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Local depth variation is a distinctive property of natural
scenes, but its effects on perception have only recently
begun to be investigated. Depth variation in natural
scenes is due to depth edges between objects and
surface nonuniformities within objects. Here, we
demonstrate how natural depth variation impacts
performance in two fundamental tasks related to
stereopsis: half-occlusion detection and disparity
detection. We report the results of a computational
study that uses a large database of natural stereo-images
and coregistered laser-based distance measurements.
First, we develop a procedure for precisely sampling
stereo-image patches from the stereo-images and then
quantify the local depth variation in each patch by its
disparity contrast. Next, we show that increased
disparity contrast degrades half-occlusion detection and
disparity detection performance and changes the size
and shape of the spatial integration areas (‘‘receptive
fields’’) that optimize performance. Then, we show that
a simple image-computable binocular statistic predicts
disparity contrast in natural scenes. Finally, we report
the most likely spatial patterns of disparity variation and
disparity discontinuities (half-occlusions) in natural
scenes. Our findings motivate computational and
psychophysical investigations of the mechanisms that
underlie stereo processing tasks in local regions of
natural scenes.

Introduction

An ultimate goal of perception science and systems
neuroscience is to understand how sensory-perceptual
processing works in natural conditions. In recent years,
interest has increased in using natural stimuli for
computational, psychophysical, and neurophysiologi-
cal investigations (Adams et al., 2016; Burge, Fowlkes,

& Banks, 2010; Burge & Geisler, 2011; Burge & Geisler,
2012; Burge & Geisler, 2014; Burge & Geisler, 2015;
Burge & Jaini, 2017; Burge, McCann, & Geisler, 2016;
Cooper & Norcia, 2015; Felsen & Dan, 2005; Field,
1987; Geisler & Perry, 2009; Geisler & Ringach, 2009;
Geisler, Najemnik, & Ing, 2009; Hibbard, 2008;
Hibbard & Bouzit, 2005; Jaini & Burge, 2017; Liu,
Bovik, & Cormack, 2008; Maiello, Chessa, Solari, &
Bex, 2014; Olshausen & Field, 1996; Potetz & Lee,
2003; Scharstein & Szeliski, 2003; Sebastian, Burge, &
Geisler, 2015; Sprague, Cooper, Tosic, & Banks, 2015;
van Hateren & van der Schaaf, 1998; Wilcox & Lakra,
2007; Yang & Purves, 2003). This burgeoning interest
has been fueled by at least three factors. First, high-
fidelity natural stimulus databases are becoming
available for widespread scientific use. Second, power-
ful statistical, computational, and psychophysical
methods are making natural stimuli increasingly
tractable to work with. Third, and most importantly,
the science requires it. Models of sensory and
perceptual processing, from retina to behavior, that
predict neurophysiological and behavioral performance
with artificial stimuli often generalize poorly to natural
stimuli (Felsen & Dan, 2005; Foster, 2011; Heitman et
al., 2016; Kim & Burge, 2018; Talebi & Baker, 2012).
High-quality measurements of natural scenes and
images are needed to ground models in the data that
visual systems evolved to process.

The process by which the visual system estimates the
three-dimensional structure of the environment is one
of the most intensely studied questions in vision. The
paradigmatic depth cue is binocular disparity. Stere-
opsis is the perception of depth based on binocular
disparity (Cumming & DeAngelis, 2001; Gonzalez &
Perez, 1998), our most precise depth cue. In the vision
community, stereopsis and the estimation of binocular
disparity (i.e., solving the correspondence problem)
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have been investigated primarily with artificial images
(but see also Burge & Geisler, 2014; Hibbard, 2008).
Researchers are developing psychophysical paradigms
for using natural stimuli to investigate stereopsis, and
computational analyses for uncovering the disparity
processing mechanisms that optimize performance.
Several natural stereo-image databases, some of which
are accompanied by groundtruth distance measure-
ments, have been released in recent years (Adams et al.,
2016; Burge et al., 2016; Canessa et al., 2017; Scharstein
& Szeliski, 2002). Research with natural stimuli is aided
by methods for assigning accurate groundtruth labels
to sampled stimuli. Sampling accuracy and precision
must be at or above the precision of the human visual
system. Otherwise, observed performance limits may be
confounded with inaccuracies in the sampling proce-
dure.

The primary aim of this manuscript is to determine
the impact of local depth variation on half-occlusion
detection and disparity detection, two tasks funda-
mentally related to stereopsis. These tasks are equiva-
lent to (a) determining whether a given point in one
eye’s image has or lacks a corresponding point in the
other eye’s image (i.e., half-occlusion detection) and (b)
if it is binocularly visible, whether the second eye is
foveating the same scene point as the first (i.e., disparity
detection). Accurate performance in these tasks sup-
ports perception of depth order, da Vinci stereopsis,
and fine stereo-depth discrimination (Blakemore, 1970;
Cormack, Stevenson, & Schor, 1991; Kaye, 1978;
Nakayama & Shimojo, 1990; Wilcox & Lakra, 2007).
First, we develop a high-fidelity procedure for sampling
stereo-image patches from natural stereo-images; we
estimate that the procedure is as precise as the human
visual system for all but the most sensitive conditions
(Blakemore, 1970; Cormack et al., 1991). A MATLAB
implementation of the procedure is available at http://
www.github.com/BurgeLab/StereoImageSampling.
Second, we show that local depth variation systemat-
ically degrades performance in both tasks, and changes
the size and shape of the integration area that optimizes
performance in both tasks. Then, we examine how
luminance and disparity covary in natural scenes and
show how local depth variation can be directly
estimated from stereo-images. Finally, we report the
most likely spatial patterns of disparity variation and
disparity discontinuities (half-occlusions) in natural
scenes.

Results

To analyze the impact of natural depth variation on
half-occlusion detection and binocular disparity detec-
tion in natural scenes, it is useful to sample a large

collection of binocular image patches with groundtruth
depth information. In most stereo-photographs of
natural scenes, groundtruth information about the 3D-
coordinates of the imaged surfaces is unavailable. In
most computer-graphics-generated scenes, groundtruth
information about the 3D scene is available, but it is
unknown whether those scenes accurately reflect all
task-relevant aspects of natural scenes and images.
Therefore, it is important to obtain natural stereo-
image databases accompanied by the 3D-coordinates of
each imaged surface. Provided the 3D scene data are of
sufficiently high quality, groundtruth binocular dis-
parities (and corresponding points) can be computed
from the 3D data using trigonometric instead of image-
based methods.

Recently, Burge et al. (2016) published a large
database of calibrated stereo-images of natural scenes
with precisely coregistered (61 pixel) laser-based
measurements of the groundtruth distances to the
imaged objects in the scene. The laser-based distance
measurements were obtained with a range scanner.
During acquisition of each eye’s view of the scene, the
nodal points of the camera and the range scanner were
positioned at identical locations. This feature of the
data acquisition process ensured that each pixel in each
eye’s photographic image had a matched pixel in the
associated range image, and vice versa. The current
manuscript uses this dataset.

Interpolating binocular corresponding points
from groundtruth distance data

In this section, we introduce a new interpolation-
based procedure for precisely sampling binocular image
patches from stereo-images of natural scenes. The same
procedure can also be used to determine whether a
given point in one eye’s image has, or lacks, a
corresponding point in the other eye’s image. Left- and
right-eye image points are corresponding image points if
they correspond the same surface point in a 3D scene.
Accurate, precise determination of corresponding
image points is necessary for accurate, precise sampling
of binocular image-patches. In natural stereo-images,
corresponding image points are usually estimated via
image-based methods such as local cross-correlation
(Banks, Gepshtein, & Landy, 2004; Cormack et al.,
1991; Tyler & Julesz, 1978). We use our new procedure,
along with the Burge et al. (2016) dataset, to determine
groundtruth corresponding points directly from the
coregistered distance data. Importantly, this procedure
does not rely on image-based matching routines.

To obtain binocular image patches such that the
center pixel of each eye’s patch coincides with
corresponding image points, a two-stage interpolation
procedure is required. First, corresponding image point
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locations are interpolated using ray-tracing techniques.
Second, to protect against the effects of binocular
sampling error, the luminance and range images are
interpolated to obtain stereo-image patches in which
the center pixels of the left- and right-eye images
coincide with corresponding image point locations.

Sampling a pixel center from either the left- or the
right-eye luminance image initializes the interpolation
procedure. The eye from whose image the pixel center is
first chosen is the anchor eye. Each pixel is located in a
frontoparallel projection plane 3 m from the cyclopean
eye (i.e., the midpoint of the interocular axis). Left-eye
(LE) and right-eye (RE) lines of sight through the
centers of these pixels define a set of intersection points
in 3D space (Figure 1A). These intersection points are
the sampled 3D scene points. When a point on a 3D
surface coincides with a sampled 3D scene point, the

left- and right-eye lines of sight to this point intersect
the projection plane at pixel centers (Figure 1A).
However, most sampled 3D scene points do not have a
3D surface passing through them, and most 3D surface
points do not coincide with sampled 3D scene points.
Thus, corresponding image points do not generally
coincide with pixel centers in the projection plane. The
goal of our interpolation procedure is to interpolate 3D
surface points and corresponding image points so that
the postinterpolation pixel centers coincide with
corresponding image points

Figure 1B illustrates how interpolated 3D surface
and corresponding image point locations are obtained.
Consider a pair of LE and RE pixel centers that
correspond to a sampled 3D scene point. Sampled 3D
scene points (Figure 1B, open squares in scene) do not
generally coincide with sampled 3D surface points

Figure 1. Stereo 3D sampling geometry, corresponding image-points, and interpolation procedure. (A) Top-view of 3D sampling

geometry. Left-eye (LE) and right-eye (RE) luminance and range images are captured one human interocular distance apart (65 mm).

Sampled 3D scene points (white squares) occur at the intersections of LE and RE lines of sight (thin lines) and usually do not lie on 3D

surfaces. Samples in the projection plane (i.e., pixel centers) are a subset of these sampled 3D scene points. Sampled 3D surface

points (white dots) occur at the intersections of LE or RE lines of sight with 3D surfaces (thick black curve) in the scene. Small arrows

along lines of sight represent light reflected from sampled 3D surface points that determine the pixel values in the luminance and

range images for each eye. Occasionally, sampled 3D surface points coincide with sampled 3D scene points (large dashed circles).

Light rays from these points intersect the projection plane at pixel centers. (B) Procedure to obtain corresponding image point

locations: Sample a pixel location (1) in the anchor eye’s image (here, the left eye). Locate the corresponding sampled left eye 3D

surface point (2). Find the right eye projection (3) from sampled 3D surface point by ray tracing. Select nearest pixel center (4) in right

eye image. Locate the corresponding sampled right eye 3D surface point (5). Find sampled 3D scene point (6) nearest the left- and

right-eye sampled 3D surface points. This sampled 3D scene point is the intersection point of the left- and right-eye lines of sight

through the sampled 3D surface points. Find interpolated 3D surface point (7) by linear interpolation (i.e., the location of the

intersection of cyclopean line of sight with chord joining sampled 3D surface points; see inset). Dashed light rays from this

interpolated 3D surface point define corresponding point locations (8) in the projection plane. The vergence demand h of the

interpolated scene point is the angle between the left- and right-eye lines of sight required to fixate the point. (C) Sampling error

before interpolation in arcmin. Dashed vertical lines indicate the expected sampling error assuming surface point locations are

uniformly distributed between sampled 3D scene points. (D) Estimated sampling error after interpolation in arcsec.
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(Figure 1B, open circles). Thus, the luminance infor-
mation in these pixels (Figure 1B, open squares in
projection plane) does not generally correspond to a
single point on a 3D surface. The interpolated surface
point (Figure 1B, black circle) occurs at the intersection
between the cyclopean line of sight and a line segment
connecting sampled 3D surface points. This interpo-
lated 3D surface point, unlike the sampled 3D scene
point, lies on (or extremely near) a 3D surface. The LE
and RE lines of sight to the interpolated 3D surface
point intersect the projection plane at corresponding
image points (Figure 1B, black squares).

This interpolation procedure is necessary to ensure
that binocular sampling errors are below human
disparity detection thresholds. Under optimal condi-
tions, human disparity detection thresholds are ap-
proximately 5 arcsec (Blakemore, 1970; Cormack et al.,
1991). Failing to interpolate would result in 635 arcsec
binocular sampling errors (i.e., erroneous fixation
disparities), which are large relative to disparity
detection thresholds. Assuming that surfaces are
uniformly distributed between sampled 3D scene
points, the vergence demand difference of the interpo-
lated 3D surface point and the nearest 3D sampled
scene point should be uniformly distributed. Figure 1C
confirms this prediction; the vergence demand differ-
ences indeed tend to lie between 635 arcsec, indicating
that the assumptions of the interpolation procedure are

valid. (Vergence demand h is the angle between the LE
and RE lines of sight required fixating a given 3D
point; vergence demand difference Dh ¼ h2 � h1 is the
difference between two vergence demands.)

Unfortunately, interpolated corresponding image
points returned by this procedure are not guaranteed to
be true corresponding image points. If a sampled
surface point is half-occluded, then corresponding
image points do not exist, and the procedure returns
invalid points. We screen for bad points by repeating
the interpolation procedure twice, with a different eye
as anchor eye on each repeat. When interpolated 3D
surface points from each anchor eye match, their
associated vergence demands will match on both
repeats, indicating that the interpolated corresponding
points are valid. Figure 1D shows that after interpo-
lation, approximately 80% of interpolated 3D surface
points had vergence demand differences of less than 65
arcsec across repeats. For subsequent analyses of
binocularly visible scene points, interpolated points
with vergence demand differences larger than 65
arcsec are discarded, ensuring that residual sampling
errors are smaller than human stereo-detection thresh-
olds for all but the very most sensitive conditions
(Blakemore, 1970; Cormack et al., 1991). Visual
inspection of hundreds of interpolated points corrob-
orates the numerical results.

Figure 2. Half-occluded scene points, binocularly visible scene points, and vergence demand. (A) Half-occluded 3D surface point. The

scene point on the far surface (black circle) is visible to the left eye and occluded from the right eye. Arrows indicate the ray tracing

performed by the interpolation routine (see Figure 1). Squares represent interpolated image points returned by the interpolation

procedure. When 3D surface points are half-occluded, the interpolation procedure returns invalid points. (B) Binocularly visible

surface point (black circle) and corresponding image points (black squares) in the projection plane. When the scene point is

binocularly visible, the vergence demand h of the surface point is the same, regardless of the anchor eye. The vergence demand is

identical whether the left or the right eye is used as the anchor eye. (C) Vergence demand is computed within the epipolar plane

defined by a 3D surface point and the left- and right-eye nodal points.
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To understand why half-occluded points can yield
invalid corresponding image points, and why vergence
demand differences can help screen for them, consider
the scenario depicted in Figure 2A. When the left eye is
the anchor eye, the left-eye image point is associated
with a far surface point having vergence demand hL,
and the right-eye image point returned by the
interpolation is invalid because no true corresponding
point exists. When the right eye is the anchor eye, the
same right-eye image point is associated with a near
surface point having vergence demand hR not equal to
hL. In other words, the vergence demand difference
Dh ¼ hR � hL does not equal zero. Also note that when
the right eye is the anchor eye, the left-eye image point
(middle black square) returned by the procedure does
not match the original left-eye image point. For cases in

which the surface point is binocularly visible, both
repeats of the interpolation procedure yield the same
vergence demands, surface points, and interpolated
image points (Figure 2B). The vergence demand of a
surface point is computed in the epipolar plane defined
by the surface point and the left- and right-eye nodal
points (Figure 2C).

Results of the sampling and interpolation procedure
are depicted in each of two natural scenes (Figure 3A
and B). Left- and right-eye luminance images (upper
row) and range images (lower row) are shown. 500
randomly sampled corresponding image points, asso-
ciated with 500 scene points, are overlaid onto each
stereo-image; 250 were sampled with the left eye as the
anchor eye, and 250 were sampled with right eye as the
anchor eye. Divergently-fuse the left two images or

Figure 3. Corresponding points overlaid on stereo-images (upper row) and coregistered groundtruth distance data (lower row) for two

different scenes, (A) and (B). Wall-fuse the left two images or cross-fuse the right two images to see the imaged scene in stereo-3D.

True corresponding points (yellow dots) lie on imaged 3D surfaces. Candidate corresponding points that are half-occluded or are

otherwise invalid (red dots) are also shown. For reference, the yellow boxes in (A) and (B) indicate 38 and 18 areas, respectively.
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cross-fuse the right two images to see the scene and the
corresponding points in stereo-3D. True corresponding
image points (yellow) lie on the imaged surfaces in the
3D scene. Invalid interpolated points (red) are also
shown. To protect against eye-specific biases in the
subsequent analyses, surface points are sampled sym-
metrically about the sagittal plane of the head.

After corresponding points are determined, lumi-
nance and range values are interpolated on a uniform
grid of pixels centered at the corresponding points.
Left- and right-eye luminance and range stereo- patches
are then cropped from the images. Maps of ground-
truth disparity, relative to the center pixel, are then
computed directly from the range images.

Quantifying local depth variation with disparity
contrast

The patterns of binocular disparities encountered by
a behaving organism depend on the properties of
objects in the environment and how the organism
interacts with those objects. When an organism fixates
a point on an object in a 3D scene, its image is formed
on the left and right-eye foveas. These images are the
inputs to the organism’s foveal disparity processing
mechanisms. To a first approximation, if the fixated
point lies on a planar frontoparallel surface, then
disparities of nearby points will be zero. However,
when the fixated point lies on curved, bumpy, and/or
slanted surface, the disparities of nearby points will
vary more significantly. When a depth edge is near the
fixated point, dramatic changes in disparity can occur
in the neighborhood of the fovea.

To quantify local depth variation, we compute the
disparity contrast associated with each stereo-pair that
is centered on a binocularly visible scene point.
Disparity contrast is the root-mean-squared (RMS)
disparity relative to the center pixel in a local
neighborhood

Cd ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
x2A

d xð Þ2
,

N

vuut ð1Þ

where d is the groundtruth relative disparity, A is the
local spatial integration area, x is the spatial location,
and N is the total number of pixels in the local area.
Example stereo-images with different amounts of
disparity contrast are shown in Figure 4. The upper
row shows the luminance stereo image. The lower row
shows the groundtruth disparity map, computed
directly from the laser-measured distance data at each
stereo-image pixel. Thus, each stereo-image patch
corresponds to the left- and right-eye retinal image that
would be formed if an observer fixated the surface
point in the scene. The distribution of disparity
contrast in natural scenes is shown in Supplementary
Figure S1.

Half-occlusion detection in natural stereo-
images

Half-occlusion detection is the task of detecting if a
particular scene point visible to one eye is occluded to
the other eye. This task is equivalent to determining
whether a given point in one eye’s image lacks or has a
corresponding point in the other eye. Half-occlusion
detection is important because disparity is defined only
when a given point is binocularly visible, and because
half-occluded points can mediate da Vinci stereopsis
(Harris & Wilcox, 2009; Kaye, 1978; Nakayama &
Shimojo, 1990).

What image cues provide information about whether
scene points are half-occluded or binocularly visible,
and how does local depth variation impact the
information? First, consider half-occluded scene points
(Figure 5A). If the eyes are verged on (i.e., pointed
towards) a half-occluded point (see Figure 2A), the
scene point at the center of one eye’s image is different
than the scene point at the center of the other eye’s

Figure 4. Natural stereo-image patches and corresponding groundtruth disparity maps, sampled from natural scenes. Free-fuse to see

in stereo-3D. (A–D) Local disparity contrast Cd (e.g., local depth variation) increases in the subplots from left to right. Groundtruth

disparity at each pixel (bottom row) is computed directly from groundtruth distance data. Disparity contrast is computed under a

window that defines the spatial integration area (see Methods). The colorbar indicates the disparity in arcmin relative to the disparity

(i.e., vergence demand) at the center pixel.
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image, the left- and right-eye images will be centered on
different points in the scene, and the left- and right-eye
images should be very different (Figure 5B). Now,
consider binocularly visible scene points. If the eyes are
verged (i.e., fixated) on a binocularly visible scene
point, the left- and right-eye images should be very
similar. However, if local depth variation near a
binocularly visible scene point is high, left- and right-
eye images centered on that point should be less similar.

To examine the impact of local disparity variation on
half-occlusion detection in natural scenes, we first
sampled 10,000 stereo-image patches from the natural
scene database using the procedure discussed above.
We found that 86.5% of the sampled stereo-image pairs
were centered on binocularly visible scene points, and
that 13.5% were centered on half-occluded scene points.
We determined which patches had half-occluded
centers directly from the range measurements by
determining which patches had centers where the
horizontal disparity gradient (DG ¼ Dh=DX) with any
other point was 2.0 or higher (a disparity gradient of
2.0 corresponds to Panum’s limiting case; see Bülthoff,
Fahle, & Wegmann, 1991). The disparity gradient in
the half-occlusion scenario depicted in Figure 2A is
somewhat larger than 2.0. Second, to quantify local

depth variation, we computed the disparity contrast of
all patches with binocularly visible centers. For all
analyses, disparity contrast was computed over a local
integration area of 1.08 (0.58 full-width at half-height;
see Equation 1); results are robust to this choice (see
Supplementary Figure S1). Third, the similarity of the
left- and right-eye image patches was quantified with
the correlation coefficient

qLR ¼

P
x2A

cWL xð ÞcWR xð Þ

cWL xð Þ
�� �� cWR xð Þ

�� �� ð2Þ

where cWL and cWR are windowed left- and right-eye
Weber contrast images (see Methods) and where

c xð Þk k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

x2A c xð Þ2
q

is the L2 norm of the contrast

image in a local integration area A. The integration
area is determined by the size of a cosine windowing
function W (see Methods); the windowing function
determines the size of the spatial integration area within
which binocular correlation is computed. Fourth,
under the assumption that the correlation coefficient is
the decision variable, we used standard methods from
signal detection theory to determine how well half-
occlusions can be detected in natural images. Specifi-

Figure 5. Effect of disparity contrast on half-occlusion performance. (A) Three example stereo-image patches centered on scene points

that are half-occluded to the left eye, binocularly visible, and half-occluded to the right eye. Spatial integration areas of different sizes

(18 and 38) are shown as dashed circles. (B) The half-occlusion detection task is to distinguish half-occluded versus binocularly visible

points with 0.0 arcmin of disparity. Performance is compared for scene points with low, medium, and high disparity contrasts. (C)

Conditional probability distributions of the decision variable (i.e., the binocular correlation of the left- and right-eye image patches).

The dashed black curve represents the distribution of the decision variable for half-occluded points. Solid curves show the decision

variable distributions for patches with binocularly visible centers having low (blue; 0.05–1.00 arcmin), medium (red; 0.2–4.0 arcmin),

and high (green; 0.75–15.0 arcmin) disparity contrasts. Binocular image correlation and disparity contrast are computed with spatial

integration areas of 1.08 (i.e., 0.58 at half-height). (D) Receiver operating characteristic (ROC) curves for the half-occlusion task. Higher

disparity contrasts decrease half-occlusion detection performance. (E) Half-occlusion detection sensitivity (d0) as a function of spatial

integration area for different disparity contrasts. Arrows mark the spatial integration area at half-height for which half-occlusion

detection performance is optimized.
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cally, we determined the conditional probability of the
decision variable given (a) that the center pixel was
binocularly visible for each disparity contrast
p qLRjbino;Cdð Þ and (b) that the center pixel was half-
occluded p qLRjmonoð Þ (Figure 5C), swept out an ROC
curve (Figure 5D), computed the area underneath it to
determine percent correct, and then converted to d0.
Finally, we repeated the steps for different spatial
integration areas. Half-occlusion detection perfor-
mance (d0) changes significantly as a function of the
spatial integration area for each of several disparity
contrasts (Figure 5E). Clearly, local depth variation
reduces how well binocularly visible points can be
discriminated from half-occluded points. (Note that the
same procedure could be adapted to work in the retinal
periphery with one straightforward extension. For any
given patch in one eye’s image, a cross-correlation
could be performed to determine the peripheral
locations in the other eye to compare. The correlation
of the two patches yielding the maximum correlation
could then be used as input to the procedure described
above.)

Figure 6A summarizes half-occlusion detection
performance with the integration area that optimizes
performance, for more finely spaced bins of disparity
contrast (also see Supplementary Figure S2A). Figure
6B summarizes how increasing disparity contrast
decreases the size of the spatial integration area that
optimizes performance. Compared to when the best-
fixed integration area is used across all stimuli, d0 is 8%
higher when the optimal spatial integration area is used
for each stimulus (see Methods). Thus, in half-
occlusion detection, the visual system would benefit
from mechanisms that adapt their spatial integration
areas to the local depth variation in the scene.

Disparity detection in natural stereo-images

Binocular disparity is our most precise depth cue.
Binocular disparity detection is the task of detecting
whether a particular binocularly visible point is
perfectly foveated (i.e., fixated) or not. When a target
point is fixated accurately, the point is imaged on the
foveas of both eyes. When a target point is not fixated
accurately, the point’s image will not fall on the foveas,
and nonzero disparities occur (Figure 7A). Just as local
depth variation impacts the ability to detect whether a
point in one eye’s image is half-occluded or binocularly
visible, it should also impact the detection of nonzero
binocular disparities in natural scenes (Figure 7B).

Local windowed cross-correlation is the standard
model of disparity estimation (Banks et al., 2004;
Cormack et al., 1991; Tyler & Julesz, 1978). Under this
model, the estimated disparity is the disparity that
maximizes the interocular correlation between a
reference patch in one eye’s image and a test patch in
the other eye’s image.

d̂ ¼ arg max
d

P
x2A

cWL xð ÞcWR x� dð Þ

cWL xð Þ
�� �� cWR x� dð Þ

�� ��
2
4

3
5 ð3Þ

where d̂ is the disparity estimate, and d is the disparity
between a patch in the anchor eye and a patch in the
other eye. Equation 3 is written assuming that the left
eye is the anchor eye.

To examine the impact of local depth variation on
disparity detection thresholds, we performed an anal-
ysis that is nearly identical to the half-occlusion
detection analysis presented above. First, we randomly
sampled 10,000 stereo-image patches having zero
absolute disparity at the center pixel. Second, we
estimated disparity from the stereo-image patches using

Figure 6. Effect of local disparity variation on optimal processing size for half-occlusion detection. (A) Sensitivity as a function of

disparity contrast, assuming the optimal size of the integration area. Sensitivity decreases monotonically with disparity contrast. For

each disparity contrast, sensitivities were measured with the optimal integration area. (B) Optimal window size as a function of

disparity contrast. The optimal window size decreases approximately linearly as disparity contrast increases on a log-log scale. Results

are highly robust to changes in the bin width.
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local windowed cross-correlation (Equation 3). This
disparity estimate is the decision variable for the
disparity detection task. The conditional probability of
the disparity estimates for each disparity contrast
pðd̂jd ¼ 0;CdÞ is symmetric and centered at zero
(Figure 7C). Third, assuming that the distribution of
estimates for small nonzero disparities pðd̂jd 6¼ 0;CdÞ is
a shifted version of the distribution for zero disparities,
we swept out an ROC curve (Figure 7D), computed the
area underneath it to determine percent correct, and
then converted to d0. For each disparity contrast, we
computed sensitivity (i.e., d0) for detecting a target with
1.0 arcmin of disparity as a function of different local
integration areas (Figure 7E). The integration area is
defined to be the width of the cosine window used for
computing the windowed cross-correlation.

Results for the disparity detection task are similar to
results for the half-occlusion task. Local depth
variation reduces disparity detection sensitivity (Figure
7D and E; Figure 8A; Supplementary Figure S2B), and
decreases the size of the spatial integration area that
optimizes performance (Figure 7E; Figure 8B; Supple-
mentary Figure S2B). When the integration area is too
large, the depth variation within the integration area
prevents reliable estimates. When the integration area is
too small, the luminance variation within the integra-
tion area is insufficient to obtain a reliable estimate.
Thus, the visual system should adapt its spatial

integration area to the local depth variation in the
scene. Compared to when the best-fixed integration
area is used across all stimuli, d0 is 12% higher when the
optimal spatial integration area is used (see Methods).
Unlike half-occlusion detection, however, the optimal
integration area for disparity detection shrinks and
then plateaus (Figure 8B), and does not decrease below
0.48 (0.28 at half-height).

Interestingly, these results are closely related to the
literature on human stereopsis. Local depth variation
hurts human performance in depth discrimination,
disparity detection, and stereo-resolution tasks (Banks
et al., 2004; Ernst & Banks, 2002; Harris, McKee, &
Smallman, 1997; Kane, Guan, & Banks, 2014). (Spatial
stereo-resolution tasks measure the finest detectable
spatial modulation of binocular disparity.) Two sepa-
rate groups have argued that human spatial stereo-
resolution is limited by the smallest disparity selective
receptive fields available to the human visual system
(Banks et al., 2004; Harris et al., 1997). Harris et al.
estimated that the smallest disparity-selective receptive
fields available to the human visual system are
0.078–0.138 in diameter (Harris et al., 1997). Banks et
al. estimated that the smallest receptive fields are 0.138
in diameter (Banks et al., 2004).

Our estimate of the smallest useful disparity recep-
tive field in natural scenes (0.48 integration area, 0.28

width at half-height) is within a factor of two to the

Figure 7. Effect of disparity contrast on disparity detection performance. (A) Stereo-image patches centered on binocularly visible

scene points with 0.0 and 1.0 arcmin of fixation disparity. The eyes are fixated 1 arcmin in front of the target in the right image. (B)

The disparity detection task simulated here is to distinguish scene points with 0.0 arcmin versus 1.0 arcmin of fixation disparity.

Performance is compared for scene points with low, medium, and high disparity contrasts. (C) Conditional probability distributions of

the decision variable. The decision-variable is the disparity that maximizes the local cross-correlation function (Equation 3). Results

are presented for a spatial integration area of size 1.08. The solid and dashed curves show the decision variable for scene points

fixated with 0.0 and 1.0 arcmin of disparity, respectively, for patches having low (blue), medium (red), and high (green) disparity

contrasts. (D) ROC curves for disparity detection. (E) Disparity detection sensitivity (i.e., d0) as a function of spatial integration area for

different disparity contrasts.
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psychophysical estimates of the smallest receptive field
available to the human visual system (;0.18). Thus, just
as the sampling rate of the foveal cone photoreceptors
is determined by the cut-off spatial frequency of human
optical point spread function, the smallest disparity
selective fields available to the human visual system
may be determined by the smallest receptive fields that
are useful for estimating disparity in natural binocular
images. The logic is that there is little point in
developing receptive fields that select for information
that is not useful or available.

Effect of depth variation on optimal shape of
integration region

The previous sections demonstrate that the spatial
integration area that optimizes half-occlusion and
disparity detection performance decreases in size with
increases in disparity contrast. Does disparity contrast
also impact the shape of the spatial integration areas
that optimize performance? To check, we performed
the following steps, starting with the half-occlusion
task. First, for a given disparity contrast, we found the
optimally sized integration area (see Figures 6B and
8B). Second, we varied the aspect ratio of the
integration area while holding the size of the integra-
tion area fixed (Figure 9A), computed the task-relevant
decision variable (Equation 2) for each aspect ratio,
and determined d0 using the procedures described
above. Third, we repeated the previous steps across
different disparity contrasts and plotted sensitivity.
Performance is optimized by vertically elongated
integration areas at high disparity contrasts, and by
(slightly) horizontally elongated areas at low disparity
contrasts (Figure 9B and C). We repeated this analysis
for the disparity detection task and found that the same
patterns hold (Figure 9D through F). The secondary

effect of optimizing aspect ratio is modest (;0.1 in d0

units) compared to the primary effect of optimizing
size. However, given that evolution tends to push
organisms towards the optimal solutions in critical
tasks, one might expect biological systems to have
developed mechanisms that adapt both the size and the
shape of their receptive fields to the local depth
structure of stimuli. Indeed, receptive fields in the visual
cortex span the range of sizes and shapes necessary to
optimize performance in natural scenes (Harris et al.,
1997; Ringach, 2002). Investigating whether visual
systems have developed such mechanisms will be an
interesting topic for future research.

Why does the shape of the optimal integration area
change with disparity contrast? From visual inspection
of numerous individual examples we speculate that, at
high disparity contrasts, vertical elongation improves
performance because large disparity contrasts are most
often caused by vertically oriented depth edges (e.g.,
Figure 9A). For such cases, vertically oriented inte-
gration areas increase the number of pooled spatial
locations over which the disparity is more nearly
constant (Kanade & Okutomi, 1994). We are less clear
about why, at low disparity contrasts, integration areas
with slight horizontal elongation improve performance.
We speculate that this is because low disparity
contrasts are often associated with the ground plane
(e.g., Figure 9D), and horizontally oriented integration
areas maximize the number of pooled spatial locations
with the same disparity.

Estimating disparity contrast

Local depth variation in the region around fixation
makes disparity-related tasks more difficult (Figures 5
through 8). A visual system with access to estimates of
local disparity contrast can, in principle, improve half-

Figure 8. Effect of local disparity variation on size of optimal integration area for disparity detection. (A) Sensitivity as a function of

disparity contrast. Sensitivity drops monotonically with disparity contrast. For each disparity contrast, sensitivities were measured

with the optimal integration area. (B) Optimal integration area as a function of disparity contrast. The optimal integration area

decreases as disparity contrast increases and then plateaus at a minimum value (0.48 window; 0.28 at half-height).
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occlusion and disparity detection performance by
adapting the size and shape and shape of its receptive
fields to local disparity contrast. How might the visual
system estimate disparity contrast from information in
the left- and right-eye images? One approach is to
estimate disparity at each spatial location (pixel) in a
local area with generic receptive fields, compute the
contrast (i.e., local root-mean-squared disparity) of
those estimates, and then re-estimate the disparities
with optimized receptive fields. A second more direct
approach is to compute a simple binocular image
statistic that predicts disparity contrast at each spatial
location, and then estimate the disparities with
optimized receptive fields.

Interestingly, the contrast CB of the binocular
difference image is a good predictor of disparity
contrast Cd. The binocular difference image is the pixel-
wise difference between the left- and right-eye Weber
contrast images cWB xð Þ ¼ cWR xð Þ � cWL xð Þ. The binocular
difference image has featured in previously proposed
stereo-coding schemes (Li & Atick, 1994). Figure 10A
shows a stereo-image patch with low disparity variation
and low binocular difference image contrast. Figure
10B shows a stereo-image patch with high disparity

contrast and high binocular difference image contrast.
Figure 10C shows that difference image contrast
predicts disparity contrast across thousands of patches
(n ¼ 10,000).

Binocular difference image contrast and disparity
contrast are jointly log-Gaussian distributed and are
strongly correlated (r ¼ 0:60; Figure 10C). The corre-
lation is nearly independent of viewing distance,
although the most likely disparity contrasts decrease as
distance increases. The relationship is well fit by a line
in the log domain and a power law Cd ¼ aCp

B in the
linear domain where p is the power and a is a
proportionality constant (i.e., Weber Fraction); the
best-fit power is p ffi 2:0. Thus, the visual system could
obtain a relatively precise estimate of local disparity
variation (and local depth variation) directly from the
local contrast of the binocular difference image, and
use this estimate to select the integration area that is
best suited for a given level of disparity contrast (Chen
& Qian, 2004). These findings motivate a series of
investigations on the mechanisms for estimating local
disparity variation, and assessing its impact on
disparity detection performance in natural scenes.

Figure 9. Effect of local depth variation on the shape of the spatial integration area that optimizes performance. (A) Integration areas

with the same size but different aspect ratios within which to compute the decision variable for the half-occlusion task (i.e., binocular

image correlation). (B) Change in half-occlusion detection sensitivity (i.e., d0) as a function of aspect ratio for different disparity

contrasts. Arrows indicate the aspect ratio that maximizes half-occlusion detection performance. The maxima were determined using

a polynomial fit (not shown) to the raw data. Aspect ratios less than 1.0 are horizontally elongated. Aspect ratios larger than 1.0 are

vertically elongated. Colors indicate low (blue; 0.05–1.00 arcmin), medium (red; 0.2–4.0 arcmin), and high (green; 0.75–15.0 arcmin)

disparity contrasts (C) Optimal aspect ratio as a function of disparity contrast. The optimal window for half-occlusion detection is

more vertically elongated for higher disparity contrasts. The best-fixed aspect ratio across all disparity contrasts is also shown. (D)

Same as (A), but for the disparity detection task. (E–F) Same as (B–C), but for the disparity detection task.
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Natural disparity statistics: Surface-based
variation

Local disparity variation negatively impacts half-
occlusion and disparity detection performance. What is
the most likely spatial pattern of disparity variation in
natural scenes? Assuming that fixations occur only on
3D surface points, foveal disparities are always zero. At
nonfoveal retinal locations, disparities vary with the
depth structure (and distance) of the fixated stimulus.
Here, we characterize depth-induced disparity variation
in two ways. First, we compute the most likely spatial
pattern of disparity variation in the region near the
fovea. Second, we compute the probability of half-
occluded points in the region near the fovea. Together,
these two computations quantify disparity variation
occurring within individual surfaces, and depth variation
occurring between surfaces separated by depth edges.
Both sources of local depth variation are important for
developing optimal methods for disparity detection and
estimation in spatially varying natural scenes.

Pooling signals over regions with low variance and
high correlation will result in more reliable disparity
detection and estimation. Figure 11 shows how the
pattern of disparity variation for binocularly visible
surfaces changes with retinal eccentricity near the fovea
(60.58). Disparities are zero at the foveas, by definition,
and become more variable at retinal positions farther
from fixation. Across all binocularly visible surface
points, the region of minimum variation is vertically
elongated (Figure 11A). Disparity contrast decreases the
size and changes the shape of this low variance region
(Figure 11B). Stimuli with low disparity contrast tend to

have large horizontally oriented regions of least disparity
variation around the fovea. Stimuli with high disparity
contrast tend to have small more vertically oriented
regions of least disparity variation around the fovea.

A closely related patch-based disparity correlation
analysis yields similar results. For a given disparity
map, the disparity correlation at location x is given by
the cosine-similarity of a patch centered at x with the
patch centered at x0. The patch size is an open
parameter that we fixed to the optimal integration area
for disparity detection (0.58; see Figure 8). The spatial
pattern of near-foveal disparity correlations in Figure
11C represents the average of the spatial correlations
computed for each of a large sample of patches. Figure
11D shows how disparity correlation changes with
disparity contrast. Far from the fovea, disparities are
weakly correlated with the disparities at the fovea, and
the region of high correlation decreases in size and
becomes more vertically elongated with disparity
contrast. Figure 11E and F shows vertical and
horizontal slices through the plots in Figure 11C and
D. Similar results are obtained with pixel-based
analyses (Supplementary Figure S3). These results
justify the systematic changes in the size and shape of
the task-optimal spatial integration areas with disparity
contrast (Figures 5 through 9).

Natural disparity statistics: Discontinuity-based
variation

Local disparity variation in natural scenes is due to
both continuous variation within a surface, and to the

Figure 10. Joint statistics of disparity contrast and binocular difference image contrast in natural scenes. (A) Stereo-image with low

groundtruth disparity contrast and low binocular difference image contrast. The upper row shows the stereo-image; the circle

indicates the 18 spatial integration area from which the statistics were computed. The lower row shows the groundtruth disparities

and the binocular difference image. (B) Stereo-image with high groundtruth disparity contrast has high binocular difference image

contrast. (C) Disparity contrast and binocular difference image contrast in natural scenes are jointly distributed as a log-Gaussian and

are significantly correlated. Points labeled in yellow indicate the disparity contrast and binocular difference image contrast of the

stereo-images (A) and (B). Statistics were computed for a spatial integration area of 1.08 (0.58 width at half-height). Similar results

hold for other spatial integration areas.
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occurrence of depth discontinuities (edges) between
surfaces. Half-occluded points are reliable indicators of
many, but not all, depth discontinuities. Thus, the
statistics of half-occluded points contribute to an
understanding of the statistics of natural depth
variation. For every stereo-image in the dataset, we
identified all half-occluded points directly from the
range data (Figure 12A, bottom row). First, we
computed the groundtruth horizontal disparity gradi-
ent (DG ¼ Dh=DX) for all pairs of points in a given
epipolar plane (see Figure 2C). Next, we labeled a given
point as half-occluded if the horizontal disparity
gradient between it and any other point was 2.0 or
higher. For each retinal location, we computed the half-
occlusion probability; i.e., the proportion of stereo-
image patches with a half-occlusion at that retinal
location (Figure 12B). The impact of disparity contrast
on half-occlusion probability is similar to the impact of
disparity contrast on disparity standard deviation
(Figure 12C; c.f. Figure 11B); the spatial region where

half-occlusion probabilities are lowest decreases in size
and becomes more vertically elongated with disparity
contrast. The sizes and shapes of the optimal integra-
tion region for disparity estimation (Figures 5 through
9) are compatible with both the statistics of surface-
based and discontinuity-based depth variation in
natural scenes.

Over what visual angles do binocularly visible
surfaces typically extend in natural scenes? How
frequently do half-occlusions occur within a given
visual angle in natural scenes? To address these
questions, we measured the statistics of contiguous
binocularly visible regions and contiguous half-
occluded regions in natural scenes. Figure 12A shows
an example natural scene (upper row) with corre-
sponding binocularly visible and half-occluded points
(lower row; white and black pixels, respectively). We
measured the size (in visual angle) of each contiguous
horizontal region of binocularly visible points. We also
measured the size of each contiguous region of half-

Figure 11. Disparity variation associated with binocularly visible surfaces. (A) The standard deviation of natural disparity signals

increases systematically with retinal eccentricity. Disparities are more variable at retinal locations farther from fixated points. (B)

Same as (A), but conditioned on five different disparity contrast bins: 0.1–1.0, 0.2–2.0, 0.4–4.0, 0.75–7.5, 1.5–15.0 arcmin. At low

disparity contrasts, disparities are nearly homogeneous within 18 of the fovea. At high disparity contrasts, disparity variation increases

rapidly with eccentricity, and the region of low variability is smaller and more vertically elongated. Ellipses (fit by hand) indicate iso-

disparity-variation contours. (C) Disparity correlation as a function of retinal position. (D) Same as (C), but conditioned on the

disparity contrast bins in (B). At low disparity contrasts, disparities are more highly correlated across space. At high disparity

contrasts, the region of high correlation is smaller and more vertically elongated. (E) and (F) Horizontal and vertical slices through

plots in (C) and (D), solid and dashed curves, respectively.
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occluded points. The distributions of these sizes are
shown in Figure 12D. Both distributions are well
described by a power law for sizes larger than a certain
critical size: larger than 0.38 for binocularly visible
regions, and larger than 0.18 for half-occluded regions
(see Supplementary Figure S4). Power laws have
previously provided good descriptions of size statistics
in a variety of contexts (Lu & Hamilton, 1991; Reed &
McKelvey, 2002).

The distribution of binocularly visible region sizes
(Figure 12D) bounds the distribution of binocularly
visible surface sizes in natural scenes. (A contiguous
binocularly visible region may be comprised of multiple
binocularly visible surfaces). Information about the
distribution of surface sizes (in visual angle) is
important for determining the optimal rules for
segmenting surfaces in depth in real-world scenes.
Optimal grouping of local disparity estimates from the
same surfaces and optimal segmentation of local
disparity estimates between the two surfaces depends
on this information.

Natural disparity statistics: Dependence on
distance

The pattern of disparity variation near the fovea
depends not just on the local depth-structure of the
fixated object in the environment, but also on the
distance of the fixated object. Here, we examine how
the foveal pattern of disparity variation and half-
occlusion probabilities changes with viewing distance.
Figure 13A shows the most likely pattern of disparity
variation in our dataset (data identical to Figure 11A).
Outside the central 61/88, disparity variance grows
linearly with retinal eccentricity, and increases more
rapidly with changes in azimuth than with changes in
elevation (Figure 13B). Figure 13C through E shows
that disparity variance increases less rapidly with
eccentricity at far than at near distances (Figure 13C
through E). This effect occurs because the magnitude of
a disparity signal decreases with the square of distance
for a given depth difference. Thus, when a far surface is
fixated, the disparities in the immediate neighborhood
of the fovea are more likely to be near zero. Given that

Figure 12. Half-occlusion statistics in natural scenes (A) Example natural stereo-image (top), and binocular visibility map (bottom).

Half-occluded points are black. Binocularly visible points are white. Points in one eye’s image that are invisible in the other eye’s

image (i.e., half-occluded points) are shown in black. Inset shows stereo-image patch with half-occluded points overlaid in black. (B)

Half-occlusion probability at each spatial location near the fovea. (C) Same as (B), but conditioned on five different disparity contrast

bins: 0.1–1.0, 0.2–2.0, 0.4–4.0, 0.75–7.5, 1.5–15.0 arcmin. At low disparity contrasts, half-occlusion probability is near-zero

throughout the 18 region near the fovea. At high disparity contrasts, half-occlusion probability increases dramatically with

eccentricity, and the region of low probability is smaller and more vertically elongated. (D) Distribution of horizontal sizes of

contiguous binocularly visible and half-occluded regions in natural scenes (solid and dashed curves, respectively). The sizes of

contiguous binocularly visible and half-occluded regions are approximately distributed as power laws with mean horizontal sizes of

0.448 and 0.068, respectively.

Journal of Vision (2018) 18(6):4, 1–22 Iyer & Burge 14

http://jov.arvojournals.org/data/Journals/JOV/937196/jovi-18-05-12_s05.pdf


disparity variability decreases with distance (also see
Supplementary Figure S5), and given that the Burge et
al. (2016) dataset only contains objects 3 m and farther
away, the estimates of disparity variability that we
report are likely to be conservative. Figure 13F shows
the spatial pattern of half-occlusion probabilities near
the fovea (same data as Figure 12B). Figure 13G shows
how these probabilities change with distance. At large
distances, the central region of least half-occlusion
probability shrinks and is vertically elongated.

The generality of the above conclusions may be
limited because the most likely pattern of disparity
variation depends not just on the depth structure of
natural scenes but on which scene points are fixated.

One weakness of the Burge et al. (2016) dataset, upon
which this manuscript is based, is that it has no
information about human eye movements. Other
datasets do (Gibaldi, Canessa, & Sabatini, 2017; Liu et
al., 2008; Sprague et al., 2015). At near distances,
humans preferentially fixate objects nearer than ran-
dom fixations. At far distances (i.e., beyond 3 m),
human fixations and random fixations are hard to
distinguish (Sprague et al., 2015). Thus, the results
presented in the current manuscript are likely to be
representative of disparity variability for human
fixations when objects are farther than 3 m. However,
the results are also likely to underestimate disparity
variability across all distances encountered in natural

Figure 13. Near-foveal disparities as a function of viewing distance and spatial integration region. (A) Disparity standard deviation

across all patches in database (data identical to Figure 11A). (B) Disparity variance as a function of azimuth and elevation. Disparity

variance increases linearly outside the central 61/88. Variance increases more rapidly in azimuth C2
d ¼ 60:1aþ 7:0 than in elevation

C2
d ¼ 47:4eþ 7:6 where a and e are azimuth and elevation in degree, respectively. Curves correspond to the squared standard

deviation along horizontal and vertical slices through the plot in 11A. (C) Disparity standard deviation at each retinal location, but

conditioned on five different viewing distances (4.0–20.0 m). For each viewing distance, data is pooled in 0.1 diopter bins centered on

the viewing distance. For far distances, disparities near the fovea are more likely to be small. (D) and (E) Disparity variance in azimuth

and elevation as a function of distance (colors). Best-fit lines in azimuth range from C2
d ¼ 83:4aþ 17:8 to C2

d ¼ 47:4aþ 4:8 at view

distances from 4.0 m to 20.0 m and best fit lines in elevation range from C2
d ¼ 83:8eþ 11:5 to C2

d ¼ 36:0eþ 5:0. Variance increases

more rapidly in the upper than lower visual field. (F) Half-occlusion probability as a function of retinal location (data identical to

Figure 12B). (G) Half-occlusion probability conditioned on viewing distance. For far distances, the region of least half-occlusion

probability shrinks to a vertically elongated zone centered on the fovea.
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viewing (also see Supplementary Figure S1 and
Supplementary Figure S6).

Discussion

We developed a high-precision stereo-image sam-
pling procedure, and used it along with a recently
published dataset (Burge et al., 2016), to demonstrate
how natural depth variation impacts performance in
two tasks fundamentally related to stereopsis. In the
first set of analyses, we analyzed natural binocular
images and determined the receptive field sizes and
shapes that optimize performance in half-occlusion
detection and disparity detection in natural scenes. In
the second set of analyses, we analyzed groundtruth
range data and determined how disparity statistics and
half-occlusion probabilities change as a function of
retinal eccentricity. The latter analyses justify the
findings of the former. Here, in the discussion section,
we discuss the connections to other topics in the
literature, limitations of the current results, and
directions for future work.

Relationship to previous work

The dataset leveraged in this manuscript has some
advantages and some disadvantages compared to other
recently published datasets. We compare four recently
published datasets, and consider the advantages and
disadvantages of each with respect to six factors: (a) the
presence or absence of eye movements, (b) the presence
or absence of groundtruth half-occlusions and
groundtruth disparities, (c) the spatial resolution of the
images, (d) the range of object distances represented in
the dataset, (e) the diversity of the sampled scenes, and
(f) the appropriateness of the dataset for use in
psychophysical experiments. Each dataset was collected
with a different purpose (or set of purposes) in mind,
and each is limited by choices made by the researchers
and by the technology used to collect the data.

Sprague et al. (2015) affixed human observers with a
mobile binocular eye tracker and collected binocular
image movies of natural scenes as human observers
performed everyday tasks around the University of
California, Berkeley. The dataset contains objects
ranging in distance from 0.5 m to infinity. The principal
aim in collecting the dataset was to estimate the prior
probability distribution of binocular disparities en-
countered by humans in natural viewing. Absolute
disparity depends on the 3D structure of the scene,
where the observer is located in the scene, and where
the observer gazes in the scene. Collecting stereo-
images in concert with matched binocular eye move-

ments is therefore necessary to estimate the distribution
of disparities encountered by humans, and the dataset
is well suited for this aim. There are two primary
disadvantages associated with the dataset. The first
disadvantage is that groundtruth disparities and
groundtruth occlusions are not known. Disparities
were instead estimated from the left- and right-eye
images via image-based routines. A second disadvan-
tage is that the stereo-images are low spatial resolution
(;9 pix/deg). Thus, while this dataset is well-suited for
estimating disparity statistics in natural viewing, it is ill-
suited for examining the accuracy of disparity estima-
tion algorithms, for investigating the impact of local
disparity variation on disparity estimation perfor-
mance, or for obtaining natural stimuli for use in
psychophysical experiments.

Gibaldi et al. (2017) tracked binocular eye move-
ments of head-fixed human observers viewing two
computer generated 3D scenes from different view-
points on a stereo-display (Gibaldi et al., 2017). The
dataset contains objects ranging in distance from only
0.5 to 1.5 m. This paper also had the aim of
characterizing disparity statistics in natural viewing.
Gibaldi et al.’s computer-generated scenes afford access
to groundtruth disparities and groundtruth occlusions.
The rendered images had comparatively high spatial
resolution (;44 pix/deg) and, with appropriate cali-
bration, could be suitable for use in psychophysical
experiments. All of these features represent important
improvements on the weaknesses of the Sprague et al.
(2015) dataset. The first disadvantage of the Gibaldi et
al. dataset is that the eye movements were not collected
during observer interaction with the environment; eye
movements were instead collected during free viewing
of static disparity-specified scenes, presented on a
haploscope in a laboratory. A second disadvantage is
that the dataset contains only two types of scenes—an
office desk and a kitchen table—raising the specter of
statistical undersampling. A third disadvantage is that
the images were constructed and rendered in software.
Although the authors undertook a heroic effort to map
natural textures onto high-resolution 3D models of real
objects, the possibility remains that the resulting stimuli
do not accurately capture all relevant aspects of real
scenes. Those caveats aside, this dataset has tremen-
dous potential value, and it provides computer-
generated stimuli for both computational and psycho-
physical studies, especially if it can be expanded.

Adams et al. (2016) collected multiple stereo-image
pairs, and wide-field (i.e., 3608) laser range scans and
high-dynamic-range images of 76 outdoor scenes near
Hampshire, UK (Adams et al., 2016). The dataset
contained objects ranging from 1 m to infinity. The
authors also expended considerable effort to ensure
that imaged scenes were sampled randomly throughout
the English countryside. This dataset was collected with
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the immediate aim of characterizing the statistics of 3D
surface orientation as a function of viewing elevation in
natural scenes, and the authors developed a sophisti-
cated procedure for estimating local surface orientation
from the distance data. The dataset is also very well
suited for other applications not relevant to the topic of
this manuscript. The stereo-images have very high
spatial resolution (;160 pix/deg). One disadvantage of
this dataset is that it does not include eye movement
data, so the impact of natural eye movements on
disparity statistics cannot be estimated. A second
disadvantage is that only one range scan was captured
per scene. With only one range scan, stereo-parallax
precludes precise pixel-wise coregistration of the
groundtruth distance data with the left- and right-eye
photographic images. Thus, although groundtruth
disparity could be computed from the distance data, it
is impossible to precisely coregister the stereo-image
data with the range data at each pixel in both the left-
and right-eye images.

Burge et al. (2016) collected 99 stereo-images of
natural scenes with laser range scans coregistered to
each eye’s photographic image around the University
of Texas at Austin campus. The dataset contains
objects ranging in distance from 3 m to infinity. A
robotic gantry aligned the nodal points of the camera
and the scanner during data acquisition. As a result,
every pixel in each eye’s photographic image contains
groundtruth distance data from the corresponding
range scan from which groundtruth disparities and
groundtruth occlusions can be directly computed. The
images in the dataset also have comparatively high
spatial resolution (;52 pix/deg). These features of the
dataset make it particularly well suited for performing
analyses of the impact of local disparity variation on
disparity estimation. The primary disadvantage of this
dataset is that it does not contain eye movement data,
although the technique used by Gibaldi et al. (2017)
could be applied to get comparable data (also see Liu,
Cormack, & Bovik, 2010). However, because the data
has high spatial resolution and coregistered ground-
truth distance information, the dataset should prove
useful as a source for stimuli in perceptual experiments
and for future computational studies.

Adaptive filtering in psychophysics and
neuroscience

The computational results reported here predict that
human performance in disparity-related tasks can
benefit from adapting the size and shape of receptive
fields to the disparity contrast of each stimulus. Is
stimulus-based adaptive filtering neurophysiologically
plausible? Yes. Increases in luminance contrast are
associated with decreases in the spatial size of receptive

fields in macaque V1 (Cavanaugh, Bair, & Movshon,
2002; Sceniak, Ringach, Hawken, & Shapley, 1999),
and increases in luminance contrast are associated with
decreases in the temporal integration period in ma-
caque V1 and MT (Bair & Movshon, 2004). Develop-
ing psychophysical paradigms that can address this
issue is an important direction for future work.

The influence of priors in perception

In recent years, the impact of stimulus priors on
perceptual biases (Burge et al., 2010; Burge, Peterson,
& Palmer, 2005; Girshick, Landy, & Simoncelli, 2011;
Kim & Burge, 2018; Parise, Knorre, & Ernst, 2014;
Stocker & Simoncelli, 2006; Weiss, Simoncelli, &
Adelson, 2002) and on the design of neural systems
(Liu et al., 2008; Sprague et al., 2015) have been
extensively investigated. However, Bayesian estimation
theory predicts that priors should significantly impact
perceptual estimates only when measurements are
highly unreliable (Knill & Richards, 1996). In many
(most?) viewing situations, factors other than the prior
are likely to be more important determinants of
performance (Burge & Jaini, 2017).

Psychophysics is principally concerned with under-
standing the lawful relationships between stimulus
properties and human performance in critical tasks.
Human performance in natural tasks varies from
stimulus to stimulus because stimuli differ in their task-
relevant properties. The prior probability distribution
alone cannot account for stimulus-to-stimulus perfor-
mance variation. For example, the median stimulus in
the natural scene database is near-planar (Supplemen-
tary Figure S7), and performance with near-planar
stimuli is quite good, but not representative of
performance with stimuli having more depth variation
(Figure 4). Thus, it is necessary to characterize stimulus
variability and develop models that predict its impact
on psychophysical performance. A great deal of
previous work has examined the impact of external
noise on performance in simple tasks (Geisler & Davila,
1985; Pelli, 1985). Comparatively little work has
examined the impact of natural stimulus variability on
performance in critical tasks (but also see Burge &
Geisler, 2011; Burge & Geisler, 2014; Burge & Geisler,
2015; Geisler & Perry, 2009; Hibbard, 2008). The
current paper examines the impact of natural stimulus
variability on two tasks fundamental to stereopsis.

Stereo-image patch sampling for psychophysics

Task-specific computational analyses, like those
presented here, are useful for determining the optimal
solutions to sensory-perceptual problems, and for
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developing targeted hypotheses about the processing
rules of biological visual systems. However, to deter-
mine whether computational results, like those pre-
sented here, are in fact relevant to biological visual
systems, psychophysical experiments are ultimately
required. The stereo-image sampling and interpolation
procedure developed here can be used to obtain an
abundant supply of test stimuli with known ground-
truth disparities for future experiments on human
disparity processing and stereopsis with natural stimuli.

Change-point statistics for optimal grouping and
segregation

A grand problem in perception and neuroscience
research is to understand the principles that drive how
noisy local estimates are grouped across space and time
into more accurate global estimates (Yuille & Grzy-
wacz, 1988). The spatial patterns of estimates, the
precision (i.e., reliability) of those estimates, and the
change-point statistics of natural scenes play important
roles in determining the optimal rules for grouping and
segmenting local estimates. (In this context, change-
point statistics quantify the probability that spatially
adjacent locations correspond to the same or different
surfaces; Figure 12, Supplementary Figure S4). Prob-
ability-based modeling frameworks, and the careful
compilation of natural image and scene statistics,
should provide a strong foundation for understanding
the principles that should drive local-global processing
in natural scenes.

Conclusion

In this manuscript, we developed a high-fidelity
stereo-image sampling and interpolation procedure and
then used it to investigate the impact of natural depth
variation on two tasks fundamental to stereopsis: half-
occlusion detection and disparity detection. Local
depth variation decreases the size and changes the
shape of the spatial integration area that optimizes
performance in both tasks. We also showed how
disparity variation and half-occlusion probability
changes as a function of retinal eccentricity, and
presented the first data on the distributions of half-
occluded and binocularly visible region sizes in natural
scenes. The tools reported here can facilitate the use of
natural stimuli in psychophysical studies of stereo-
vision, and supply a strong empirical foundation for
the future development of models of optimal grouping
of disparity signals in natural scenes.

Methods

Contrast images and binocular difference
images

The inputs to the human visual system are the left-
and right-eye retinal images. Disparity-processing
mechanisms are widely modeled to operate on local
contrast signals, the output of luminance normalization
mechanisms in the retina. The Weber contrast image c
is obtained from a luminance images I by subtracting
off and dividing by the mean

c xð Þ ¼ I xð Þ � �I
�I

ð4Þ

where �I is the local windowed mean and x0 ¼ x0; y0ð Þ is
the location of the central pixel. The local windowed
mean is given by

�I ¼
X
x2A

I xð ÞW xð Þ
 !, X

x2A
W xð Þ

 !
ð5Þ

where W xð Þ is a spatial windowing function. We have
used Gaussian or raised-cosine windowing functions;
results are highly robust to the specific type of window.
The windowed Weber contrast image

cW xð Þ ¼ c xð ÞW xð Þ
is obtained by point-wise multiplying the Weber
contrast image by the window.

Binocular difference image contrast

The binocular difference image is given by the point-
wise difference of the two retinal images

cWB xð Þ ¼ cWR xð Þ � cWL xð Þ ð6Þ
where cL and cR are the windowed left- and right-eye
contrast images where the center pixels of each image
are centered on candidate corresponding points (see
Figure 2A and B). Thus, the binocular difference image
is the point-wise difference of the left-and right-eye
contrast images. The RMS contrast of the binocular
difference image CB is given by

CB ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
x2A

cWB xð Þ
� �2.

W xð Þ
 !, X

x2A
W xð Þ

 !vuut ð7Þ

where W xð Þ is the window that imposes the spatial
integration area.
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Binocular disparity contrast

Our sampling procedure ensures that the center of
each sampled stereo-image patch corresponds to the
same surface point in the scene, assuming that the
surface point is binocularly visible. If the surface point
is half-occluded (i.e., visible to only one eye), its image
only falls on the fovea of the anchor eye and a point on
the occluding surface will be imaged at the fovea of the
other eye. Disparity is undefined at half-occluded
points, so we compute disparity contrast only for
binocularly visible points.

To compute disparity, a point of reference must be
assumed. We compute disparity relative to the center
pixel of the anchor eye’s image patch (see Results). This
computation is equivalent to computing absolute
disparity, assuming that the center pixel of the anchor
eye’s image corresponds to a binocularly visible scene
point and that the eyes are fixating it. It is also
equivalent to computing relative disparity where the
point of reference is the center pixel of the anchor eye’s
image. To compute the groundtruth disparity pattern
from groundtruth distance, we first compute the
vergence demand at each pixel from the distance data,
and then subtract the vergence demand at the central
pixel from the vergence demand of every other pixel in
the patch. All vergence angles are computed in the
epipolar plane. The result is the pattern of absolute
near-foveal disparities d xð Þ that would result from
fixating the surface point in the scene corresponding to
the center pixel of the anchor eye’s image.

Root-mean-squared (RMS) disparity contrast is a
scalar measure of variation about the mean in a local
spatial area. The RMS disparity contrast is given by

Cd ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
x

c2d xð ÞW xð Þ
 !, X

x

W xð Þ
 !vuut ð8Þ

where cd xð Þ ¼ d xð Þ � �d is the mean-centered disparity
map.

Comparing detection sensitivities for fixed and
adaptive spatial integration areas

In a two-presentation forced choice task, proportion
correct P is given by the area under the ROC curve
(e.g., Figure 5D). The corresponding sensitivity d0 is
given by

d0 ¼
ffiffiffi
2
p

U�1 Pð Þ ð9Þ
where U�1 �ð Þ is the inverse cumulative normal. With
fixed spatial integration areas, window size is fixed to
maximize sensitivity across all stimuli regardless of
disparity contrast. With adaptive filtering, window size

changes to optimize sensitivity at each disparity
contrast. Overall proportion correct with adaptive
filtering is given by a weighted sum of the proportion
correct Pi in each nonoverlapping disparity-contrast
bin.

Padaptive ¼
1

N

X
i

NiPi ð10Þ

where Ni is the number of stimuli in disparity-contrast
bin i.

Keywords: natural scene statistics, depth perception,
binocular vision, stereopsis, half-occlusion, disparity
estimation, correspondence problem, adaptive filtering,
stereo-image patch sampling
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