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Abstract Although it is well known that long-term synaptic plasticity can be expressed both pre-

and postsynaptically, the functional consequences of this arrangement have remained elusive. We

show that spike-timing-dependent plasticity with both pre- and postsynaptic expression develops

receptive fields with reduced variability and improved discriminability compared to postsynaptic

plasticity alone. These long-term modifications in receptive field statistics match recent sensory

perception experiments. Moreover, learning with this form of plasticity leaves a hidden

postsynaptic memory trace that enables fast relearning of previously stored information, providing

a cellular substrate for memory savings. Our results reveal essential roles for presynaptic plasticity

that are missed when only postsynaptic expression of long-term plasticity is considered, and

suggest an experience-dependent distribution of pre- and postsynaptic strength changes.

DOI: 10.7554/eLife.09457.001

Survival depends on learning accurate actions in response to sensory stimuli while remaining capable

to quickly adapt in dynamic environments. The neural substrate of learning is believed to be long-

term synaptic plasticity (Pawlak et al., 2013; Nabavi et al., 2014). After decades of debate

(MacDougall and Fine, 2013; Padamsey and Emptage, 2014), it has become increasingly clear that

expression of long-term synaptic plasticity can be either pre- or postsynaptic or both

(Zakharenko et al., 2001; Bayazitov et al., 2007; Sjöström et al., 2007; Loebel et al., 2013;

Yang and Calakos, 2013). However, the functional consequences of this segregation into pre- and

postsynaptically expressed plasticity have remained unclear. To investigate this, we developed a bio-

logically tuned spike-timing-dependent plasticity (STDP) model, that in contrast to earlier models

(Gerstner et al., 1996; Song et al., 2000; Senn et al., 2001; Seung, 2003; Froemke et al., 2006;

Pfister and Gerstner, 2006; Leibold and Bendels, 2009; Clopath et al., 2010; Carvalho and Buo-

nomano, 2011; Graupner and Brunel, 2012; Albers et al., 2013), involves both loci of expression.

Inspired by earlier work (Song et al., 2000; Pfister and Gerstner, 2006), this phenomenological

model relies on exponentially decaying traces of the pre- and postsynaptic spike trains, X and Y

(Figure 1A,B). The presynaptic trace x+ tracks past presynaptic activity, for example, glutamate
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binding to postsynaptic NMDA receptors. When presynaptic activity x+ is rapidly followed by post-

synaptic spikes, unblocking NMDA receptors, postsynaptically expressed long-term potentiation

(LTP) is triggered and increases the postsynaptic factor q, which can be interpreted as the quantal

amplitude. Conversely, the postsynaptic trace y+ represents prior postsynaptic activity, for example,

retrograde nitric oxide (NO) signalling, which when paired with presynaptic spikes leads to presyn-

aptically expressed LTP (Sjöström et al., 2007). Finally, the trace y� tracks postsynaptic activity such

as endocannabinoid (eCB) retrograde release and elicits presynaptically expressed long-term

depression (LTD) when coincident with presynaptic spikes (Sjöström et al., 2003). Presynaptically

expressed plasticity is conveyed by long-term changes in the presynaptic factor P (Markram et al.,

1998), which can be interpreted as the presynaptic release probability (see ‘Materials and

methods’).

The model parameters were tuned to an extensive data set of plasticity experiments of monosyn-

aptic connections between neocortical layer-5 pyramidal cells (Sjöström et al., 2001,

2003, 2007). Homeostatic scaling of the postsynaptic amplitude q was included to counterbalance

postsynaptic potentiation (see ‘Materials and methods’) (Turrigiano et al., 1998). The resulting

model not only captures the timing and frequency dependence of the synaptic strength changes

(Figure 1C and Figure 1—figure supplement 1), but also its pre- as well as postsynaptic expression

(Figure 1D,E). It thus captures the observed cross-scale interactions between short and long-term

synaptic plasticity (Sjöström et al., 2003, 2007). Short-term depression becomes weaker after LTD

and stronger after LTP (Figure 1F,G). We validated the model against experiments with pharmaco-

logical blockade of presynaptic LTD or LTP (see ‘Materials and methods’). Abolishing presynaptic

LTP by NO blockade reduced total potentiation as only the postsynaptic potentiation component

was left (Sjöström et al., 2007). Likewise, with the presynaptic trace y+ disabled, presynaptic LTP

was blocked, while the synaptic dynamics remained unchanged (Figure 1H and Figure 1—figure

supplement 3A). Conversely, simulated blockade of presynaptic LTD during LTP induction gave rise

to stronger presynaptic potentiation and short-term depression, as observed experimentally during

eCB blockade (Sjöström et al., 2007) (Figure 1H and Figure 1—figure supplement 3B).

We first investigated the functional consequences of unified pre- and postsynaptically expressed

STDP on the postsynaptic responses during cortical receptive field development. We simulated

receptive field development of a postsynaptic neuron receiving 100 synaptic inputs (‘Materials and

methods’). Presynaptic activity was described by Poisson processes with rates spatially distributed

according to a Gaussian profile (Figure 2A). We defined inputs near the peak of the Gaussian profile

as on, and those far away from the peak as off. After learning, on neurons had increased q and P,

eLife digest Throughout life, animals must learn how to respond accurately to new sensations

and environments, while retaining knowledge of previous experiences. Learning is widely believed

to modify the connections (called synapses) between neurons of the cerebral cortex and other brain

areas. This process is known as synaptic plasticity. Experimentally, presynaptic and postsynaptic

changes have been identified, but it is not known what advantages there are to changing both

components when, in principle, changing either might suffice.

To investigate this, Costa et al. developed a mathematical model of synaptic plasticity that

captured both pre- and postsynaptic changes, based on a number of experiments over the last

decade from recordings in the rat sensory cortices.

There were two major findings from this model. First, if both presynaptic and postsynaptic

changes occur, the modeling results indicated that sensory perception could become more precise,

as has been recently found in the rat auditory system. Second, because the details of presynaptic

and postsynaptic changes are different, previously triggered changes leave behind a type of

memory trace that allows apparently forgotten information to be rapidly relearned.

Interestingly, similar asymmetries have been reported in other brain regions. One future

challenge is to understand whether these findings constitute a general principle of plasticity in the

brain.

DOI: 10.7554/eLife.09457.002
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Figure 1. Unified model of pre- and postsynaptically expressed STDP. (A) The synaptic weight is the product of a presynaptic factor P and a

postsynaptic factor q. Long-term modifications in P and q are governed by interactions between the pre- and postsynaptic spike trains. (B) Model

example in which the postsynaptic neuron first spikes three times at 20 Hz (Y) Dt = +10 ms after the presynaptic neuron (X), leading to LTP by increasing

both q and P. Next, when the relative timing Dt is reversed, long-term depression (LTD) results as P weakens strongly, even though q still slightly

strengthens. (C) The model fits the rate dependence of synaptic plasticity (squares, (Sjöström et al., 2001)) for both positive (blue: +10 ms) and

negative timings (red: �10 ms). (D, E) The changes in the pre- and postsynaptic factors P and q match experimental data (reanalyzed from

Sjöström et al., 2001; see ‘Materials and methods’ and Figure 1—figure supplement 2). (F, G) As in experiments (top), short-term depression in the

model is reduced after LTD (20 Hz, Dt = �10 ms) and increased after LTP (50 Hz, Dt = +10 ms) (bottom). Experimental traces from Sjöström et al.

(2003) (F) and from Sjöström et al. (2007) (G). (H) Model (blue) is consistent with LTP experiments (black) (Sjöström et al., 2007) in control conditions,

NO blockade, and eCB blockade. NO and eCB antagonists abolish and promote presynaptic LTP, respectively (Sjöström et al., 2007).

DOI: 10.7554/eLife.09457.003

The following figure supplements are available for figure 1:

Figure supplement 1. The unified pre- and postsynaptic spike-timing-dependent plasticity (STDP) model (blue solid line) captured the characteristic

temporal asymmetry of experimental STDP (black squares represent data from Sjöström et al. (2001)).

DOI: 10.7554/eLife.09457.004

Figure supplement 2. Extraction of P and q from synaptic plasticity data from slice paired recordings using pharmacology and high frequency pairing

(based on a long-step current injection plasticity protocol).

DOI: 10.7554/eLife.09457.005

Figure supplement 3. Model is consistent with modifications of synaptic dynamics after pharmacological blockade of plasticity traces.

DOI: 10.7554/eLife.09457.006
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while off neurons had reduced q and P (Figure 2A). During learning, the changes in q are preceded

by changes in P (Figure 2C). To quantify the effect of the plasticity on the postsynaptic neuron, we

stimulate a given input and calculated the signal-to-noise ratio (SNR) of the first postsynaptic

response amidst background noise (see ‘Materials and methods’). A high SNR means that the

response can be easily distinguished from the background. After learning, only on inputs had

Figure 2. Unified pre- and postsynaptic plasticity improves receptive field discriminability. (A) Synaptic input rates follow a Gaussian spatial profile

(solid grey line). Initially, the presynaptic factor P (top) and the postsynaptic factor q (bottom) are uniformly distributed (dashed lines). After learning, P

(top) and q (bottom) both follow the input profile. Dark and light red crosses define examples of on and off receptive field positions, respectively. (B)

After learning, the SNR is increased for on and decreased for off neurons. Postsynaptic plasticity alone leads to a smaller improvement (blue line). (C)

While on neurons obtain higher SNR for postsynaptic-only potentiation (dark blue arrows), unified pre- and postsynaptic potentiation yields

considerably better SNR (dark red arrows). Off neurons get lower SNR in both scenarios (light blue and light red arrows). Modifications of in vivo

synaptic responses to a tone from on and off receptive field positions (dark and light green arrows, respectively; reanalyzed from Froemke et al.

(2013), see ‘Materials and methods’) are consistent with unified pre- and postsynaptic expression but not with postsynaptic expression alone. The black

square represents starting condition. Arrows represent the plasticity trajectory, where the model trajectories are plotted every 50 ms. (D) Only on

positions with both pre- and postsynaptic plasticity yield near-perfect discrimination (dark red). Shown for comparison, the discrimination before

development (black), after development for off neurons (light red), and after development for on neurons with postsynaptic expression only (blue).

DOI: 10.7554/eLife.09457.007

The following figure supplements are available for figure 2:

Figure supplement 1. Long-term pre- and postsynaptic plasticity reduces response variability of receptive fields.

DOI: 10.7554/eLife.09457.008

Figure supplement 2. Long-term pre- and postsynaptic plasticity improves signal-to-noise ratio (SNR) and information transmission in dynamic

synapses.

DOI: 10.7554/eLife.09457.009

Figure supplement 3. Extraction of effective P and q from in vivo receptive field plasticity experiments (data reanalyzed from Froemke et al. (2013).

DOI: 10.7554/eLife.09457.010
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developed a high SNR (Figure 2B). Although both high and low P yielded low variance (Figure 2—

figure supplement 1), high P was required for high SNR (Figure 2C).

To further assess the discriminability of the first postsynaptic response, we used classification

analysis (see ‘Materials and methods’), which revealed that on inputs obtained a near-perfect dis-

crimination (Figure 2D) over a range of background noise levels (Figure 2—figure supplement 1).

However, a model with only postsynaptic LTP, increasing q only, did not yield as reliable synaptic

transmission (blue curve in Figure 2C,D)—maximal reliability required presynaptic LTP in addition.

This is because, the variance of the first postsynaptic response increases quadratically with the post-

synaptic factor q (see ‘Materials and methods’). Our learning rule compensates for this increase in

variance by also increasing the presynaptic factor P, thus making postsynaptic responses reliable and

easier to discriminate. The increased discriminability does not only hold for the first response, but

generalizes when considering the sum of the first k postsynaptic responses. Furthermore, the benefit

of unified STDP remained when we compared the temporal information transmission across a range

of presynaptic frequencies (Figure 2—figure supplement 2) (Fuhrmann et al., 2002; Testa-

Silva et al., 2014).

The change in SNR and variability is consistent with recent sensory perception experiments

(Froemke et al., 2013) in which pairing a tone with nucleus basalis stimulation led to an increased

mean and a decreased variability of synaptic responses (Figure 2—figure supplement 3). Mapped

to the parameters of the model, both q and P of the potentiated on responses increased (see ‘Mate-

rials and methods’). Conversely, off responses that were depressed, decreased in P and did not sig-

nificantly change in q (Figure 2—figure supplement 3), consistent with the initial modifications that

the model predicts (Figure 2C). Therefore, unified pre- and postsynaptically expressed plasticity can

account for the improved sensory perception after learning observed experimentally

(Froemke et al., 2013). Furthermore our model suggests that both pre- and postsynaptic compo-

nents should depend on sensory experience, in agreement with prior findings (Finnerty et al., 1999;

Cheetham et al., 2014).

Plasticity should also allow the organism to quickly adapt to changing environments. Expression

of layer-5 pyramidal cell STDP is curiously asymmetric: LTP is both pre- and postsynaptic

(Sjöström et al., 2007), whereas LTD is expressed only presynaptically on the slice experiments

timescale (Sjöström et al., 2003). In addition, presynaptic modifications are stronger than postsyn-

aptic LTP (Figure 1D,E). To explore the consequences of this asymmetry, we extended the above

network to study development when high rate inputs alternate between two locations. The neuron

learned each receptive field by changes in the presynaptic factor P and the postsynaptic factor q

(Figure 3A–C). When the stimulus location changed, however, the postsynaptic memory trace

decayed only very slowly as a result of homeostatic scaling (Figure 3B). As a result, the neuron could

rapidly relearn the previously acquired receptive field by just increasing P, which amounted to a 10-

fold decrease in time to learn (Figure 3D,E). Unified pre- and postsynaptically expressed STDP thus

allows for learning of new information while retaining hidden traces of prior experience.

Interestingly, spine changes in layer-5 pyramidal cells of visual cortex outlast sensory experience

(Hofer et al., 2008), thus providing a structural substrate for the psychological phenomenon known

as memory savings (Ebbinghaus, 1913). As synaptic structure and synaptic weight are closely corre-

lated (Matsuzaki et al., 2001; Holtmaat and Svoboda, 2009), the memory savings mediated by

structural spine plasticity (Hofer et al., 2008) are reminiscent of those provided by our unified plas-

ticity model.

Here we have focused on neocortical data. Models based on synaptic traces are flexible and can

describe both neocortical and hippocampal plasticity data (Pfister and Gerstner, 2006, and Appen-

dix 1). We therefore expect that our modelling framework should also be able to capture plasticity

in other brain regions, although with different parameters. For example, there are several key differ-

ences in the expression locus and in the speed of pre- and postsynaptic changes in hippocampus

(Bayazitov et al., 2007). In cerebellum, there is evidence for the opposite asymmetry of expression,

with LTP being pre- and postsynaptic, but LTD only postsynaptic (Wang and Linden, 2000; Lev-

Ram et al., 2003).

In our work, memory savings are a consequence of the postsynaptic weight decay occurring on a

much slower timescale than the presynaptic modifications. This arrangement, however, is not crucial

for the predicted rapid relearning. What is necessary is that the synaptic strength is the product of

pre- and postsynaptic components (w = Pq) and that these components evolve on different
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timescales. For example, fast postsynaptic changes combined with slow presynaptic changes would

allow for the corresponding presynaptic trace of previous experience, which indeed could be the

case in the cerebellum (Wang and Linden, 2000; Lev-Ram et al., 2003). Taken together, these find-

ings suggest that plasticity expression asymmetry is not particular to neocortical layer-5 pyramidal

cells, but rather a general functional principle that extends across different brain regions. Interest-

ingly, similar functions can also be performed by neuronal inhibition, such as sharpening receptive

fields (Wilson et al., 2012), keeping hidden memories in recurrent neural networks (Vogels et al.,

2011), and acting as a substrate for memory savings in the cerebellum (Medina et al., 2001).

The existence of both pre- and postsynaptic expression of long-term synaptic plasticity has been

enigmatic. Although it has been known that changes in release probability play a key role in deter-

mining the transmission of information across synapses (Otmakhov et al., 1993; Stevens and

Wang, 1994; Carvalho and Buonomano, 2011), our theoretical treatment is the first to show that

combined pre- and postsynaptic expression of long-term synaptic plasticity provides the brain with

reliable sensory detection and the ability to quickly relearn previously experienced stimuli.

Figure 3. Unified pre- and postsynaptic STDP displays rapid relearning of previously experienced stimuli. (A) The

presynaptic factor P follows the switching between two stimuli (red and blue profiles, arrows indicate switching

time-points). (B) The postsynaptic factor q, however, is not erased and a trace of previously learned information

remains, which decays slowly only due to synaptic homeostasis. The neuron was initially tuned to the red stimulus.

The initial learning of the blue stimulus (at 1 s) was slow, but much faster the second time (at 101 s). (C) The

neuron’s tuning follows the two stimuli, as indicated by the alternating stimulus-specific spiking. Previously

experienced stimuli are forgotten by the postsynaptic neuron, but a hidden trace remains. (D) Relearning occurs

faster than learning. (E) Relearning was an order of magnitude faster than initial learning (time to reach 99%

performance).

DOI: 10.7554/eLife.09457.011
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Materials and methods

Short- and long-term synaptic plasticity model
Short-term plasticity model
To model short-term synaptic plasticity, we used the Tsodyks-Markram model with facilitation

(Markram et al., 1998). This model is defined by the following ODEs

drðtÞ
dt

¼ 1� rðtÞ
D

� pðtÞrðtÞXðtÞ; (1)

dpðtÞ
dt

¼ P� pðtÞ
F

þP½1� pðtÞ�XðtÞ: (2)

The first equation models the vesicle depletion process, where the (normalized) number of

vesicles r is decreased by an amount p(t)r(t) after a presynaptic spike from the train

XðtÞ ¼Ptpre
dðt � tpreÞ. Between spikes r recovers to 1 with a depression time constant D. The second

equation models the dynamics of the presynaptic factor p which increases an amount P[1 � p] after

every presynaptic spike, decaying back to baseline presynaptic factor P with a facilitation time con-

stant F. By varying the synaptic dynamics parameters D, F and P, one can obtain different synaptic

dynamics. We used typical values for pyramidal-onto-pyramidal synapses (Costa et al., 2013), D =

200 ms and F = 50 ms, while P is modified by long-term plasticity as below. The average number of

vesicles released per spike is r(t)p(t), which can be interpreted as the presynaptic strength.

Long-term plasticity model
In layer-5 pyramidal to pyramidal cell synapses, timing-dependent LTD is presynaptically expressed.

It is mediated by the coincidence between a postsynaptic signal (eCB release) and a presynaptic sig-

nal (presynaptic NMDA receptor activation) (Sjöström et al., 2003, 2004; Bender and Feldman,

2006; Yang and Calakos, 2013). LTP is driven by postsynaptic coincidence detection of the com-

bined binding of glutamate and postsynaptic depolarization (Bender and Feldman, 2006;

Sjöström et al., 2007; Shouval et al., 2010), promoting an increase in the number and/or proper-

ties of postsynaptic AMPA receptors (Malinow and Malenka, 2002). However, timing-dependent

LTP also has a presynaptic component, mediated by postsynaptic diffusion of NO (Hardingham and

Fox, 2006; Sjöström et al., 2007; Hardingham et al., 2013; Yang and Calakos, 2013).

Our phenomenological triplet model of long-term modification of pre- and postsynaptic compo-

nents has three synaptic traces, two postsynaptic (y+ and y�) and one presynaptic (x+), which

increase upon a post- or presynaptic spike, respectively (see Appendix 1 for a more detailed com-

parison with the triplet model (Pfister and Gerstner, 2006)). The traces are obtained by filtering the

spike trains with a first-order low-pass filter. We defined the postsynaptic depression trace

dy�ðtÞ
dt

¼�y�ðtÞ
ty�

þYðtÞ; (3)

the postsynaptic potentiation trace

dyþðtÞ
dt

¼�yþðtÞ
tyþ

þYðtÞ; (4)

and the presynaptic potentiation trace

dxþðtÞ
dt

¼�xþðtÞ
txþ

þXðtÞ: (5)

The long-term modification in the weight is achieved by modifying the postsynaptic factor q and

the presynaptic factor P. The postsynaptic factor is modified with every postsynaptic spike Y accord-

ing to

Dq¼ cþ xþðtÞy ðt� �ÞYðtÞ
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

TripletLTPpost

; (6)

where c+ is a constant that sets the amount of postsynaptic LTP. The y� trace is evaluated at (t � �),
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so that the value of the respective synaptic trace is readout before being updated. The triplet char-

acter of this rule is expressed by the fact that it contains the presynaptic component once, but the

postsynaptic activity twice (Y and filtered version y�). This ensures that LTP only takes place when

the postsynaptic spike follows both a presynaptic spike and a preceding postsynaptic spike

(Pfister and Gerstner, 2006). As a result, low pairing frequencies do not lead to LTP, as y� will have

decayed, consistent with data (Sjöström et al., 2001).

Similarly, the presynaptic factor is modified whenever the presynaptic cell is active according to

DP¼�d y ðtÞyþðtÞXðtÞ
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

TripletLTDpre

þdþ xþ ðt� �ÞyþðtÞXðtÞ
|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

TripletLTPpre

: (7)

For plasticity in P to occur, the presynaptic spikes X readout the postsynaptic traces (presynaptic

coincidence detection), y�y+ for presynaptic LTD and x+y+ for presynaptic LTP. d� and d+ are con-

stants that set the amount of presynaptic LTD and LTP, respectively. While presynaptic LTD has a

triplet form, it contains two postsynaptic traces and the raw presynaptic spike train. Therefore it

does not vanish at low frequencies. Equivalently, this term could be written as a doublet rule with a

double exponential as the presynaptic trace.

The total synaptic strength is a product of both pre- and postsynaptic factors

wðtÞ ¼ qpðtÞrðtÞ: (8)

For a synapse that has not been stimulated recently this simplifies to w = Pq.

Being a probability we hard-bounded P = [0, 1]. The postsynaptic factor q had a lower bound of

0, and an upper bound of 2. Alternatively a soft-bounded rule could be used (van Rossum et al.,

2012). In the data used to fit the model (see below), postsynaptic homosynaptic LTD was not appar-

ent on the timescale of the experiment. Because it seems unrealistic that the postsynaptic factor q

never decreases, slow homeostasic scaling of the postsynaptic factor was included for network simu-

lations (Turrigiano et al., 1998). This prevents weakly active synapses from potentiating the postsyn-

aptic factor q. It was modelled as a postsynaptic subtractive normalization, so that the total change

in q of synapse i was equal to Dqi � a
1

N

PN
j¼1

Dqj (Miller and MacKay, 1994). The only condition on

the speed a for it to be consistent with the data, is that it should not lead to noticable homeostasis

on the timescale of the experiments. For computational efficiency we used a = 0.075, which is still

orders of magnitude faster than what has been observed in homeostasis experiments. The exact

form of slow normalization (a fi 0) does not affect the qualitative behavior of the model. Note that

the timescale of the slow normalization determines how long the memory savings effects are

present.

To speed up the numerical implementations, we integrated the synaptic traces between the pre-

and postsynaptic spikes. In the following equations, we label the presynaptic spikes with k and the

postsynaptic ones with l.

ylþ1
� ¼ yl�exp �Dtpost

ty�

� �

þ 1; (9)

ylþ1
þ ¼ ylþexp �Dtpost

tyþ

� �

þ 1; (10)

xkþ1
þ ¼ xkþexp �Dtpre

txþ

� �

þ 1: (11)

We subsequently integrated the model between pre- and postsynaptic spikes

qlþ1 ¼ ql þ cþx
k
þexp �Dtpost�pre

txþ

� �

yl�exp �Dtpost

ty�

� �

; (12)

Pkþ1 ¼ Pk � d�y
l
�exp �Dtpre�post

ty�

� �

ylþexp �Dtpre�post

tyþ

� �

þ dþy
l
þexp �Dtpre�post

tyþ

� �

xkþexp �Dtpre

txþ

� �

; (13)

where Dtpost�pre is the time between the current postsynaptic spike and the last presynaptic spike,

Dtpost is the time between the current postsynaptic spike and the last one, and similarly for Dtpre�post
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and Dtpre. Finally, we also integrated the STP (Equations 1, 2) between presynaptic spikes k and k +

1, a time Dtpre apart, yielding

rkþ1 ¼ 1�½1� rkð1� pkÞ�exp �Dtpre

D

� �

; (14)

pkþ1 ¼ Pþ pk½1�P�exp �Dtpre

F

� �

: (15)

with initial conditions r0 = 1 and p0 = P.

Model fitting to in vitro plasticity data
We fitted the free parameters of the long-term plasticity model u = {d�, ty�, d+, ty+, c+, tx+} to the

frequency- and timing-dependent slice STDP data of layer-5 pyramidal cells (Sjöström et al., 2001).

Parameters are shown in Table 1. Rather than fitting to changes in the weight w, we fitted directly

to modifications in P and q (see Equations 21, 22 for our estimators of P and q). This was done by

minimizing the mean squared error between the data and the experiments for both P and q (as

shown in Figure 1)

�¼ argmin�
1

N

XN

j

Pafter
model

Pbefore
model

� Pafter
data

Pbefore
data

� �2

þ qaftermodel

qbeforemodel

� qafterdata

qbeforedata

� �2
" #

; (16)

where N denotes the number of protocols fitted, 10 in total (5 different pairing frequencies with �10

ms or +10 ms relative timing, see below). For induction protocols at high frequencies (�10 Hz), pre-

and postsynaptic spike trains consisted of five spikes that were paired 15 times at 0.1 Hz. Low-fre-

quency pairings (0.1 Hz) were done with a single pre- and postsynaptic spike (as in Sjöström et al.,

2001). Before plasticity induction, P and q were set to 0.5 and 1, respectively. For the interaction of

STP and STDP simulations (Figure 1F,G), we used a standard passive neuron model with a mem-

brane time constant of 25 ms.

Without further fitting this model also captured pharmacological blockade of the plasticity traces.

In the model, we simulated the experimental effects of pharmacological blockade by setting the rel-

evant parameter or variable to 0. Specifically, we simulated the effects of blocking two different ret-

rograde messenger systems shown to be involved in STDP in layer-5 pyramidal cell pairs, eCB

signaling (Sjöström et al., 2003) and NO signaling (Sjöström et al., 2007). To reproduce pharmaco-

logical blockade experiments, we used high-frequency pairing (50 Hz) with +10 ms delay, which is

comparable with our frequency-dependent results and approximates the long depolarizing currents

used in Sjöström et al. (2007). Blocking eCB receptors prevents presynaptic LTD (Sjöström et al.,

2003). By setting d� = 0 presynaptic LTD was disabled. This reveals presynaptic LTP and enhances

short-term depression (Figure 1—figure supplement 3), consistent with experimental evidence

(Sjöström et al., 2007), as the drugs used are likely to block presynaptic eCB receptors. In contrast,

blocking NO decreases LTP but does not affect short-term synaptic dynamics (Sjöström et al.,

2007) (Figure 1—figure supplement 3A). We simulated this by setting y+ = 0, so that both presyn-

aptic components were absent.

Stochastic synaptic responses and in vitro P and q estimation
The release of neurotransmitter was assumed to follow a standard binomial model (Del Castillo and

Katz, 1954)

Table 1. Unified pre- and postsynaptic spike-timing-dependent plasticity (STDP) model parameters

Parameter d� ty� (ms) d+ ty+ (ms) c+ tx+ (ms)

Young rat visual cortex 0.1771 32.7 0.1548 230.2 0.0618 66.6

The model was fitted to data from young rat visual cortex (Sjöström et al., 2001).

DOI: 10.7554/eLife.09457.012
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PsynðX ¼ kÞ ¼ ðN
k
ÞPkð1�PÞN�k

; (17)

which defines the probability of having k successful events (neurotransmitter release) given N trials

(release sites) with equal probability P.

The mean synaptic response is scaled by a postsynaptic factor q, which can be related to the

quantal amplitude so that

�syn ¼ PqN; (18)

and the variance is

s
2
syn ¼ q2NPð1�PÞ: (19)

Following the binomial release model (Equation 18), �syn (Equation 19) and s2
syn (Equation 20),

P¼
�syn

Nq
; (20)

and

q¼
s2
syn

�syn

þ
�syn

N
: (21)

The number of release sites N is believed to change only after a few hours (Bolshakov et al.,

1997; Saez and Friedlander, 2009). As the slice synaptic plasticity experiments analysed here lasted

only up to 1.5 hr (Sjöström et al., 2001) and we were interested in the relative changes we assumed

constant N = 5.5 in our analysis below, as estimated in Markram et al. (1997) using data from the

same connection type we used to fit our model. Equations 21, 22 were used to estimate P and q

from in vitro plasticity data (see above), respectively (dataset deposited at Dryad data repository at

10.5061/dryad.p286g [Costa et al., 2015]). Note that because the data had to be reanalized in full

there are minor differences in the mean weights previously published (Sjöström et al., 2001).

We verified our P and q extraction method by analysing short-term plasticity experiments with

pharmacological manipulation of presynaptic release or of postsynaptic gain (Figure 1—figure sup-

plement 2A, Sjöström et al., 2003), and experiments with pharmacological blockade of pre- or

postsynaptic long-term plasticity (Figure 1—figure supplement 2B, Sjöström et al., 2007) (Fig-

ure 1—figure supplement 2A,B). In addition, long-term changes in P but not in q were inversely

correlated with changes in paired-pulse ratio, as expected (Figure 1—figure supplement 2C,D).

Taken together, these results lend experimental support to our binomial-distribution-based

approach for extracting P and q to tune changes in the pre- and postsynaptic modifications of our

unified STDP model (Figure 1D,E).

Analysis of in vivo data
We extracted the effective P and q from the in vivo data obtained by Froemke et al. (2013). Again

using a binomial model, we obtained estimators for their variability measure given by v = q (1 � P)

and the mean by � = PqN. To ease comparison with our simulations we set the initial P to the same

initial condition used in our simulations P = 0.5 (Costa et al., 2013). We then obtained the initial

N ¼ j�j
qP and the initial q ¼ v

ð1�PÞ. For the after pairing data we allowed both pre- and postsynaptic fac-

tors P and q to change, while N was fixed to the values extracted before pairing (Bolshakov et al.,

Table 2. Comparison between unified pre- and postsynaptic STDP model and different versions of

the triplet model (for simplicity we removed the function arguments) (Pfister and Gerstner, 2006)

LTD LTP1 LTP2

pre-post STDP X d�y�y+ X d+y+x+ Y c+x+y�

minimal HC Triplet X A�
2 y1 Y Aþ

2 x1 Y Aþ
3 x1y2

minimal VC Triplet X A�
2 y1 – Y Aþ

3 x1y2

DOI: 10.7554/eLife.09457.013
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1997). The estimations after learning were obtained as q ¼ v þ j�j
N and P ¼ j�j

Nq. We used these estima-

tors to extract q and P from measurements for both the depression experienced for the unpaired

(best before pairing) receptive field position and the potentiated paired position (Froemke et al.,

2013). After pairing, the effective q of the potentiated (‘on’) response increased from qon
before ¼

23:3 pA to qon
after ¼ 27:1 pA (+16.3%), while P increased from Pon

before ¼ 0:5 to Pon
after ¼ 0:73 (+46%).

Responses that were depressed (‘off’), typically the original best frequency, yielded no statistically

significant change in qoff
before, while Poff

before ¼ 0:5 and Poff
after ¼ 0:40 (�20%) (Figures 2, Figure 2—figure

supplement 1 and Figure 2—figure supplement 3). To ease comparison with the postsynaptic fac-

tor in the simulations we scaled the experimentally obtained q such that before plasticity it was 1.

We compared models where we allowed both P and q to change or only one of them, the lower var-

iability estimation error was obtained by the one where both factors change (Figure 2—figure sup-

plement 3E). The estimation error was calculated as 1
N

PN
i ðv ireal � v iestimatedÞ

2, where N is the number

of data points.

Synaptic signal detection
We calculated the SNR of a synaptic response defined here by a random variable s, amidst additive

background noise defined by the random variable n as follows

SNRsyn ¼ 2
ðhsi� hniÞ2
s2
s þs2

n

; (22)

It is assumed that n ~Nð0;s2
nÞ and we also used the Gaussian approximation to the binomial

release model specified above, s ~N
�

PqN;q2NPð1� PÞ þ s
2
n

�

, from which follows the SNR of the

first postsynaptic response

SNRsyn ¼ 2
ðPqNÞ2

q2NPð1�PÞþ 2s2
n

: (23)

In Figure 2, we used s2
n ¼ 0:5. Variance of the k-th postsynaptic response is given by s2

synk
¼

q2Nrkpkð1� rkpkÞ (Figure 2—figure supplement 2A). The SNR of the k-th postsynaptic response is

SNRk
syn ¼ 2

ðrkpkqNÞ2
q2Nrkpkð1� rkpkÞþ 2s2

n

; (24)

where pk and rk are given by Equations 15, 16, respectively. The SNR of the sum of the first K

responses, evoked at a given presynaptic firing rate � therefore equals

SNR�
syn ¼ 2

PK�1

k¼0
rkpkqN

� �2

PK�1

k¼0
q2Nrkpkð1� rkpkÞþ 2

PK�1

k¼0
s2
n

: (25)

After unified STDP the first response has a higher amplitude and the second one a much lower

amplitude due to synaptic depression. Combined with the background noise, the SNR can drop

when the second or further responses are included. However, the SNR of the summed response will

always be larger than when only postsynaptic modifications are made (see Figure 2—figure supple-

ment 2B). This holds for any frequency, Figure 2—figure supplement 2C and carries over to an

information theoretic analysis of the response, Figure 2—figure supplement 2D.

Next, we used ROC analysis to compute the false alarm and detection probability of the first

postsynaptic response

pfalse alarm ¼
ðþ¥

T

PnðrÞdr¼
1

2
erfc

T
ffiffiffiffiffiffiffiffi

2s2
n

p

 !

; (26)

pdetection ¼
ðþ¥

T

PsðrÞdr¼
1

2
erfc

T �PqN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2q2NPð1�PÞþs2
n

p

 !

: (27)
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where T is the discrimination threshold, and erfc is the complementary error function defined as

erfcðxÞ ¼ 2ffiffiffi
p

p
ð
¥

x

e�t2dt. To assess the overall discriminability, we used pdiscrimination, which is the area

under the ROC curve (AUC). The AUC was computed by integrating over the ROC curve using the

trapezoid method (see Figure 2D). Given that N is a simple constant we set it to 1, unless otherwise

stated (see data inference above).

Receptive field development
For the receptive field development simulations, we used a feedforward network with 100 presynap-

tic neurons j with Poisson statistics and a single integrate-and-fire postsynaptic neuron. The postsyn-

aptic neuron was modelled as an adaptive exponential integrate-and-fire neuron model (Brette and

Gerstner, 2005). Model parameters were as reported in Brette and Gerstner (2005); Badel et al.

(2008) and synapses were modelled as input currents. The firing rate of the presynaptic Poisson neu-

rons was modelled using a Gaussian profile, defined as

�ðj;p;sÞ ¼ �minþð�max � �minÞe
�ðj�pÞ2
2s2 : (28)

where � is the rate in the Poisson neuron model j, p the input position for which the rate is maximal,

and s = 5 Hz the distribution spread. �max and �min are the maximum and minimum rates, and were

set to �max = 50 Hz and �min = 3 Hz. We scaled d�, d+ and c+ by a factor 0.15 to yield a smoother

receptive field development. q was bounded between 0 nA and 20 nA, so that the synaptic input is

appropriately scaled for the neuron model used. The network was simulated for 100 s to achieve

convergence. For the memory savings experiment, we interleaved two receptive field positions.

Results for receptive development and memory savings were averaged over 10 runs. The response

of the postsynaptic neuron (Figure 3C) was assessed by presenting each stimulus alone with long-

term synaptic plasticity inactive. Receptive field simulations were implemented in simulator Brian

1.41 (Goodman and Brette, 2008). Code for running and plotting the savings experiment is avail-

able online (http://modeldb.yale.edu/184487).

Statistical comparison
Results are reported as mean ± SEM. Statistical comparisons were made with Student’s t-test for

equal means, if data was normally distributed as assessed using Kolmogorov–Smirnov test, Mann–

Whitney U non-parametric test was used otherwise. For multiple comparisons we applied ANOVA or

Kruskal–Wallis test for normally or non-normally distributed data, respectively. For correlation analy-

sis the Spearman’s coefficient was used together with one-tailed Student’s t-test. Significance levels

are *p < 0.05, **p < 0.01, and ***p < 0.001.
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Hofer SB, Mrsic-Flogel TD, Bonhoeffer T, Hübener M. 2009. Experience leaves a lasting structural trace in
cortical circuits. Nature 457:313–317. doi: 10.1038/nature07487, PMID: 19005470

Holtmaat A, Svoboda K. 2009. Experience-dependent structural synaptic plasticity in the mammalian brain.
Nature Reviews Neuroscience 10:647–658. doi: 10.1038/nrn2699, PMID: 19693029

Leibold C, Bendels MH. 2009. Learning to discriminate through long-term changes of dynamical synaptic
transmission. Neural Computation 21:3408–3428. doi: 10.1162/neco.2009.12-08-929, PMID: 19764877

Lev-Ram V, Mehta SB, Kleinfeld D, Tsien RY. 2003. Reversing cerebellar long-term depression. Proceedings of
the National Academy of Sciences 100:15989–15993. doi: 10.1073/pnas.2636935100
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Appendix 1

Comparison between unified pre- and postsynaptic STDP
model, and triplet STDP model (Pfister and Gerstner,
2006)
Our model has some similarities with the triplet-STDP model introduced in Pfister and

Gerstner (2006), however note that the triplet model does not distinguish between pre-

and postsynaptic components of expression. The triplet model is defined by the following

components: presynaptic traces, x1 and x2, and postsynaptic traces y1 and y2. The weight

changes are modelled as a combination of pair and triplet components (full Triplet model) as

follows

Dw� ¼�XðtÞy1½A�
2 þA�

3 x2ðt� �Þ�; (29)

Dwþ ¼ YðtÞx1½Aþ
2 þAþ

3 y2ðt� �Þ�: (30)

However, to fit the intra-pairing frequency observed in the young rat visual cortex (VC)

(Sjöström et al., 2001), a reduced model (A�
3 ¼ 0 and Aþ

2 ¼ 0) was found to be sufficient

(minimal VC Triplet) (Pfister and Gerstner, 2006)

Dw� ¼�XðtÞA�
2 y1; (31)

Dwþ ¼ YðtÞAþ
3 x1y2ðt� �Þ: (32)

Moreover, another slightly more complex model (A�
3 ¼ 0) was found to be able to capture

triplet and quadruplet experiments performed in the hippocampus (HC) (Wang et al., 2005)

(minimal HC Triplet)

Dw� ¼�XðtÞA�
2 y1; (33)

Dwþ ¼ YðtÞx1½Aþ
2 þAþ

3 y2ðt� �Þ�: (34)

Interestingly, our model also has two LTP and one LTD components, that can be mapped

onto the minimal HC Triplet (see Table 2). However, to capture the pharmacological

blockade experiments reported in Sjöström et al. (2007), we needed three triplets, rather

than one triplet and two doublets as in the minimal HC Triplet model.
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