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Abstract: As single-cell RNA sequencing (scRNA-seq) data becomes widely available, cell-to-cell
variability in gene expression, or single-cell expression variability (scEV), has been increasingly
appreciated. However, it remains unclear whether this variability is functionally important and, if so,
what are its implications for multi-cellular organisms. Here, we analyzed multiple scRNA-seq data
sets from lymphoblastoid cell lines (LCLs), lung airway epithelial cells (LAECs), and dermal fibroblasts
(DFs) and, for each cell type, selected a group of homogenous cells with highly similar expression
profiles. We estimated the scEV levels for genes after correcting the mean-variance dependency in
that data and identified 465, 466, and 364 highly variable genes (HVGs) in LCLs, LAECs, and DFs,
respectively. Functions of these HVGs were found to be enriched with those biological processes
precisely relevant to the corresponding cell type’s function, from which the scRNA-seq data used to
identify HVGs were generated—e.g., cytokine signaling pathways were enriched in HVGs identified
in LCLs, collagen formation in LAECs, and keratinization in DFs. We repeated the same analysis
with scRNA-seq data from induced pluripotent stem cells (iPSCs) and identified only 79 HVGs
with no statistically significant enriched functions; the overall scEV in iPSCs was of negligible
magnitude. Our results support the “variation is function” hypothesis, arguing that scEV is required
for cell type-specific, higher-level system function. Thus, quantifying and characterizing scEV are of
importance for our understating of normal and pathological cellular processes.

Keywords: single-cell RNA sequencing; scRNA-seq; single-cell expression variability; cell-to-cell
variation; lymphoblastoid cell line; airway epithelial cell; dermal fibroblast; induced pluripotent
stem cell

1. Introduction

Cells are fundamental units of cellular function. Cells in multi-cellular organisms can be organized
into groups, or cell types, based on shared features that are quantifiable. A multicellular organism is
usually composed of cells of many different types—each is a distinct functional entity differing from
the other. Within the same cell type, cells are nearly identical and are considered to carry the same cell

Cells 2020, 9, 14; doi:10.3390/cells9010014 www.mdpi.com/journal/cells

http://www.mdpi.com/journal/cells
http://www.mdpi.com
https://orcid.org/0000-0002-8081-6725
http://dx.doi.org/10.3390/cells9010014
http://www.mdpi.com/journal/cells
https://www.mdpi.com/2073-4409/9/1/14?type=check_update&version=2


Cells 2020, 9, 14 2 of 18

function or biological processes associated with the cell type that ensures the homeostatic state of the
organism where the cell is present.

The recent development of single-cell RNA sequencing (scRNA-seq) technologies has brought the
increasingly high-resolution measurements of gene expression in single cells [1]. This power has been
widely adopted to refine the categories of known cell types and analyze complex tissues systematically
and reproducibly [2]. The power of scRNA-seq has also been harnessed to identify novel cellular states
among the same type of cells [3].

Cells of the same type and at the same state may still show marked intrinsic cell-to-cell variability
in gene expression or single cell expression variability (scEV), even under the same environmental
conditions [4–6]. The importance of this intrinsic variability is increasingly appreciated [7,8]. Changes
in the magnitude of scEV have been associated with development [9–12], aging [13,14], and pathological
processes [15,16].

Dueck and colleagues [17] put forward the so-called “variation is function” hypothesis, saying that
scEV per se might be crucial for population-level function. They used the term “single cell variation or
variability” to refer to diversity within an ensemble that has been previously defined as being generally
homogeneous, rather than diversity of cell types that are clearly distinct and already recognized.
The main focus of their question is to ask how the individual cells with different gene expression levels
may interact to causally generate higher-level function. If the hypothesis turns out to be true, it means
that the intrinsic cell-to-cell variability is an indicator of a diversity of hidden functional capacities,
which facilitate the collective behavior of cells. This collective behavior is essential for the function
and normal development of cells and tissues [18,19]. The loss of this collective cellular behavior
may result in disease. Thus, investigation of the intrinsic cell-to-cell variability may contribute to the
understanding of pathological processes associated with disease development.

It is worth noting that the level of intrinsic cell-to-cell variability needs to be measured within a
highly homogeneous population of cells. This is because many micro-environmental perturbations
and stochastic factors at the cellular level are known to change the scEV. These factors may include
local cell density, cell size, shape and rate of proliferation, cell cycle [20–24]. To work on the cell-to-cell
variability, these confounding factors have to be controlled.

Exponential scaling of scRNA-seq has made it feasible to study scEV across thousands of cells [25]
and quantify scEV based on measures of statistical dispersion such as the coefficient of variation
(CV) [26,27]. The sheer number of cells sequenced in a “typical” droplet-based scRNA-seq experiment
allows us to filter out for a sizable number of highly homogeneous cells, based on the similarity
between their global transcriptional profiles. With these selected core of highly similar cells, we are
able to test the “variation is function” hypothesis. Furthermore, using established statistical methods,
we are able to control for many sources of technical variation that may confound the measurement of
scEV to obtain an unbiased estimate. For instance, single-molecule capture efficiency, 3’ end bias due
to single-cell RNA library preparation protocol, and low expression of genes are examples of known
sources of technical variation [28], which should be controlled for using statistical means.

The characterization of the impact of scEV on cell function requires the understanding of which
genes show greater or less cell-to-cell variability in their expression. These feature genes may carry
valuable information that can facilitate the elucidation of underlying regulatory networks [29]. Once
these genes are identified, a follow-up question is whether they are tissue- or cell type-specific—i.e.,
whether the same genes will be identified for different tissues or cell types. Our working hypothesis is
in line with the “variation is function” hypothesis, that is, different tissues or cell types have different
sets of highly variable genes (HVGs), and these HVGs should be enriched with functions that reflect
the biological processes associated with the respective tissues or the cell types. To test this, we analyzed
three scRNA-seq data sets generated for three different cell types. Each data set contains thousands
of cells. For each cell type, we selected a highly homogenous population of cells, with the help of a
newly developed dimensionality reduction method, called potential of heat-diffusion for affinity-based
trajectory embedding (PHATE) [30]. We estimated scEV among the selected cells for each of these cell
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types and further systematically characterized functions of identified HVGs. We show that HVGs are
highly specific to cell types, i.e., different cell types have different sets of HVGs; functions of HVGs
precisely mirror the biological processes of the corresponding cell types.

2. Materials and Methods

2.1. LCL Cell Culture and scRNA-seq Experiment

The lymphoblastoid cell line (LCL) GM12878 was purchased from the Coriell Institute for
Medical Research. They were cultured in the RPMI-1640 medium supplied with 2 mM L-glutamine
and 20% of non-inactivated fetal bovine serum, incubated at 37 ◦C under 5% CO2 atmosphere.
For maintenance, cells were subcultured every three days by adding fresh medium. For single-cell
sequencing, each cell line was subcultured with 200,000 viable cells/mL. Cells were harvested for
single-cell sample preparation and sequencing on day four (stationary phase) following the sample
preparation demonstrated protocol and Single Cell 3’ Reagent Kits v2 user guide provided by 10×
Genomics. Briefly, cells were mixed well in each flask, and 1 mL of cell suspensions from each cell line
were taken out. The cells were washed three times by centrifuging, suspending, and resuspending
in 1× PBS with 0.04% BSA. Viable cells were then counted using an automated cell counter (Thermo
Fisher Scientific, Carlsbad, CA, USA). Cells (~5000 per cell line) were then pelleted and resuspended
in the nuclease-free water based on the cell suspension volume calculator table, followed by GEM
(gel bead-in-emulsions) generation and barcoding, the post-GEM-RT cleanup, cDNA amplification,
and library construction and sequencing. The experiments were conducted at the Texas A&M Institute
for Genome Sciences and Society. The sequencing was conducted in the North Texas Genome Center
facilities using a Novaseq 6000 sequencer (Illumina, San Diego, CA, USA). Raw reads for each cell
were analyzed using Cell Ranger (v2.0.0, 10× Genomics, Pleasanton, CA, USA) and the outputs were
aligned to the human reference genome (GRCh38) to obtain the counts [31].

2.2. Non-LCL scRNA-seq Data Sets

The scRNA-seq data for lung airway epithelial cells (LAECs) was downloaded from the GEO
database using accession number GSE115982. The original data was generated in the study of [32] for
CCR10− and CCR10+ LAECs. We used the data generated from the CCR10− cells with the sample
identifier GSM3204305. The scRNA-seq data for primary dermal fibroblasts (DFs) was generated in
the study of [33]. We downloaded the data for unstimulated DFs from the ArrayExpress database
using accession number E-MTAB-5988. To support our findings, we processed additional samples
and compared the results obtained for the same cell type. We selected the transcriptomic profile of
fibroblasts (7052 and 6503 cells) from samples extracted from two different lung regions (GEO accessions:
GSM2894834 and GSM2894835); and for the iPSC sample, we used another iPSC culture (9146 cells)
generated in the study of [34], and downloaded from the ArrayExpress database using accession
number E-MTAB-6268. All of these data sets were produced using 10× Genomics scRNA-seq solutions.

2.3. Selection of Highly Homogeneous Populations of Cells

We used a supervised data analysis method to select highly homogeneous cells based on the
scRNA-seq expression profile of each cell. The procedure is summarized in a flowchart (Supplementary
Figure S1). The main steps are as follows. We used Seurat (v2.2.0) [35] to assign each cell into a cell
cycle phase and excluded cells that were not considered to be in G1-phase. We removed genes encoded
in the mitochondrial genome from the analysis. We then selected and retained cells with a library size
between 50 and 95 percentiles. We used PHATE [30] to generate a embedding plot of all remaining
cells and inspected the distributions of cells in the three-dimensional plot and manually picked one
“core” cell. Finally, an additional 999 cells that were closest to the core cell, according to the Euclidean
distances between cells, were selected to form the final 1000-cell population. This selection procedure
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was applied to each of the three cell types independently, as well as for the additional samples used to
support our findings.

2.4. Identification of HVGs

Identification of highly variable genes (HVGs) was based on the assumption that high expression
variability of these genes across cells relative to their mean expression is caused by biological effects
rather than merely technical noise. We used the method proposed in [36], which is implemented
in function sc_hvg of the scGEAToolbox package (https://github.com/jamesjcai/scGEAToolbox) [37].
This method starts by adjusting the library size and assumes that the observed mean expression (µ̂i)
and the observed CV2 (ŵi) of gene i among cells have the following relationship:

E(ŵi) ≈ a1/µ̂i + a0 (1)

And
ŵi

a1/µ̂i + a0
∼ χ2

m−1/(m− 1) (2)

where m is the number of cells. The values of a0 and a1 are estimated by generalized linear regression
(GLM). The residual term ŵi/(â1/µ̂i + â0) for each gene is used to test if the observed CV2 is
significantly larger than the expected CV2 via a chi-squared test. Multiple testing p-value adjustments
were performed by controlling FDR [38].

2.5. Function Enrichment Analyses

To identify the overrepresented biological functions of HVGs in different cell types, we performed
the GO enrichment analysis using Enrichr [39,40] and GOrilla [41]. Enrichr was conducted for HVGs
(FDR <0.01) against the rest of the expressed genes with respect to pathways collected in the Reactome
pathway knowledgebase [42]. GOrilla was performed with the list of genes sorted in descending order
of their residual variability.

2.6. Analyses of co-Expression Network and Regulatory Regions of HVGs

MAGIC [43] was used to impute the expression matrix. The co-expression networks were
constructed using 1-correlation as a distance measure, using SBEToolbox [44]. The motif analysis of
the regulatory regions associated with the HVGs was performed using the GREAT [45]. Genomic
coordinates for the HVG genes from the Human Reference Genome (hg19) were downloaded from the
Ensembl Biomart [46] and converted into bed format using an in-house script. Identified motifs were
searched against the JASPAR database [47] to match the binding sites of corresponding TFs.

2.7. Data Availability

The data sets used in this study and computer code are available.

1. LCLs GM12878 scRNA-seq data in the GEO database with accession number GSE126321:
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE126321

2. LAEC scRNA-seq data in the GEO database with accession number GSE115982: https://www.
ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE115982

3. DF scRNA-seq data in ArrayExpress database with accession number E-MTAB-5988: https:
//www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-5988

4. Human iPSC scRNA-seq data in ArrayExpress database with accession number E-MTAB-6687:
https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-6687

5. Fibroblasts scRNA-seq data in GEO database with accession number GSM2894834: https:
//www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM2894834

https://github.com/jamesjcai/scGEAToolbox
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE126321
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE115982
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE115982
https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-5988
https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-5988
https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-6687
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM2894834
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM2894834
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6. Fibroblasts scRNA-seq data in GEO database with accession number GSM2894835: https:
//www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM2894835

7. Human iPSC scRNA-seq data in ArrayExpress database with accession number E-MTAB-6268:
https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-6268/

8. Computer codes used to analyze data: https://github.com/cailab-tamu/HVG

3. Results

3.1. Single-Cell RNA Sequencing and Selection of Highly Homogenous Cells

In this study, we experimented with the transcriptomic profiles of three different human cell types,
namely, lymphoblastoid cell line (LCL), lung airway epithelial cell (LAEC), and dermal fibroblast (DF).
We estimated single-cell expression variability (scEV) for each of these cell types, individually.

To obtain the scRNA-seq data for LCL, we cultured GM12878, an LCL strain widely used in
genomic research, prepared cells using a 10× Genomics Chromium Controller, and sequenced a
total of 7045 cells [31]. This data has been deposited in the NCBI Gene Expression Omnibus (GEO)
database (accession number GSE126321). For the other two cell types, LAEC and DF, we obtained
the scRNA-seq data for 3863 and 2553 cells from the studies of [32] and [33], respectively. In addition,
we also processed two more samples for fibroblasts and one for iPSC cells (see Section 2.7. for data
availability) to cross-validate our findings. All scRNA-seq data sets of the three cell types and the
additional samples used were produced using 10× Genomics droplet-based solution and made use of
unique molecular identifiers (UMIs) [48].

For each cell type, we employed a data analysis procedure, a filter pipeline on scRNA-seq data,
to select highly similar populations of cells (see Section 2 for materials and methods). These selected
cells are a representative population of each the cell type. The main steps of the filter pipeline are
depicted in Supplementary Figure S1. Briefly, we first excluded mitochondrial DNA-encoded genes
from the analysis. We then excluded cells in the S- or G2/M phases and only retained G1-phase cells.
We also excluded cells with library size <55 percentile or >99 percentile. Finally, we used PHATE to
produce the low-dimensionality representation of the remaining cells to inspect between-cell structure
driven by heterogeneity in gene expression. PHATE is a visualization method that captures both local
and global nonlinear structure in data by an information-geometry distance between data points [30].
As seen from the PHATE projection (Figure 1A), several “arms” of cells show the structure of the
cell-to-cell relationship. Based on the observation, we manually picked one “core” cell at the root of
the arms of cells in the middle of the cell cloud (red circle in Figure 1A). The core cell and 999 nearest
cells around it were then selected using the k-nearest neighbors algorithm to form the final population
of 1000 cells, which was used for subsequent data analyses.

To examine the homogeneity of selected cells, we used t-distributed stochastic neighbor embedding
(t-SNE) [49] to position all 1000 selected cells in the two-dimensional t-SNE space. Compared to
PHATE, t-SNE is a more commonly used nonlinear visualization algorithm for revealing structures in
high-dimensional data, emphasizing local neighborhood structure within the data. When running
t-SNE, we experimented with a series of perplexity values to produce multiple plots for the same
population of selected cells. t-SNE is known to be sensitive to hyperparameters [50]. In general,
when different parameter values are given, t-SNE tends to produce different cell clustering plots.
However, for our selected cells, no structure is observed in any of these t-SNE embedding plots
(Figure 1B). The same results were obtained for the other two cell types as well as using the
uniform manifold approximation and projection (UMAP) as an alternative embedding algorithm [50]
(Supplementary Figure S2). Thus, we confirm that cells selected with our filter pipeline are highly
homogenous populations of representative cells for each cell type.

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM2894835
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM2894835
https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-6268/
https://github.com/cailab-tamu/HVG
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Figure 1. Selection of a highly homogenous cell population for variability analysis. (A) Three-
dimensional PHATE embedding plot for G1-phase cells of GM12878. Each point represents a single
cell in the three-dimensional space. The red circle indicates the approximate positions of 1000 selected
cells. (B) Embedding plots generated for the 1000 selected cells with a t-SNE algorithm with a series of
perplexity values.

3.2. Identification of Highly Variable Genes

Highly variable genes (HVGs) are expressed variably across homogeneous cells of the same type.
For each cell type, we used the method of [36] to identify HVGs from scRNA-seq data of the homogeneous
population of selected cells. In this method, the relationship between the squared coefficient of variation
(CV2) of genes and their average expression (µ) is considered. The relationship between log-transformed
CV2 and log-transformed µ is fitted with a generalized linear model (GLM) by using a gamma distribution,
and the expected CV2 for a given µ is calculated with the fitted curve. The log-transformed ratio between
observed CV2 and expected CV2 [=log(observed CV2) − log(expected CV2], called “residual variability”, is
used as the measurement of scEV. Since the expected CV2 captures the variability originated from technical
noise, the residual variability is considered to be an unbiased measure of biological variability. Indeed, after
the correction, the µ-CV2 correlation disappeared (Supplementary Figure S3). We repeated the procedure
for correcting µ-CV dependency using another method [51] and obtained the qualitatively similar results
in terms of identified HVGs and enriched functions (Supplementary Figure S4). Here, we only report the
results obtained using the method of [36].

After the µ-CV2 dependency correction, we identified 465, 466, and 364 HVGs at a false-discovery
rate (FDR) of 0.01 for LCL, LAEC, and DF, respectively (Supplementary Tables S1–3). To visualize the
expression variability of genes, we plot CV2 against µ, both on the logarithmic scale, for LCL (Figure 2A).
Each dot represents a gene; all genes together give a characteristic cloud showing the µ and CV2 of gene
expression. Genes above the GLM fitting curve, e.g., IGKC, CCL3, LTB, and FTL, are more variable than
expectation, whereas genes below the curve, e.g., TMEM9B and RPL17, are less variable (Figure 2B).

3.3. Cell-Type Origin Determines the Function of Highly Variable Genes

To assess the biological functions of HVGs in different cell types, we performed enrichment
analyses. We found that enriched gene ontology (GO) terms are largely distinct and reflect respective
cell functions of each of the three cell types (Table 1). For example, LCL HVGs (e.g., CCL22 and IFI27)
are more likely to be involved in cytokine- or interferon-signaling pathways, and also, more generally,
the innate immune system; LAEC HVGs (e.g., COL1A1, MMP1, and IL17C) collagen formation and
extracellular matrix organization; DF HVGs (e.g., KRT14, ACAN, and FLG) keratinization and regulation
of cell proliferation. DF HVGs also include SFRP2, DPP4, and LSP1, which are marker genes defining
major fibroblast subpopulations in human skin [52]. Taken together, these results show that different
cell types have different sets of HVGs with substantial scEV, associated with cell-type-specific functions.
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Figure 2. Identification of highly variable genes (HVGs). (A) The relationship between CV2 and
mean expression of genes in LCL GM12878. The orange line shows the trend for the gamma GLM
fit curve between CV2 and mean expression and used to identify HVGs. For each gene, the residual
variability is calculated as the difference between observed CV2 and expected CV2 from the fitted curve.
(B) Expression profiles of selected HVGs and lowly variable genes across cells. Cells are unsorted and
remain a random order. Each vertical line is a cell, and the height of line indicates the level of gene
expression in counts per million (CPM) in a cell.

If two cell types have shared function, then we expect to see the overlap in their HVG-associated
functions. This, indeed, is the case. There are some overlaps between enriched functions between the
three cell types we examined here. For example, the cytokine signaling pathway is enriched for both
LCL and LAEC, and extracellular structure organization is enriched for both LAEC and DF. Meanwhile,
across all three cell types, there are 14 shared HVGs genes (CDC20, CLEC2B, CLIC3, CTSC, CYP1B1,
DUSP2, HES1, MT1E, NPW, SOX4, STMN1, TK1, TRIB3, and UCHL1; Supplementary Figure S5),
with diverse cellular and molecular functions.

Table 1. Representative HVGs identified in the three cell types: LCL, LAEC, and DF, and the results of
functional enrichment analyses. Genes are sorted by residual variability. The top 50 genes with the
highest residual variability values are selected as representative HVGs.

Cell Type Highly Variable Genes
(HVGs), Top 50 Enriched GO Terms, Top 10 Enriched Reactome Pathways, Top

10

Lymphoblastoid Cell
line (LCL)

ANKRD37 ATF3 BIN1
BMP4 CAMP CCL22
CCL3 CCL3L3 CCL4
CCL4L2 CCR7 CD69 CD7
CD83 CDKN1A CTSC
CYP1B1 DHRS9 DUSP2
FSCN1 HIST1H1C IER3
IFI27 IGHG1 IGHG3
IGHM IGKC ITM2A
KCNMA1 LINC00176
LINC01588 LMNA LTA
LTB MAL MIER2
MIR155HG MYC
NFKBIA PMCH PRSS2
RGS1 RGS16 RGS2
RP11-291B21.2 S100A4
SFN TNFAIP2 TUBB4B
WFDC2

1. Signal transduction
(GO:0007165)

2. Response to stimulus
(GO:0050896)

3. Immune response
(GO:0006955)

4. Response to biotic stimulus
(GO:0009607)

5. Immune system process
(GO:0002376)

6. Response to external biotic
stimulus (GO:0043207)

7. Response to external stimulus
(GO:0009605)

8. Cytokine-mediated signaling
pathway (GO:0019221)

9. Defense response
(GO:0006952)

10. Response to chemical
(GO:0042221)

1. Immune system
(R-HSA-168256)

2. Chemokine receptors bind
chemokines (R-HSA-380108)

3. Interferon alpha/beta
signaling (R-HSA-909733)

4. Cytokine signaling in immune
system (R-HSA-1280215)

5. Interferon signaling
(R-HSA-913531)

6. Peptide ligand-binding
receptors (R-HSA-375276)

7. G alpha (i) signaling events
(R-HSA-418594)

8. Innate Immune System
(R-HSA-168249)

9. Interferon gamma signaling
(R-HSA-877300)

10. Cell cycle (R-HSA-1640170)
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Table 1. Cont.

Cell Type Highly Variable Genes
(HVGs), Top 50 Enriched GO Terms, Top 10 Enriched Reactome Pathways, Top

10

Lung airway
epithelial cell (LAEC)

AMTN ANKRD1 AREG
CCL2 CCL5 CCL7
COL1A1 COL1A2
COL3A1 COL6A1
COL6A3 CRCT1 CTGF
CXCL5 CXCL6 FBXO32
GREM1 HAS2 IFNL1
IFNL2 IFNL3 IGFBP5
IGFL1 IL17C IL23A
KRT14 KRT6B KRT81
LY6D MEG3 MMP1
MSMB OVOS2 PI3
POSTN PPBP
RP11-338I21.1 S100A7
S100A8 S100A9
SERPINB2 SERPINB3
SERPINB4 SLC15A2
SPARC SUGCT SULF1
TEX26-AS1 TNFAIP6
TSLP

1. Regulation of multicellular
organismal process
(GO:0051239)

2. Regulation of signaling
receptor activity (GO:0010469)

3. Response to stimulus
(GO:0050896)

4. Regulation of cell proliferation
(GO:0042127)

5. Developmental process
(GO:0032502)

6. Extracellular matrix
organization (GO:0030198)

7. Response to chemical
(GO:0042221)

8. Response to organic substance
(GO:0010033)

9. Regulation of developmental
process (GO:0050793)

10. Regulation of response to
stimulus (GO:0048583)

1. Extracellular matrix
organization (R-HSA-1474244)

2. Assembly of collagen fibrils
and other multimeric
structures (R-HSA-2022090)

3. Cytokine signaling in immune
system (R-HSA-1280215)

4. Collagen formation
(R-HSA-1474290)

5. Signaling by interleukins
(R-HSA-449147)

6. Chemokine receptors bind
chemokines (R-HSA-380108)

7. Peptide ligand-binding
receptors (R-HSA-375276)

8. Collagen biosynthesis and
modifying enzymes
(R-HSA-1650814)

9. Integrin cell surface
interactions (R-HSA-216083)

10. Class A/1 (rhodopsin-like
receptors) (R-HSA-373076)

Dermal fibroblast
(DF)

ACAN ACTA2 ACTC1
CEMIP CLU COMP
CTSC CXCL1 DCN DKK1
FLG G0S2 GAL
HIST1H4C IGFBP5
IGFBP7 IL1RL1 KCNMA1
KRT14 KRT17 KRT19
KRT34 KRT81 KRTAP1-5
KRTAP2-3 LCE1F LUM
MGP MMP1 MMP3
MT1X NMB OLFM2
PCP4 PENK PGF PI16
POSTN PPP1R14A
PTTG1 PTX3 RARRES2
RGCC SCG5 SERPINE2
SFRP2 SFRP4 STMN2
TFPI2 TNFRSF11B

1. Regulation of signaling
receptor activity (GO:0010469)

2. Developmental process
(GO:0032502)

3. Keratinization (GO:0031424)
4. Anatomical structure

development (GO:0048856)
5. Regulation of cell proliferation

(GO:0042127)
6. Regulation of multicellular

organismal process
(GO:0051239)

7. Extracellular matrix
organization (GO:0030198)

8. Extracellular structure
organization (GO:0043062)

9. Response to
oxygen-containing compound
(GO:1901700)

10. Multicellular organismal
process (GO:0032501)

1. Extracellular matrix
organization (R-HSA-1474244)

2. Regulation of insulin-like
growth factor (IGF) transport
and uptake by insulin-like
growth factor binding proteins
(IGFBPs) (R-HSA-381426)

3. ECM proteoglycans
(R-HSA-3000178)

4. Hemostasis (R-HSA-109582)
5. Platelet degranulation

(R-HSA-114608)
6. Dissolution of fibrin clot

(R-HSA-75205
7. Response to elevated platelet

cytosolic Ca2+ (R-HSA-76005)
8. Negative regulation of

TCF-dependent signaling by
WNT ligand antagonists
(R-HSA-3772470)

9. GPCR ligand binding
(R-HSA-500792)

10. Peptide ligand-binding
receptors (R-HSA-375276)

3.4. Functions Associated to HVGs are Conserved Across Tissues and Subpopulations of Cells

To determine how stable the functions associated with the HVGs identified in a cell type are,
we used additional samples and random selection of the core cell. We analyzed two other fibroblast
samples obtained from different body tissues (see Section 2.7. for data availability), as well as the
initially included dermal sample. For each sample, after quality control, we randomly selected a core
cell and their 999 more similar cells; then, we identified the set of HVGs (FDR <0.01 and fold-change
>1.5) present in each subpopulation as described before (see Section 2. for materials and methods).
Under these thresholds, we identified 221, 226, and 228 HVGs for dermal, lung distal, and lung proximal
fibroblasts, respectively. Among the identified HVGs from the three samples, we found 36 genes that
statistically enrich (FDR <0.05) for specific biological processes historically associated with fibroblasts
(Table 2). The small overlap found, as well as the functional enrichment for the extracellular matrix,
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were previously described in [53,54], where it is shown that fibroblasts are a remarkably plastic cell type
differing between human tissues where they develop unique morphologies and physiologic functions
but still have a commonly associated role, the extracellular matrix organization, and maintenance.

Table 2. Shared HVGs identified in the three fibroblast samples: dermal, lung distal, and lung proximal,
and the results of functional enrichment analysis.

Shared Highly Variable
Genes (HVGs) Enriched GO Terms, Top 5 Enriched Reactome Pathways

ID3 MARCKSL1 DPT ID2
CYP1B1 IGFBP2 IGFBP5
APOD IGFBP7 SFRP2 PLK2
SOX4 PI16 CTGF SGK1
CITED2 IGFBP3 SERPINE1
TIMP1 OSR2 HAS2 MYC
B4GALT1 PTGDS CRYAB
BAMBI MFAP5 CSRP2 LUM
PGF THBS1 FGF7 MT2A
MT1X WISP2 ADAMTS1

1. Collagen-containing
extracellular matrix
(GO:0062023)

2. Extracellular matrix
(GO:0031012)

3. Epithelial cell proliferation
(GO:0050673)

4. Negative regulation of cell
migration (GO:0030336)

5. Extracellular matrix
organization (GO:0030198)

1. Extracellular matrix
organization (R-HSA-1474244)

2. Regulation of insulin-like
growth factor (IGF) transport
and uptake by insulin-like
growth factor binding proteins
(IGFBPs) (R-HSA-381426)

3.5. HVGs as Part of the Regulatory Network with High Cell-Type Specificity

Next, we set out to test whether HVGs are co-expressed and thus tend to form co-expression
networks [55]. We first imputed the expression matrix and then constructed the co-expressed network
using the top 50 HVGs for each cell type. For LCLs, the network contains two main modules centered
on NFKBIA and IGHG1, respectively (Figure 3A). NFKBIA encodes the NF-κB inhibitor that interacts
with REL dimers to inhibit NF-κB/Rel complexes [56,57]. For LAECs, two modules are centered on
IL23A/TNFAIP6 and COL1A1 (Figure 3B); for DF, KRTAP2-3 and IGFBP7 (Figure 3C). Thus, functions
of “hub” genes in HVG co-expression networks are closely relevant to the function of corresponding
cell type. These results are another line of evidence that scEV implies cell function. The transcription
of multiple HVGs may be involved in the same underlying regulatory activities, giving rise to the
co-expression network, as we observed. Thus, we wondered whether scEV in several different
HVGs is driven by activities of one or few common TFs. To address this question, we searched for
upstream regulators of the HVGs defined by our analysis (see Section 2 for materials and methods).
We identified significant enriched TF binding motifs upstream of HVGs, four for LCL, and five for
LAEC (Supplementary Table S4). No significantly enriched motif was identified for DF. The known
motifs of LCL HVGs include that of the NF-κB subunit gene, RELA, and that of BACH2 (Figure 3A).
The known motifs of LAEC HVGs include the TATA box and that of CEBPB (Figure 3B).

To further explore the involvement of HVGs in the cell type-specific regulatory network, we focused
on LCL HVGs in a well-studied gene regulatory network that orchestrates B cell fate dynamics [58–60].
This known regulatory network involves eight genes, including three LCL HVGs—PRDM1 (or Blimp-1),
AICDA (or AID), IRF4, two key regulatory genes with binding motifs enriched in targeting LCL
HVGs (see above)—RELA and BACH2, and three other key regulators—BCL6, PAX5, and REL (cRel)
(Figure 4A).

We examined the inter-relationship between across-cell expressions of three LCL HVGs (Figure 4B).
The scatter plot shows that the directionality of the correlation between AICDA and IRF4 depends on
the expression level of PRDM1. Among cells with relatively low expression of PRDM1, expressions
of AICDA and IRF4 are negatively correlated. Whereas, among cells in which PRDM1 is highly
expressed, expressions of AICDA and IRF4 are positively correlated. This nonlinear relationship
between expressions of HVGs suggests they are embedded in a tightly regulated expression network.
Thus, we examined the all-by-all Spearman correlation between expressions of all eight genes in this
regulatory network using the imputed data of the homogenous LCLs (Figure 4C). By comparing the
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sign of correlation coefficient of each pair of genes with the regulatory effect of the gene pair in the
model network, we found that the correlation matrix can be used to correctly recover 15 out of 18 direct
regulatory relationships. The result suggests that, even in this highly homogenous population of LCLs,
cells retain gene regulatory network activities that orchestrate cell fate dynamics as in their original
B cells.

Cells 2019, 8, x 11 of 20 

 

we searched for upstream regulators of the HVGs defined by our analysis (see Section 2 for materials 
and methods). We identified significant enriched TF binding motifs upstream of HVGs, four for LCL, 
and five for LAEC (Supplementary Table S4). No significantly enriched motif was identified for DF. 
The known motifs of LCL HVGs include that of the NF-κB subunit gene, RELA, and that of BACH2 
(Figure 3A). The known motifs of LAEC HVGs include the TATA box and that of CEBPB (Figure 3B). 

 
Figure 3. Co-expression networks of top HVGs. (A) Co-expression network between most-variable 
HVGs of LCL and two enriched binding motifs identified in these HVGs. (B) and (C) are for LAEC 
and DF, respectively. Genes labeled in yellow are the ones acting as a “hub” with high betweenness 
centrality and closely relevant to the cell-type function.  

To further explore the involvement of HVGs in the cell type-specific regulatory network, we 
focused on LCL HVGs in a well-studied gene regulatory network that orchestrates B cell fate 
dynamics [58–60]. This known regulatory network involves eight genes, including three LCL 
HVGs—PRDM1 (or Blimp-1), AICDA (or AID), IRF4, two key regulatory genes with binding motifs 
enriched in targeting LCL HVGs (see above)—RELA and BACH2, and three other key regulators—
BCL6, PAX5, and REL (cRel) (Figure 4A).  

 
Figure 4. Gene regulatory network and correlation matrix of LCL HVGs. (A) An NF-κB regulatory 
network model for activated B cell (ABC)-antibody secreting cell (ASC) differentiation, modified from 
[60]. Bold font indicates HVGs; asterisk indicates the upstream TFs targeting HVGs; solid line dashed 
line indicates the regulatory relationship supported by the correlation between two corresponding 
genes, and the dashed line indicates regulatory relationship not supported by the expression 
correlation between genes. (B) Scatter plot of cells, showing the correlation between expression levels 
of three HVGs: IRF4, AICDA (AID), and PRDM1 (Blimp-1). The color bar indicates the expression 

Figure 3. Co-expression networks of top HVGs. (A) Co-expression network between most-variable
HVGs of LCL and two enriched binding motifs identified in these HVGs. (B) and (C) are for LAEC
and DF, respectively. Genes labeled in yellow are the ones acting as a “hub” with high betweenness
centrality and closely relevant to the cell-type function.

Cells 2019, 8, x 11 of 20 

 

we searched for upstream regulators of the HVGs defined by our analysis (see Section 2 for materials 
and methods). We identified significant enriched TF binding motifs upstream of HVGs, four for LCL, 
and five for LAEC (Supplementary Table S4). No significantly enriched motif was identified for DF. 
The known motifs of LCL HVGs include that of the NF-κB subunit gene, RELA, and that of BACH2 
(Figure 3A). The known motifs of LAEC HVGs include the TATA box and that of CEBPB (Figure 3B). 

 
Figure 3. Co-expression networks of top HVGs. (A) Co-expression network between most-variable 
HVGs of LCL and two enriched binding motifs identified in these HVGs. (B) and (C) are for LAEC 
and DF, respectively. Genes labeled in yellow are the ones acting as a “hub” with high betweenness 
centrality and closely relevant to the cell-type function.  

To further explore the involvement of HVGs in the cell type-specific regulatory network, we 
focused on LCL HVGs in a well-studied gene regulatory network that orchestrates B cell fate 
dynamics [58–60]. This known regulatory network involves eight genes, including three LCL 
HVGs—PRDM1 (or Blimp-1), AICDA (or AID), IRF4, two key regulatory genes with binding motifs 
enriched in targeting LCL HVGs (see above)—RELA and BACH2, and three other key regulators—
BCL6, PAX5, and REL (cRel) (Figure 4A).  

 
Figure 4. Gene regulatory network and correlation matrix of LCL HVGs. (A) An NF-κB regulatory 
network model for activated B cell (ABC)-antibody secreting cell (ASC) differentiation, modified from 
[60]. Bold font indicates HVGs; asterisk indicates the upstream TFs targeting HVGs; solid line dashed 
line indicates the regulatory relationship supported by the correlation between two corresponding 
genes, and the dashed line indicates regulatory relationship not supported by the expression 
correlation between genes. (B) Scatter plot of cells, showing the correlation between expression levels 
of three HVGs: IRF4, AICDA (AID), and PRDM1 (Blimp-1). The color bar indicates the expression 

Figure 4. Gene regulatory network and correlation matrix of LCL HVGs. (A) An NF-κB regulatory
network model for activated B cell (ABC)-antibody secreting cell (ASC) differentiation, modified
from [60]. Bold font indicates HVGs; asterisk indicates the upstream TFs targeting HVGs; solid
line dashed line indicates the regulatory relationship supported by the correlation between two
corresponding genes, and the dashed line indicates regulatory relationship not supported by the
expression correlation between genes. (B) Scatter plot of cells, showing the correlation between
expression levels of three HVGs: IRF4, AICDA (AID), and PRDM1 (Blimp-1). The color bar indicates
the expression level of PRDM1 (Blimp-1). (C) Spearman correlation matrix between expression levels
of eight genes involved in the model. Green boxes indicate that the sign of the correlation between two
genes is consistent with the effect (induction/repression) of the relationship between the two in the
regulatory model. Red boxes indicate inconsistency, while gray boxes indicate no direct relationship
according to the model.
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3.6. Single-Cell Expression Variability in LCLs is Positively Correlated with between-Individual Expression
Variability

Next, we examined the relationship between scEV and inter-individual expression variability.
We distinguish between the two different types of variabilities at different organizational levels.
Specifically, the former is cell-to-cell variability in a population of cells, and the latter is inter-individual
variability at the human population level. We again focused on LCLs, for which population-scale
gene expression data are available from the Geuvadis RNA-seq project of 1000 Genomes samples.
The bulk RNA-seq data was downloaded as a normalized expression matrix of FPKM values. We
retained data for all LCLs of European ancestry (CEU) [61]. With the residual variability estimated
from scRNA-seq of GM12878 and that estimated from the CEU population, we tested the correlation
between the two estimates across genes. When the test was conducted with all genes (n = 8424), we
obtained a significant but weak positive correlation (SCC, r = 0.19, p = 1.2 × 10−9). We wondered
whether this positive correlation was driven by subsets of genes. To identify these gene sets, we
conducted the correlation tests for the GO-defined gene sets one by one. Across all gene sets tested,
the average SCC for gene sets defined by GO biological process (BP) and molecular function (MF)
terms are on average r = 0.28 and r = 0.23, respectively. Strikingly, we found a small number of
gene sets that produced SCC much higher than averages. The functions of these gene sets include
B-cell activation involved in immune response (GO:0002322), cytokine receptor activity (GO:0004896),
cellular response to drug (GO:0035690), and regulation of tyrosine phosphorylation of stat protein
(GO: 0042509; Figure 5), as well as leukocyte chemotaxis (GO: 0030595) and phospholipase activity
(GO:0004620; for more examples, see Supplementary Figure S6). Thus, for these gene sets, scEV may
contribute to the establishment of between-individual expression variability.
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3.7. No Enriched Functions Associated with HVGs Identified in Human Induced Pluripotent Stem Cells
(iPSCs)

Finally, we argued, if scEV is the indicator of cell type-specific function, then scEV in
undifferentiated cells should not be associated with any cellular functions. To test this, we obtained
the scRNA-seq data from the study of [62] (see Section 2.7. for data availability). The data was
generated from human iPSCs [63]. Same as other cell types examined in this study, these iPSCs
were also prepared using the 10× Genomics Chromium controller. The released data contains five
samples. We used the first batch (Sample 4) of the data to perform the HVG detection and function
enrichment tests, using the same procedure applied to other cell types. When plotting the relationship
between log-transformed CV2 and log-transformed average expression (µ), we found almost no genes
showing large CV2 deviated from the regression curve (Figure 6A)—a pattern differs substantially
from those of the other three cell types (Figure 6B). This pattern suggests that, for the majority of
genes in iPSCs, scEV can be explained by technical noise or sampling stochasticity. In other words,
iPSCs lack biological variability in their single-cell expression. Nevertheless, we still identified 79
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iPSC HVGs (Supplementary Table S5) but could not associate any significant (FDR <0.05) enriched
function with them. To further validate our findings, we performed the same analysis using another
iPSC sample (see Section 2.7 for data availability) recovering the same pattern, a low number of HVGs
(4) that are not significative enriched for a specific function (ID3, LEFTY1, MALAT1, TAGLN). These
negative results are consistent with our prediction given by the “variation is function” hypothesis:
undifferentiated iPSCs are not expected to be associated with any cell-type-specific function.
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4. Discussion

Single-cell expression variability (or scEV) is sometimes called gene expression noise, emphasizing
the stochastic nature of transcriptional activities in cells [64,65]. Interrogating scEV data has provided
insights into gene regulatory architecture [66,67]; manipulating the magnitude of scEV, through using
noise enhancers or scEV-modulating chemicals, has been an approach to achieve drug synergies [68].
Understanding the origin and functional implications of scEV has long been appreciated [4–6,69].

In this study, we focused on scEV in human cells. More specifically, we characterized different
genes’ expression variability levels within a highly homogeneous population of genetically identical
(or nearly isogenic) cells under the same environmental condition. We quantified scEV in highly
homogeneous populations of a sizable number of viable cells. Working with cells of the same type,
for example, LCL, we started by preprocessing data from thousands of cells. We found that, even though
we had firstly preprocessed the data and retained only cells with similar library size and in the same
cell cycle phase, it was not enough. There were still marked substructures, shown as branches of
cells, in the embedding cloud of cells (Figure 1A), as revealed by the new embedding algorithm [30].
Retrospectively, we applied the trajectory analysis and found out that one of the longest branches
contained cells with elevated expression of immunoglobulin genes (Supplementary Figure S7).

Similarly, marked substructures were observed in the embedding plots of the other two cell types,
LAEC and DF. Genes that were differentially expressed and drove the formation of branches of LAECs
and DFs were different from those in LCL cells. Thus, there is no single or a small set of marker genes
that can be used to capture cellular heterogeneity across different cell types, making the definition
of populations of homogenous cells a tedious task. Our work represents the first study focused on
comparing scEV in highly homogeneous cell populations across genes in different cell types.

We showed that scEV estimated from homogeneous populations of cells for different cell types
carries information on cell type-specific function. Information on molecular functions of cells and
biological processes of a given cell type can be extracted from a set of highly variable genes (HVGs),
bearing significant biological meaning (see also [70]). HVGs detected in different cell types do not
overlap and can reveal the subtle differences in cellar functions between cell types. These conclusions
are reached based on our investigation of three cell types and their corresponding HVGs.
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First, LCLs are usually established by in vitro infection of human peripheral blood lymphocytes
by the Epstein–Barr virus. The viral infection selectively immortalizes resting B cells, giving rise
to an actively proliferating B cell population [71]. B cells genetically diversity by rearranging the
immunoglobulin locus to produce diverse antibody repertories that allow the immune system to
recognize foreign molecules and initiate differential immune responses [20,72,73]. LCLs are produced
through the rapid proliferation of few EBV-driven B cells from the blood cell population [74]. Thus,
scRNA-seq data sets of LCLs offer a “snapshot” of highly diverse immunoglobulin rearrangement
profiles in a much larger population of polyclonal B cells established in donors of these cell lines.
Therefore, it is not unexpected to see quite a few immunoglobulin genes in the top list of HVGs
identified in LCLs. In addition to these immunoglobulin genes, a number of other immune genes,
especially C-C motif chemokine ligands (CCLs) and C-C motif chemokine receptors (CCRs), are in
the list of HVGs of LCL. These genes play important roles in allowing the coordination of the activity
of individual cells through intercellular communication, essential for the immune system maintains
robustness [75]. The HVG co-expression network analysis revealed the key role of the NF-κB pathway
in facilitating communications between immune cells [18,20]. More strikingly, we were able to
reconstruct nearly the entire NF-κB regulatory network, underlying a differentiation of activated B
cells and antibody-secreting cells, by using the correlation and anti-correlation relationships between
expressions of HVGs and their regulatory genes.

Second, LAEC is a key cell type playing important roles in lung tissue remodeling, and pulmonary
inflammatory and immune responses [76]. The airway epithelium, playing a critical role in conducting
air to and from the alveoli, is a dynamic tissue that normally undergoes slow but constant turnover.
In the event of mild to moderate injury, the airway epithelium responds vigorously to re-establish an
epithelial sheet with normal structure and function. HVGs identified in LAECs, which are enriched
with genes involved in collagen formation, regulation of cell proliferation, and extracellular matrix
organization, accurately elucidate this aspect of functions of the airway epithelium. LAECs are
also central to the defense of the lung against pathogens and particulates that are inhaled from the
environment. This aspect of functions is also reflected in the enriched functionality of LAEC HVGs.

Third, DFs are responsible for generating connective tissue and play a critical role in normal
wound healing [53]. DFs are also commonly used in immunological studies [33,77,78]. HVGs identified
in DFs again accurately reflect these primary aspects of DF functions, including extracellular matrix
organization, keratinization, and regulation of signaling receptor activity. DF HVGs do have several
categories of enriched functions overlap with those of LAEC, which is not unexpected, given that DF
and LAEC have functional overlaps [79].

Our results provide evidence supporting the “variation is function” hypothesis, proposed by [17],
suggesting that the aggregate cellular function may depend on scEV. Dueck and colleagues also laid
down several scenarios, including bet hedging, response distribution, fate plasticity, and so on, in which
the establishment of the relationship between scEV and cell function could be attained. Our analytical
framework using scRNA-seq data may be utilized in appropriate systems to test the plausibility of
these different scenarios. If scEV is an accountable and credible surrogate of cell function, as we
have shown in this study, then quantifying and characterizing scEV may become a first-line approach
for understanding the function of cell types and tissues. Indeed, when we applied this framework
to scRNA-seq data from human iPSCs, we observed no enriched gene functions and no regulatory
pathways/networks associated with HVGs in iPSCs. This anti-example, showing no variation no
function, further validates the “variation is function” hypothesis.

Furthermore, we have shown that, across certain sets of genes, scEV is positively correlated with
population-level expression variability. This correlation provides a new possibility to design single-cell
assays with one sample to approximate the population variability of certain genes’ expression. This new
method may be used to study disease-causing expression dysregulation because it has been a number
of cases that increased population-level expression variability has been linked with diseases [80–84].
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Pelkmans [8] pointed out in a visionary perspective article that: “Embracing this cell-to-cell
variability as a fact in our scientific understanding requires a paradigm shift, but it will be necessary.”
Indeed, scRNA-seq technologies have brought revolution to gene expression analysis. The technical
development gives us a new approach beyond the capacity of traditional methods that rely on
experimental measurements of population-average behavior of cells to conceive regulatory network
models and signal processing pathways. More importantly, for traditional methods, by averaging
information across many cells, differences among cells, which may be important in explaining
mechanisms, can be lost. Given the large degree of cell-to-cell expression variability even between
genetically homogeneous cells, conclusions reached as for such with traditional average-based methods
may be of low-resolution, incomplete, and sometimes misleading [3,18,29,85].

5. Conclusions

We have shown that scEV in highly homogeneous populations of human cells is widespread in
differentiated cell types and is likely to imply cell type-specific function. We conclude that single-cell
variability and the information it contains are the key to a deepened understanding of cells and their
functions. Careful assessment and characterization of cell-to-cell expression variability in relevant cell
types will facilitate the study of normal cell functions as well as pathological cell processes.
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