymorphisms (SNPs) with genome-wide associa-
tion studies (GWAS) show that genetics likely explain
more, perhaps 30–40% of RA risk [54]. New risk loci
for RA continue to be discovered [55, 56], including
polymorphisms for interleukin-10 [57], IL1B [58], and
T cell immunoglobulin and mucin domain 3 (TIM-3)
[59]. Currently, the number of SNPs associated with
RA totals over 269 [60]. Another study identified 243
phosphorylation-related SNPs, or missense SNPs that
affect protein phosphorylation status [61].

As accessibility of genetic data expands, its usefulness has
grown from serving not only as a risk factor for disease but
also as a clinical and research tool. Importantly, a recently
published genetic probability (“G-PROB”) tool calculates
the probability of various types of inflammatory arthritis-
causing diseases, improving correct diagnosis at presentation
from 39 to 51% [62•]. This tool may be particularly useful for
diagnosing individuals with inflammatory arthritis of unclear
etiology, such as patients with seronegative RA. Genetic data
has become an accessible research tool as well, for example,
through Mendelian randomization studies [63]. These are ob-
servational studies that leverage the fact that SNPs are ran-
domly assigned and always precede disease onset, thus acting
similarly to a randomized controlled trial. For example, a re-
cent Mendelian randomization study of over 850,000
Europeans confirmed that prediction of BMI based on a
806-gene profile did increase the risk of RA [64]. Finally,
genetic data availability also enables creation of genetic risk
scores [60]. Genetic risk scores are useful tools for performing
gene-environment interaction studies, as outlined in the next
section.
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Gene-Environment Interactions

A significant trend in the last several years has been to study
how the various genetic and environmental risk factors inter-
act with each other, or so-called gene-environment interac-
tions. The first to do this in the field of RA was Padyukov
et al. in 2004, who identified an interaction between smoking
and HLA-DRB1 for seropositive (RF-positive) RA [65].
Klareskog et al. expanded this discovery to the interaction
between smoking and HLA-DRB1 shared epitope for
ACPA-positive RA, which raised the risk for RA by an im-
pressive 21-fold compared to nonsmokers without the shared
epitope [66]. Many subsequent studies have replicated this
interaction between the shared epitope and smoking, with re-
cent studies suggesting that aryl hydrocarbon receptor
crosstalk [67] and/or DNA methylation of cg21325723 [68]
may underlie the mechanism of this interaction. The gene-
smoking interaction in RA also varies by serological subset.
That is, a recent study showed the effect of smoking on risk of
RA varies by rheumatoid factor (RF) and anti-citric
citrullinated peptide (CCP) status, as well as genetic status at
the shared epitope [69]. Thus, defining an individual’s sero-
logical subtype may be important from a clinical and research
perspective.

Only recently, researchers have begun to expand investiga-
tion of gene-environment interactions beyond simply smoking
and the shared epitope. For example, one study found an as-
sociation between textile dust exposure and HLA-DRB1 for
RA risk [70]. Combining Epidemiological Investigation of
RA and North American RA Consortium cohorts, another
study found significant interactions between HLA-DRB1 SE
alleles and SNPs associated with ACPA-positive RA [71].
Increasing the complexity even further, another group demon-
strated a three way-interaction between alcohol, smoking, and
HLA-DRB1 for RA risk [72]. Examining the interaction be-
tween other environmental exposures and genetic susceptibil-
ity to RA represents an unmet need in the field.

Mechanisms of Disease

While firm scientific evidence shows that genes, environmen-
tal exposures, and their interactions can all increase the risk of
RA, a central question has become, how? Numerous mecha-
nisms have been recently discovered that might explain some
of the observed risk factors. To explain the association be-
tween respiratory disease and RA, one mechanism could be
direct effects of respiratory pathogens; for example, EBV
DNA was identified in synovial tissue of patients with RA
[73]. To explain the association between obesity and RA,
another study showed aggregates of three or more adipose
tissue macrophages, called “crown-like structures,” were
much more abundant in RA patients compared to controls.

This finding was especially true in early RA and in patients
with ACPA positivity [74]. Studies in the past year have also
implicated mitochondrial dysfunction [75] and dendritic cells,
especially the cDC1 subset, in initiation of inflammatory ar-
thritis [76].

Mechanisms of Disease: Top-Down

Taking a “top-down” approach to investigate the biological
step before RA, called “pre-RA,” has also shed some insights
into how RA develops (Fig. 1). Pre-RA is defined as the pres-
ence of RA-specific antibodies before clinical disease onset
[77]. It confers an increased risk of RA, as high levels of
antibodies can increase risk of RA over fourfold [78, 79].
RF was an early RA antibody to be discovered, followed
eventually by ACPA, which encompasses all citrullinated
peptides (both cyclic and non-cyclic). In fact, single-cell clon-
ing of B cells from RA patients has identified 30 monoclonal
ACPAs that are citrulline multi-specific [80]. However, the
definition of pre-RA continues to expand beyond RF and
ACPA positivity or negativity.

Besides citrullination, other posttranslational modifications
including carbamylation (also called homocitrullation) and
acetylation may also produce antibodies involved in RA path-
ogenesis. The antibodies generated by these three processes
are ACPAs, anti-carbamylated protein (anti-CarP) antibodies,
and anti-lysine acetylated (KAc) antibodies, respectively. In
turn, the collection of all these types of antibodies is now
called anti-posttranslationally modified protein antibodies
(AMPAs). To illustrate their importance, a study of individ-
uals with arthralgia showed that not only RF and ACPA but
also CarP increased risk of later diagnosis of inflammatory
arthritis [81]. Indeed, a recent basic science study identified
numerous carbamylated proteins in RA joints that were rec-
ognized by anti-CarP antibodies, supporting their role in RA
pathogenesis [82]. In fact, a comprehensive set of antibodies
against the entire human proteome, including the citrullinome
and homocitrullinome, has been shown to identify close to
92% of all RA cases, compared to only 70% with commercial
anti-CCP assays alone [83]. Importantly, monoclonal ACPA
from patients was found to also be reactive with anti-CarP and
anti-KAc antibodies, demonstrating “multi-reactivity” of
these antibodies [84].Thus, the broader term “AMPAs” may
be more heavily utilized in research and clinical settings mov-
ing forward.

Glycosylation of antibodies may be another form of “pre-
RA.” For example, low galactosylation of IgG a median of 4
years before RA onset was associated with increased risk of
RA [85]. In addition, glycosylation of IgG ACPA V-domain
is also strongly associated with future development of RA,
with a hazard ratio over 6 [86]. Like AMPAs, therefore, gly-
cosylation may become a clinical biomarker for RA.
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To understand how RA develops, investigators have
sought to understand how pre-RA develops. From an
epidemiologic standpoint, pre-RA has many of the same
risk factors as RA, including female sex, increasing age, and
smoking [87, 88]. Genetic predisposition to activation of
adaptive immune responses to modified self-antigens may al-
so play a role. For example, HLA-DRB1*14:02 broadens ca-
pacity for citrullination, self-peptide presentation, and T cell
expansion, increasing risk for ACPA generation and ACPA-
positive RA [89].

Finally, innate lymphoid cells are likely crucial for onset of
pre-RA, and later RA. A study of individuals with pre-RA
showed increased frequency of certain innate lymphoid cells
compared to controls [90]. Another study of pre-RA patients
showed that having ≥ 5 dominant B cell receptor clones were
significantly associated with developing RA and appeared in
the synovial tissue, suggesting their role in RA pathogenesis
[91]. Furthermore, RA autoreactive B cells were highly multi-
reactive, recognizing >3000 peptides modified by either
citrullination or carbamylation [92]. This finding suggests that
multiple antigen encounters across space and time are in-
volved in the etiology of RA.

Mechanisms of Disease: Bottom-Up

Compared to the “top-down” approach of understanding RA
etiology from a pre-RA perspective, another approach is the
“bottom-up” approach via functional genomics. Functional
genomics is defined as a biological field that attempts to

describe gene functions and interactions. The word genomics
refers to the genome and RNA sequencing techniques, where-
as the word functional refers to the dynamic aspects of gene
transcription, translation, and protein interactions rather than
static features like DNA. In particular, single-cell RNA se-
quencing is a powerful technique that sequences genetic in-
formation from individual cells to understand their function in
the context of their environment. For example, a recent study
found that a transcriptome signature especially involving in-
flammatory pathways, Wnt signaling, and type I interferon
increased ability to predict RA [93].

Functional genomics have also shown macrophages may
play an important role in RA pathogenesis. Using single-cell
RNA sequencing along with fluorescence microscopy, one
study performed a spatiotemporal analysis of macrophages
in RA tissues, finding that a certain population of tissue-
resident macrophages (CX3CR1

+) forms an internal barrier
at the synovial lining that disappears in RA [94]. A subsequent
study using the same technique in humans confirmed that
certain macrophage types (MerTKpos) in synovial lining cor-
related with RA disease activity or remission. That is, they
were lost during flare, and regained during remission [95].

Of all cell types however, fibroblasts in particular seem to
play a pivotal role in RA etiology based on recent evidence. In
a particularly ground-breaking work from the Accelerating
Medicines Partnership, Zhang et al. used single-cell RNA se-
quencing, mass cytometry, and flow cytometry to define the
cell populations that drive RA. Out of 18 unique cell popula-
tions, they found that sublining fibroblasts and IL1B+ proin-
flammatory monocytes were particularly expanded in RA

Fig. 1 Current research efforts to understand the pathogenesis of RA use
either a “top-down” approach, which focuses on pre-RA including anti-
posttranslationally modified protein antibodies (AMPAs) and

glycosylation, or alternatively a “bottom-up” approach, which focuses
on functional genomics
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synovia. In fact, IL6 largely came from the sublining fibro-
blasts and IL1B came from the proinflammatory monocytes,
implicating these cell types in RA pathogenesis [96•]. A par-
allel study identified two key fibroblast types: synovial
sublining fibroblasts and synovial lining fibroblasts.
Proliferation of the former resulted in persistent inflammatory
arthritis, whereas proliferation of the latter resembled osteoar-
thritis [97]. A subsequent study, again using single-cell RNA
sequencing, found that the reason the sublining is expanded in
RA is NOTCH3 signaling, which drives transcriptional gradi-
ents and synovial fibroblast differentiation to mediate inflam-
mation and pathology in RA. They verified these results in a
mouse model, where deletion of Notch3 or blocking it with
monoclonal antibodies prevented joint damage in inflamma-
tory arthritis [98].

These findings from functional genomics studies not
only help explain RA etiology but also have identified
discrete targets for its treatment. In particular, fibroblast
subtypes may allow for clinical stratification and per-
sonalized treatment in RA. These findings may apply
to other autoimmune diseases, as inflammatory fibro-
blasts have been implicated in several other autoimmune dis-
eases including Sjögren’s, idiopathic pulmonary fibrosis, and
ulcerative colitis.

Conclusions

In summary, research from the last few years has yielded a
revolution in the understanding of RA etiology. In particular,
acute and chronic respiratory exposures, obesity, diet and
microbiome, genetics, and their interactions markedly in-
crease risk of RA. A combination of these risk factors may
be necessary for RA to develop, such as genetic predisposi-
tion, compounded by alterations in immunity by obesity, and
then ultimately triggered by an insult at a mucosal site such as
pulmonary infection or intestinal dysbiosis. Similar risk fac-
tors also increase risk of pre-RA, a pre-clinical state charac-
terized by a growing repertoire of anti-posttranslationally
modified protein antibodies as well as abnormal glycosyla-
tion. Finally, functional genomics approaches have revealed
that disruption of synovial macrophages and proliferation of
synovial sublining fibroblasts may play a mechanistic role in
the pathogenesis of RA. Future epidemiologic, serologic, and
transcriptomic studies will likely help to further refine our
understanding of RA and its etiology.
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