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Abstract 
Background: Proteins fold robustly and reproducibly in vivo, but many 
cannot fold in vitro in isolation from cellular components. Despite the 
remarkable progress that has been achieved by the artificial 
intelligence approaches in predicting the protein native 
conformations, the pathways that lead to such conformations, either 
in vitro or in vivo, remain largely unknown. The slow progress in 
recapitulating protein folding pathways in silico may be an indication 
of the fundamental deficiencies in our understanding of folding as it 
occurs in nature. Here we consider the possibility that protein folding 
in living cells may not be driven solely by the decrease in Gibbs free 
energy and propose that protein folding in vivo should be modeled as 
an active energy-dependent process. The mechanism of action of such 
a protein folding machine might include direct manipulation of the 
peptide backbone. 
 
Methods: To show the feasibility of a protein folding machine, we 
conducted molecular dynamics simulations that were augmented by 
the application of mechanical force to rotate the C-terminal amino 
acid while simultaneously limiting the N-terminal amino acid 
movements. 
 
Results: Remarkably, the addition of this simple manipulation of 
peptide backbones to the standard molecular dynamics simulation 
indeed facilitated the formation of native structures in five diverse 
alpha-helical peptides. Steric clashes that arise in the peptides due to 
the forced directional rotation resulted in the behavior of the peptide 
backbone no longer resembling a freely jointed chain. 
 
Conclusions: These simulations show the feasibility of a protein 
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folding machine operating under the conditions when the movements 
of the polypeptide backbone are restricted by applying external forces 
and constraints. Further investigation is needed to see whether such 
an effect may play a role during co-translational protein folding in vivo 
and how it can be utilized to facilitate folding of proteins in artificial 
environments.

Keywords 
Protein folding, ribosome function, chaperone, computer modeling, 
molecular dynamics, energy-dependent protein folding, co-
translational protein folding, nascent peptide rotation, peptide 
backbone manipulation, protein folding machine
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Introduction
Once they are synthesized in a living cell, the majority of  
proteins rapidly attain their distinctive biologically active  
three-dimensional structures, called native conformations. 
These conformations are robustly achieved in vivo via a folding 
process that involves interactions of the folding chain with 
molecular chaperones and other maturation factors. The fold-
ing process often cannot be reproduced in vitro, in the absence 
of chaperones and other cellular components1–5. However, some  
small proteins fold spontaneously in vitro in the absence of  
any other macromolecules6.

What exactly happens during the folding of a linear polypep-
tide chain into a native conformation either in vivo or in vitro 
remains largely unknown. Despite decades of intense labora-
tory research, theory development and computer simulations, 
we still cannot recapitulate complete folding trajectories  
in silico, except for those of a few relatively short polypeptides7. 
Knowledge of the intermediates in the folding pathways and 
the mechanisms that enable them is essential for determining 
the points of intervention at which folding and misfolding  
processes can be altered.

The painfully slow progress in our ability to fold in silico all but 
the shortest polypeptides could be due to the sheer complexity 
of the system: the number of possible conformations of a  
polypeptide chain, and the number of interactions between the 
atoms of all amino acid residues within the polypeptide itself  
and with the surrounding solvent, are so astronomically high 
that the existing computational power is not yet sufficient, and  
might never become sufficient, to capture the folding trajecto-
ries for longer proteins8. It is also possible, however, that there 
are fundamental deficiencies in our understanding of folding 
as it occurs in nature, and progress in recapitulating protein  
folding pathways requires a more realistic physical model of  
folding than the one we have been relying upon.

The current dominant model of protein folding was prompted 
by early observations that some small proteins are able to 
fold in vitro into their native conformations spontaneously, in  
isolation from other proteins or cellular components (reviewed  
in 6). These observations gave rise to the thermodynamic  
hypothesis of protein folding6,9, which in turn led to the devel-
opment of the physical model that describes protein folding as a  
thermodynamically favorable, unassisted process. In a more  
recent, refined form, this model includes the description of a  
rugged funnel-shaped energy landscape, in which the various 
unfolded, unstructured conformations occupy the high-free- 
energy brim of the funnel10–13. As the polypeptide chains fold,  
they sample conformations with progressively decreasing Gibbs 
free energy until they reach the native conformation, which is 
presumed to occupy the global thermodynamic minimum at the  
bottom of the funnel. The sampling of conformations during 
the folding process is assumed to occur via random thermal  
motions14. The driving force of protein folding is assumed to be  
the decrease in free energy to the global minimum.

In summary, the current general physical model of protein fold-
ing describes a process that occurs in a closed system in the  

absence of external sources of energy. It assumes that folding 
starts from a random, unstructured conformation and proceeds  
unassisted, with no apparent requirement for the folding chain 
to interact with other proteins or macromolecular cellular  
components. This model describes an extremely artificial  
process that is only likely to occur in vitro and has little  
resemblance to what takes place during the folding of all proteins 
in the living cell.

In nature, folding of the majority of proteins occurs in the  
environment of a living cell, which is an open system with a  
constant flow of energy and shifting chemical composition. 
In a cell, a polypeptide starts folding while it is still being  
synthesized on a ribosome, where it occupies a tight space 
that allows it to adopt only a limited set of conformations. The  
nascent peptide emerges into a crowded, viscous environment 
outside of the ribosomal tunnel and interacts with multiple  
proteins, including chaperones, and with other cellular compo-
nents, at all stages of folding. In the course of peptide synthesis  
and co-translational folding, a large amount of energy is  
released by GTP hydrolysis. This energy is not required for 
the formation of peptide bonds15, but may be spent, at least  
partially, on various motions and adjustments of the ribosomal 
components, directly affecting the folding environment of the 
nascent peptide16–18. It is difficult to escape the conclusion that  
protein folding in vivo must be described by a physical model  
that takes into account the interactions of a folding polypeptide 
chain with its complex dynamic cellular environment.

We have recently proposed that a more realistic physical model 
of protein folding might be built on the assumption that protein  
folding in vivo is an active, energy-dependent process. In this  
alternative model, proteins that are not able to fold spontane-
ously must rely on additional external forces to achieve native  
conformations19. We hypothesized that the mechanism of 
action of such a protein folding machine might include direct  
mechanical manipulation of the peptide backbone by the  
concerted actions of the ribosome and chaperone complexes20,21. 
During translation in the peptidyl transferase center of the  
ribosome, the 3’ terminus of the tRNA in the A-site swings by  
nearly 180 degrees in every elongation cycle22,23. We hypothe-
sized that this motion might lead to the rotation of the C-terminus 
of the nascent peptide. Simultaneously, the movements of the  
N-terminal regions of the nascent peptides may be restricted, 
first, by occlusions in the ribosome exit tunnel and then by steric  
capture mediated by the ribosome-associated “nascent chain  
welcoming committee”, such as the trigger factor in bacteria 
and the nascent polypeptide-associated complex in archaea 
and eukaryotes21. As a result, the folding polypeptide may  
experience transient strained conformations with elevated free  
energy19. 

As the first step in exploring the feasibility of a protein  
folding machine capable of facilitating the attainment of native 
structure by mechanical manipulation of the peptide backbone, 
we performed molecular dynamics simulations augmented 
by application of torsion to the peptide backbones. During 
the simulations, the C-termini of various polypeptides were  
mechanically rotated either clockwise or counterclockwise,  
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while the motions of their N-termini were restricted. We com-
pared the trajectories of both types of simulations with the  
folding of the same peptides without the application of torque. 
In our experiments, directional rotation of the C-terminal amino  
acids with simultaneous limitation of the movements of the  
N-termini indeed facilitated the formation of native structures in 
five diverse alpha-helical peptides.

Methods
The initial stretched structures of peptides (Table 1) with four  
additional alanine residues, two at each end, were generated  
using ICM software24. These alanines were attached as handles 
to which the rotation or restraint could be applied directly  
without affecting the sequence whose folding was investigated, 
and were not considered in the RMSD calculations. We aligned  
a peptide along the X-axis and solvated it in a dodecahedron 
box in the case of the simulations of unassisted folding and  
triclinic box in all other cases, with minimum distance of  
1.5 nm between a peptide and the simulations box. Potassium  
and sodium ions were added to neutralize the charges in the 
system. The system was then minimized with the steepest  
descent algorithm, equilibrated for 100 ps in the NVT ensemble 
using V-rescale thermostat25 for temperature coupling, and  
continued in the NPT ensembles for 1 ns using V-rescale  
thermostat and Berendsen barostat26. After the equilibration, 
we kept temperature and pressure constant at 300 K and 1 bar 
respectively, using Nose−Hoover thermostat27,28 and isotropic  
Parinello−Rahman barostat29.

For all simulations, we used the ff14SB force field30 with the 
TIP3P water model31 and ion parameters modified by Joung 
and Cheatham32. Electrostatic interactions were calculated 
using particle-mesh Ewald (PME) summation33 with a  
Fourier grid spacing of 0.135 nm. For non-bonded Coulomb 
and Lennard-Jones interactions, 1 nm cutoff was used. We  
constrained the hydrogen bonds with the LINCS algorithm34  
and used a 2-fs integration time step.

To exert an external mechanical torque to the C-termini of the 
peptides, we adopted the enforced rotation method, originally  
designed to study rearrangements during the rotation of a  
folded protein within the F1-ATPase assembly35, implemented 
in the GROMACS molecular dynamics package. To this 

end, we restrained the positions of the O and N atoms of the  
C-terminal alanine to keep it aligned with the X-axis, about 
which the rotation was applied. The restraints with a force  
constant of 10000 kJ/mol*nm2 were applied only for the  
YZ-plane, so the C-terminal amino acid could move along the 
X-axis. In addition, we restrained the O atom of the C-terminal  
amino acid in the X direction with a force constant of  
5 kJ/mol*nm2 and N and Cα atoms of the N-terminal alanine 
with a force constant 10000 kJ/mol*nm2 in all directions. The  
C-terminal amino acid was rotated using a flexible axis  
approach (Vflex2) with a reference rotation rate of 60 degrees/ps 
and a force constant of 1500 kJ/mol*nm2.

The GROMACS package version 2020.236 was used for all  
simulations and trajectory analyses. The simulations were  
carried out on CUDA-enabled GPUs with Turing architecture, 
running Ubuntu 18.04. For visualization of protein structures  
and trajectories, the programs ICM-Pro 3.924 and VMD 1.9.337  
were used.

Results
We performed atomistic molecular dynamics simulations to 
study peptide folding under conditions when, throughout the  
simulation, an external mechanical torque was applied to the 
C-terminal amino acid of a peptide and the motions of the  
N-terminal amino acid were restrained (Figure 1). We compared 
the folding trajectories of the peptide to which a mechanical 
force was applied to rotate the C-terminal amino acid in one of  
the two possible directions – either clockwise as in Figure 1, or 
counterclockwise – with the trajectories for the same peptide  
which was allowed to fold without any motion restriction or 
application of any mechanical force (referred to as “unassisted  
folding” below). As an additional control, we ran a fourth type 
of simulation, where motion restraints were applied to both  
ends of each peptide but the torque was omitted. The details of 
the simulations are described in the Methods section. Each of 
the four types of simulations were repeated three times, giving  
12 simulations for each peptide.

The experiments were run on five peptides that are known to  
adopt alpha-helical conformations in their folded form (Table 1). 
Two of these, P1 and P2, have been designed de novo, and the 
other three, P3-P5, are parts of naturally occurring proteins. 

Table 1. Peptides used for the molecular dynamics simulations in this study.

Peptide Peptide description Sequence Length, amino 
acids PDB ID

P1 Peptide Fs (Folded short), designed de novo AAAA(AAARA)3 19 n/a 

P2 First helix of the three-helix bundle, designed de novo SWAEFKQRLAAIKTR 15 2A3D

P3 Fragment of the tetramerization domain of potassium 
channel Kv7.1

HLNLMVRIKELQRRLDQSL 19 6UZZ

P4 Loop and third helix of the villin headpiece fragment HP35 PLWLQQHLLKEKGLF 15 2F4K

P5 Fragment of the coiled-coil region of pyrin KIQKQLEHLKKLRKSGEEQRS 21 4CD4
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Figure 1. Schematic representation of the energy-dependent peptide folding protocol employed in this study. The force vectors 
applied to the C- and N-termini of a peptide in the simulation box are shown by black arrows. All force values are in kJ/mol*nm2. The purple 
curled arrow indicates the direction of the clockwise rotation of the peptides that resulted in the accelerated productive folding of all 
peptides to their helical conformations. The restrained groups are shown by green outline.

The folding of the peptides was monitored by calculating the 
root mean square deviation (RMSD) distance of the peptide  
backbone from the native structure of the same fragment deter-
mined by X-ray crystallography (peptides P2-P5), or computed 
ab initio (peptide P1). The results of the simulations for each  

peptide when folded unassisted in the standard force field, 
and when an external torque force was added to the field, are  
presented in Table 2 and Figure 2. All folding trajectories and 
the additional information on the properties of all simulation  
boxes are available at Zenodo38.

Table 2. Peptide folding rates in the molecular dynamics simulations. The 
first number indicates the time (ns) spent before reaching the RMSD of 0.2 nm 
from the native conformation, and the second number indicates the duration 
of the experiment. 500/500 and 1500/1500 values indicate that folding was not 
observed in this simulation.

Peptide No rotation, 
no restraints

No rotation, 
restrained 
ends

Restrained 
ends, rotation 
clockwise

Restrained 
ends, rotation 
counterclockwise

P1 500/500 
500/500 
500/500

500/500 
500/500 
500/500

22/100 
18/100 
29/100

500/500 
500/500 
500/500

P2 1500/1500 
1500/1500 
1500/1500

1500/1500 
1500/1500 
1500/1500

160/200 
140/200 
105/200

1500/1500 
1500/1500 
1500/1500

P3 1500/1500 
1500/1500 
1500/1500

1500/1500 
1500/1500 
1500/1500

105/150 
95/150 
125/150

1500/1500 
1500/1500 
1500/1500

P4 1500/1500 
545/1500 
360/1500

250/1500 
1500/1500 
1500/1500

130/175 
80/175 
150/175

1500/1500 
1500/1500 
1500/1500

P5 1500/1500 
1500/1500 
1500/1500

1500/1500 
1500/1500 
1500/1500

230/1500 
380/1500 
170/1500

1500/1500 
1500/1500 
1500/1500
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Figure 2. Folding of peptides in the force field with and without an augmentation by the application of external rotation forces 
to the polypeptide backbone. Each horizontal pane represents molecular dynamics simulations for one peptide, numbered P1 through 
P5 (Table 1). On the left side, top three curves (dark blue, orange, and yellow) indicate three independent runs for one peptide in the 
standard force field without externally applied backbone rotation, and the bottom three curves (purple, green, and light blue) indicate three 
runs in the presence of the clockwise rotational force. On the right side, the bottom three curves are the same as in the corresponding left 
pane (three runs in the presence of the clockwise rotational force), and the top three curves (dark blue, orange, and yellow) indicate three 
runs for the same peptide in the presence of the counterclockwise rotational force.

Within our simulation lengths, we observed the completion of 
unassisted folding into the native-like alpha-helical structure  
only in some runs for one peptide, P4, which represents the 
third helix and preceding loop in the villin headpiece domain  
HP35. Other peptides remained essentially unfolded throughout 
the 500–1500-nanosecond runs. The peptides also failed to fold  
when their ends were restricted in mobility but torque was not 
applied (Table 2). In contrast, when the external torsion force 
was applied to the C-termini of the peptides in the clockwise  
direction, as described in Methods and illustrated in Figure 1, 
peptides P1-P4 all folded into alpha-helical structures and were  
brought within 0.2 nm RMSD from their native structures in  
every run, typically within the first 100–200 ns of simulation.  
These peptides stayed in the native or nearly-native conformations 
for the remainder of the experiments. Peptide P5 was a special 
case; similarly to P1-P4, it adopted a compact conformation early  
in the experiments, but remained only partially folded for the  
duration of all runs (Figure 2).

For all five peptides, folding was observed when the rotation 
force was applied to the C-terminal amino acid in the clockwise  
direction (Figure 1). In contrast, the torque applied to the  
C-terminus counterclockwise with the same force constant did 

not facilitate folding of P1-P3 and P5, and may have inhibited  
folding of P4 (Figure 2).

Discussion and conclusions
To test the idea that inclusion of external forces can improve 
modeling of protein folding pathways in silico, we performed  
molecular dynamics simulations in which a standard force 
field was augmented by the application of external mechanical  
forces to the polypeptide backbone. We compared these  
simulations to control runs without any additional external  
forces. The directional rotation of the C-terminal amino acid 
with simultaneous restriction of the movements of the N-terminal  
amino acid facilitated the formation of native structures in five 
diverse alpha-helical peptides, confirming that such constraints 
can have significant consequences for folding dynamics.  
Strikingly, application of mechanical force accelerated the  
folding of P4, a fragment of an on-pathway folding  
intermediate of the well-studied villin headpiece domain 
HP35, which is one of the fastest-folding protein domains  
known7,39,40. The several-fold increase in the rate of P4 folding 
that was achieved in our experiments seems to suggest that the  
postulated “physical limit of folding” of HP35 as a whole39,41 
could be overcome by a protein folding machine. The other four  
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peptides in our experiments likewise attained their alpha-helical 
structure in the presence of the rotating force, but did not reach 
their native conformations when allowed to fold unassisted, even  
though we ran the control unassisted simulations for ~10 times 
longer than the simulations that included the application of the 
external force (Table 2). Some of those peptides might take 
a very long time to reach their native conformations without  
application of an external force, whereas others might never 
fold unassisted, if their unfolded states are more stable than the  
folded conformations.

These results are in line with our protein folding machine  
hypothesis19. They also support a hypothetical mechanism 
through which the machine would directly alter the conforma-
tions of proteins by applying mechanical force to the peptide  
backbone20,21. The feasibility of such a mechanism, however, 
is dependent on whether the torsion applied at one point of a  
peptide would propagate through the rest of the peptide chain 
and affect the movements of the distal parts of the peptide.  
The peptide backbone is often viewed as a freely jointed  
chain, due to the 360-degrees rotation ability around the phi- and  
psi-bonds within each amino acid42. If the peptides in our  
simulations were to behave as freely jointed chains, the rotation 
of a single amino acid at the end of the peptide would not have 
any appreciable effect on the motions of the rest of the peptide.  
However, if a mechanical torque were applied to a peptide  
while it was being folded in a viscous crowded environment  
(e.g., co-translationally in a living cell), we predicted that the 
free rotation of the phi- and psi-bonds in the peptide backbone  
would be hindered enough that escape from the forbidden  
sections of the Ramachandran plots would become difficult 
for many residues, and as a result, the entire peptide backbone 
may experience transient strained conformations. Although our  
simulation could not account for all the details of the protein 
folding environment in vivo, we were able to devise a set of  
conditions under which the peptide indeed did not behave as 
a freely jointed chain. When a force was applied to a single  
amino acid residue, and the motion of just one other residue at 
least 15 amino acids apart was restricted, the folding trajectory  
of the entire peptide was affected dramatically, leading to the  
rapid attainment of the native helical conformation. Some 
of the steric hindrances that make this rapid folding possible  
involve amino acid side chains, and therefore the effect might 
be sequence-specific. For example, glycine residues are more  
likely to experience the full 360-degree rotation around the 
phi- and psi-bonds, relieving the strain in the main chain; this 
might explain why P5, a peptide with an internal glycine, first  
acquired and then partially lost its folded conformation in our 
experiments (Figure 2). 

It remains unclear whether our simulation captures the main 
features of the folding process as it occurs in nature. For  
example, one of the parameters that differs between our  
simulations and real co-translational protein folding process 
is their characteristic times. The rotation of the backbone in our  
system occurs at the submicrosecond time scale, whereas the 
addition of amino acids to the nascent peptide is much slower,  
on the order of subseconds43–45. Molecular dynamics simulations 
have been known to model, at a fast scale, the essential parts of 

the molecular processes that are much slower when observed 
with bulk kinetics or single-molecule methods17,40, but the effect  
of the rotation rate on the peptide folding trajectory remains  
to be investigated.

The key feature of the hypothetical mechanism of co-translational 
protein folding that we simulated is the directional rotation of 
the peptide backbone. As discussed above, the 3’ terminus of  
the tRNA in the A-site of the ribosome peptidyl transferase  
center turns by nearly 180 degrees in every translation elon-
gation cycle. Only a 45-degree swing is necessary to achieve 
the proper stereochemistry of the peptide bond formation46; 
the function of the remaining portion of the turn is unknown, 
and we have hypothesized that it may be needed to facilitate  
co-translational folding20,21. It is notable, however, that the  
tRNA within the translating ribosome appears to turn in the  
counterclockwise direction when looking from the C-terminus 
of the nascent peptide22,23. In contrast, folding of all peptides 
into the right-handed alpha-helices in our experiments took  
place only with clockwise rotation of the C-termini (Figure 1 and 
Figure 2). It remains to be determined what, exactly, happens  
to the nascent peptide in the peptidyl transferase center and in 
the ribosome exit tunnel. The nascent peptide might be rotated  
counterclockwise (in the direction of the tRNA swing), or 
clockwise (as a result of a gear-like interaction with the tunnel  
walls), or might not be rotated at all but rearranged in a more 
complex way, being subject to pushing and pulling forces 
as well as interactions with the exit tunnel walls and other  
components of the ribosomal complex.

Regardless of whether the peptide torsion mechanism operates 
during co-translational folding on the ribosome in vivo, we  
demonstrate that it is possible to facilitate protein folding under 
conditions when an external mechanical force is applied to 
the peptide backbone. Importantly, we show that the peptide  
does not always behave as a freely jointed chain, opening the  
possibility that in vivo the peptide backbone can be manipulated 
into conformations that cannot be reached without assistance 
because they are either thermodynamically unstable or kineti-
cally inaccessible. The results of our simulations thus demon-
strate the feasibility of a protein folding machine. Some recently  
published results, including studies of the role of the exit  
tunnel in nascent chain folding47–51 and of direct coupling  
between ATP hydrolysis and protein refolding by the chaperones 
of the HSP70 family52–54, may be also interpreted as evidence of 
protein folding in vivo being an active process.

The notion of an active, energy-dependent protein folding 
mechanisms in vivo is better compatible with the current  
understanding of evolution than the generally accepted, standard 
thermodynamic hypothesis of protein folding. Although it is  
accepted that the ability of proteins to attain their native  
conformations must have evolved by natural selection of  
sequences that fold quickly and correctly (“evolution solved 
the protein folding problem”55), models of unassisted folding  
sidestep the fact that ribosomes and translation factors are  
among the oldest molecular machines shared by all extant  
cellular life56, and were present during much of the evolution 
of proteins and of their folding pathways. The evolutionary  

Page 7 of 17

F1000Research 2021, 10:3 Last updated: 22 FEB 2021



optimization of the tempo and mode of protein folding, for at 
least 3.5 billion years of biological evolution, has taken place 
not in dilute solutions of isolated proteins, but in a dynamic  
environment of living cells with their constant flow of matter 
and energy. Thus, the ability of any present-day protein to fold  
in isolation and without assistance is likely to be either an  
incidental or derived property, not shared by most other  
proteins. Realistic computational modeling of protein folding 
must therefore take into account the presence of a multitude of  
external forces. Further studies should attempt to more closely  
recreate the conditions of protein folding in vivo.

Data availability
Zenodo: Energy-dependent protein folding: modeling how a 
protein folding machine may work. http://doi.org/10.5281/zen-
odo.439295938

This project contains the following underlying data:

-      trajectories.zip (xtc files of the folding trajectories  
obtained in the molecular dynamics simulations)

-      m2020nepfSF1.pdf (pdf file of the properties of all  
simulation boxes)

Data are available under the terms of the Creative Commons  
Attribution 4.0 International license (CC-BY 4.0).
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This short MD publication by Sahakyan et al., proposes an interesting alternative to the classic 
thermodynamic theory of protein folding in which the polypeptide chain acquires its native 
conformation spontaneously without any external aid. The authors argue that protein folding 
must be modelled as an active energy dependent process assisted by a hypothetical folding 
machine (the ribosome) that applies torsion to the polypeptide chain. 
 
They present folding trajectories (up to 1500 ns) of five short peptides (15-21 aa) under four 
different conditions: a) unassisted folding without restrictions and rotation, b) motions restraints 
to both ends of the peptide, c) a mechanical force is applied to rotate the C-terminus 
counterclockwise while the N-terminus is restrained and d) a mechanical force is applied to rotate 
the C-terminus clockwise while the N-terminus is restrained. Most of the peptides adopt an α 
helical conformation only in the last condition. The authors suggest that the ribosome, and 
specially the tRNA molecules moving from the A-site to the P-site, apply rotary forces to the 
nascent chain during cotranslational folding.  
 
The idea is interesting and the protein folding community would benefit from the indexing of this 
study. Currently, it is well established that some proteins fold differently while being synthesized 
by the ribosome than refolded in diluted buffer conditions. The work acceptably adds to these new 
ideas, the MD experiments are consistent and its properly presented. This study certainly provides 
food for thought and it does not intend to present a complete picture of the forces acting on the 
polypeptide chain during cotranslational folding.  
 
The exit tunnel is a complex environment where transient interactions can be stablished between 
every residue of the growing chain and the macromolecules lining the tunnel. A myriad of factors 
other than torsion can aid the folding of macromolecules in the tunnel (conformational entropy 
reduction, transient salt-bridges and Van Der Waals interactions, for instance). Therefore, torsion 
might play a role but more experiments are needed to fully support this assumption. Also, since 
the force is applied in the same direction as the alpha helix formation it would definitely accelerate 
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the folding process. 
 
The weakest point of the publication is the timescale. The rotation (60 degrees/ps) is several 
orders of magnitud faster than tRNA rotation (1aa/50ms) given a bacterial translation rate of 
20aa/s. It would be interesting to see another setup where they rotate the C-terminal residue by 
180 degrees only once, and then follow the equilibration of the peptide conformation for some 
microseconds (helices take microseconds to milliseconds to fold). If the hypothesis is correct one 
should see the same increased tendency for the peptide to become helical with clockwise rotation 
compared to counterclockwise as they do under continuous rotation. 
 
Several further studies are possible, such as testing a bigger number of peptides with different 
helix propensities to draw statistics on how likely is that torque in the chain produce helix 
formation versus the effect of the simple reduction on the conformational entropy by confining 
the peptide in a closed environment (as it is the ribosomal tunnel). 
 
Also one could try to perform MD with torsion on small protein domains that have already proven 
to fold very deep of the ribosomal tunnel. There is a very small domain (29 aa) (ref 47) for which its 
folding has been tested. How difficult is to test the same conditions used for the peptides with this 
domain? This domain is almost the same size than the peptides and it is a much better 
representative of a folded domain.
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In this short contribution the authors set out to validate, by means of all-atom molecular dynamics 
simulations in explicit solvent, the idea that the folding of proteins into their biologically relevant 
native state depends crucially on the presence of the "in vivo" cellular machinery. They have been 
arguing through several papers, in recent years, that only a minor subset of short proteins 
conforms to the widely accepted thermodynamic hypothesis (i.e. the native state is the global free 
energy minimum for a protein in the test tube). In their view, most proteins are not able to fold "in 
vitro" and instead evolved to be able to fold while they are synthesized at the ribosome. The 
energy flow provided by the cellular machinery through mechanical manipulations would than 
make protein folding an activated process "in vivo". 
 
Here, in particular, they consider short peptides (around 20 residues) with helical native states. 
Their molecular dynamics simulations, 1.5 microseconds long, show that folding to the native 
state rarely occurs in the absence of any restraint. On the other hand, when restraints on the 
position of the N-terminal residue and a constant clockwise torque on the C-terminal residue are 
applied, folding to the native helical state readily occurs for all peptides. 
 
The paper is well written and makes for an interesting read. The authors are very careful in 
making it clear that any connection between the mechanical restraints used in their simulations 
and the ones present during co-translational folding is yet to be substantiated. Their findings are 
in principle interesting since they show how energy pumping through a torque may in fact 
improve the ability of the folding process to reach a given configuration. 
 
However, the authors should consider carefully the following remarks, which could undermine, to 
some extent, their conclusions:

I think it is important to check whether the helical native states are stable for the considered 
all-atom force field in the absence of any restraint (e.g. running a microsecond long 
simulation with the native state as initial condition); if not, failure to fold into the native 
state could be more simply ascribed to incorrect force field parametrization. I am assuming 
that the stability of the native state in solution, at least on the microsecond time scale, 
should be guaranteed also within the unorthodox view advocated by the authors; a 
comment by them on this point would be useful. 
 

1. 

Considering only helical native states may bias the conclusion of this study, due to their 
definite right-handed chirality. Applying a clockwise torque may be effective in biasing any 
polymer chain towards adopting a right-handed helical configuration. The authors should 
then consider, at least for future work, to run simulations for peptides forming beta-

2. 
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hairpins or beta-sheets in their native states. 
 
Along the same lines, it had been in fact observed that helical shapes are kinetically favored 
for growing polymers attached to a moving end1, even in the absence of an explicit torque. 
My point is again that what found by the authors could be a generic feature shared by any 
polymer chain, not a property specific to peptide sequences adopting a helical native state.

3. 
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In this short article, Sahakyan et al. present molecular dynamics (MD) simulations that seek to 
question the overarching paradigm that protein folding is a predominantly thermodynamically-
driven process in which native states are achieved exclusively by identifying states with minimal 
free energy in the absence of any energy dissipation or physical forces acting on them. 
 
In contrast, by presenting several µs-length trajectories of several short (20mer) alpha-helix 
forming peptides, the authors show that the ability for the peptide to rapidly adopt a helical 
conformation is dependent on the application of an externally applied torque, rotating the C-
terminus clockwise. The authors draw the connection that the C-terminus of a nascent protein 
might also experience rotary forces during co-translational folding induced by the movement of 
tRNA molecules transiting through the A-site and P-site 
 
This article presents an interesting and novel idea that the protein folding community should be 
aware of, as recent years have seen a growing number of contributions highlighting the potential 
difference between co-translational folding and ‘classical’ folding experiments. I would say that 
rather than ‘answering’ a problem, it is more an invitation for future work and thought, given the 
relatively few results that have been reported. That being said, the results presented are 
intriguing and internally consistent, and deserve the consideration of any worker in the protein 
folding field interested in understanding how biological folding could differ from the classic 
scenario of an ergodic search on a constant free energy landscape. 
 
In evaluating this work, I have a number of conceptual comments, suggestions for further study, 
and recommendations on reproducibility. 
 
Conceptual comments:

At several points, the authors mention that the 3’ terminus of the A-site tRNA undergoes a 
large-scale (ca. 180˚) rotation, and that this forms the basis of their hypothesis that rotary 
motions could be transduced to a nascent chain during translation. The motion that the 
authors are referring to – if I’m not mistaken – is the accommodation of the tRNA from the 
A/T-hybrid state to the A/A-canonical state upon hydrolysis of GTP by EF-Tu (though they do 
not mention this process by name). My understanding is that the nature of this large 
rotation *is* understood; it results from the fact that the presence of EF-Tu precludes the 
‘top half’ of the tRNA from entering the A-site on the 50S subunit whilst the anticodon 
engages with the decoding center; release of EF-Tu then allows the 3’-end of the A-site tRNA 
to swing into the PTC. That being said, this large movement would not be experienced by 
the nascent chain per se, because it is occurring on the A-site tRNA (not the P-site tRNA 
carrying the nascent chain). Hence, the authors may need to clarify what rotational 
conformational changes are experienced by the P-site tRNA, and provide structural data 
that directly support this. 
 

○

Is the rate of the rotary movement relevant to the timescale of translation? If not, this 
should be commented on directly, or at least probed by varying its rotational frequency.

○

Further study:
Seeing as the larger rotational movement is associated with the A-site tRNA (before its 
aminoacylated acid is added to the peptidyl chain), the authors may want to use simulation 

○
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to directly test their hypothesis that “this motion might lead to the rotation of the C-terminus of 
the nascent peptide.” I appreciate the challenge involved in such, as it would surely require 
performing relatively long simulations on the ribosome. Though this would represent a 
truly important contribution and should be considered. If simulations of this size/timescale 
are too infeasible, potentially a careful analysis of the many ribosome structures with P-site 
tRNA-nascent chains bound could also serve as a reasonable way to interrogate this 
question. 
 
The authors seem to assume that all the peptides they studied *could* become alpha 
helical under the present forcefield, and that this is accelerated by the presence of the 
external torque. I suppose the first part of this should probably be shown explicitly, perhaps 
by a free-energy perturbation or umbrella sampling approach, just to show that the 
minimum free-energy states are in fact what we would think they are. 
 

○

What is the mechanism whereby the rotary force induces folding? Careful analysis of the 
trajectories could probably support or refute the hypothesis that it helps ‘seed’ the 
formation of the alpha helix, which then ‘zippers’ up. (Actually the zippering model for 
alpha-helix formation is probably very relevant to the authors’ discussion, and they might 
consider seeing if their simulations reproduce the parameters from classical statistical 
mechanical treatments of the helix-coil problem).

○

Reproducibility:
Seeing as performing MD simulations in the presence of external torques is fairly non-
standard, the authors may want to provide the actual GROMACS input files for any 
computational biochemist interested in performing similar simulations.

○
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This paper presents an intriguing hypothesis, that torque applied by the ribosome at the A-site, 
actively assists folding. To demonstrate this, the folding of 5 small proteins were simulated from 
an extended state. When clockwise torque is applied to the C-terminus while constraining the N-
terminus (so that the torque is maintained within the backbone), the proteins typically folded 
within 1.5 microseconds and did not fold within that window without torque, without restraint, 
and if the torque was applied counter-clockwise.  
 
The results are quite convincing but a few details are missing. Below are some questions whose 
answers would add to the understanding of the reader: 
 
1. What happens to the backbone after the torque is applied? It seems like the N-terminus is 
constrained for the entire length of the simulation but this should be made more clear.  
 
2. How does the collapse of the backbone proceed with the constraints compared to without? 
 
3. Do the helical segments form simultaneously or do helices propagate down the length of the 
chain? Another figure showing native structures of the sequences color coded by when native 
structure is formed might by useful (or something equivalent). 
 
This paper has an interesting premise with a lot of caveats given the simplified results supporting 
the conclusion. However, the authors do a good job of addressing some of them. I am not 
completely convinced that crowded cell conditions could provide the N-terminal constraint 
required to acquire structure rapidly, but this is a testable result for current co-translational 
folding simulations. The authors discuss that the torque applied by the ribosome tunnel is a open 
question and may not be mimicked by the simple torque in the simulations. Another question that 
could be answered by more realistic simulations is what is the effect of torque at the A-site on the 
nascent chain outside the ribosome tunnel. While helices can form in the tunnel, there is not a lot 
of evidence that helices emerge from the tunnel for most sequences. So is the net torque on the 
last part of the chain before leaving the tunnel what really matters?
 
Is the work clearly and accurately presented and does it cite the current literature?
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