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A B S T R A C T

Hormesis is a dose response phenomenon of cells and organisms to various types of stressors. Mild stress sti-
mulates prosurvival pathways and makes the cells adaptive to stressful conditions. It is a widely used funda-
mental dose-response phenomenon in many biomedical and toxicological sciences, radiation biology, health
science etc. Mild heat stress is an easily applicable hormetic agent that exerts consistent results. In the present
investigations mouse cerebrocortical prefrontal neurons from E17 mouse embryos were grown in the laboratory
on poly-L-lysine coated glass cover slips. The cells from the mild heat stressed group were subjected to a hy-
perthermic stress of 38 °C for 30min every alternate day (i.e. mild heat stress was repeated after 48 h) up to the
sixth day. After completion of twenty four hours of the final i.e. third exposure of the mild heat stress, the
neurons were fixed for the cytochemical studies of neurofibrillary tangles, senile plaques, lipofuscin granules and
Nissl substance. There was highly significant decrease in the neuropathological alterations (viz. deposition of
Neurofibrillary tangles, deposition of senile plaques, accumulation of Lipofuscin granules) in the neurons from
the mild heat stressed group as compared to control. Moreover, the Nissl substance was significantly preserved in
the mild heat stressed group as compared to control. The results indicate that the applied mild heat stress (38 °C
for 30min) exerts beneficial effects on the prefrontal cerebrocortical neurons by slowing down the neuro-
pathological alterations, suggesting the hormetic effect of the mild heat stress.

1. Introduction

Hormesis represents a phenomenon in which exposure to low dose
of various stressors such as mild heat stress, toxicants, pesticides, ra-
diation etc. induces adaptive responses in cells, tissues, organs and
organisms (Calabrese and Baldwin, 2002). Organisms and their cellular
components develop adaptive pathways to survive and reproduce in
adverse and stressful conditions. These adaptive pathways are evolu-
tionarily conserved and are stimulated by different stressors at a low
dose. Many physiological, biological, chemical, as well as environ-
mental factors are used as hormetic agents (Calabrese and Baldwin,
2002; Rattan, 2006). Exposure to mild stressors preconditions the cells
and the organisms to tolerate and adapt to different stressful conditions
of the higher intensity. This preconditioning is also a manifestation of
hormesis. Cook and Calabrese (2006) believe that the concept of
hormesis has immense benefits in healthcare sector. It will substantially
contribute to improve the health of general public directly by creating

the awareness and indirectly by using the concept of hormesis while
framing the government policies related to healthcare sector. Various
studies have reported that mild heat stress exerts beneficial effects on
the neurons by improving the functional ability, neurite outgrowth,
neuroprotection and neuronal survival in various neurodegenerative
disorders such as Alzheimer’s disease, Parkinson disease, Huntington’s
disease etc. (Snider and Choi, 1996; Mattson and Cheng, 2006;
Umschweif et al., 2014). The hormetic effects can be studied as a pre-
conditioning hormesis and a postconditioning hormesis (Calabrese
et al., 2007; Calabrese, 2016a, 2016b). In the preconditioning hormesis,
a prior exposure to an appropriate low dose of a toxic agent or stress
(called as conditioning dose), reduces the adverse effects or the toxicity
of a subsequent challenging dose of the same or different stressors
(Calabrese et al., 2007; Calabrese, 2016a, 2016b). On the other hand,
when the conditioning dose of a lower intensity is given after a chal-
lenging dose, the adverse effects of the challenging dose are reduced.
This phenomenon is termed as postconditioning hormesis (Calabrese,
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2016a, 2016b).
The neurons being terminally differentiated cannot rejuvenate by

cell division. As a result, over a period of time, neurons exhibit de-
generative alterations. These neuropathological alterations are 1. for-
mation of neurofibrillary tangles that affects axonal transport, 2. de-
position of senile plaques that interferes with the propagation of action
potential, 3. accumulation of lipofuscin granules that increases the
oxidative stress, protein crosslinking, lysosomal dysfunction etc.
leading to neuronal death, 4. loss of Nissl substance that causes de-
creased production of neurotransmitters and affects the synaptic plas-
ticity (David et al., 2005; Müller et al., 2010; Kanaan et al., 2011;
DuBoff et al., 2012; Mondragón-Rodríguez et al., 2013; Revett et al.,
2013; Cheng and Bai, 2018).

Hyperphosphorylation of microtubule-associated protein Tau by
various kinases contributes to the formation of neurofibrillary tangles
that affects axonal transport (Götz et al., 1995; Avila et al., 2012; Taylor
et al., 2018). Senile plaques are extracellular depositions of amyloid
beta (Aβ) peptides (Cras et al., 1991). These senile plaques are formed
due to abnormal cleavage of amyloid precursor protein present in the
cell membrane by α, β and γ secretases (Vassar et al., 1999; De Strooper
and Annaert, 2000). Accumulation of Aβ peptides in the brain causes
mitochondrial dysfunction, increased oxidative stress, abnormal neu-
roinflammatory responses, decreased neuroplasticity and increased tau
phosphorylation that finally leads to neuronal death (Hsia et al., 1999;
Walsh et al., 2002; Reddy and Beal, 2008).

Lipofuscin granules are brown-yellow, electron dense, auto-
fluorescent granules that accumulate in the post-mitotic cells
(Björkerud, 1964; Samorajski et al., 1965; Goyal, 1982; Mazzitello
et al., 2009). The age related accumulation of lipofuscin granules leads
to neurodegenerative diseases particularly caused by lysosomal dys-
function (Kiselyov et al., 2007). Nissl substance is present in the cyton.
It comprises of ribonucleoprotein particles that gets typically decreased
with aging. Loss of Nissl substance reduces the functional efficiency and
synaptic plasticity of the neurons (Scarborough, 1938). The present
investigation was designed to evaluate the effect of mild heat stress on
these neuropathological alterations in the primary culture of mouse
prefrontal cerebrocortical neurons.

2. Material and methods

2.1. Primary culture of prefrontal cerebrocortical neurons from E17 mouse
embryos

The prefrontal cerebrocortical neurons from the brain of E17 mouse
embryos were cultured on poly-L-lysine coated glass coverslips. All the
experimental procedures were carried out with due permission of
Institutional Animal Ethics Committee (1825/PO/EReBi/S/15/
CPCSEA). The cerebral cortex was dissected from 17 day embryonic
brain in chilled PBS (pH 7.4) containing 40 μg/ml gentamycin. The
meninges were removed, the prefrontal cortex was separated from the
rest of the cerebral cortex and transferred to a falcon tube containing
Ca-Mg free Hank’s Balanced Salt Solution (HBSS)(Himedia TL1108).
The prefrontal cortices were finely minced and enzymatically dis-
sociated using 0.25% trypsin (SAFC Bioscience SLBC9215) for 10min at
37 °C. Trypsin activity was inhibited by adding Soyabean trypsin in-
hibitor (Himedia TCL068). Neurons were dissociated by trituration using
fire polished pipettes and the cell suspension was used for the study of
viability by trypan blue dye exclusion method. 50,000 live cells/cov-
erslip were seeded on the Poly-L-lysine (Sigma P1399) coated glass
coverslips (18mm). Four coverslips were placed in a 60mm cell culture
dish. The cells were incubated at 5% CO2 and 37 °C for 30min in the
CO2 incubator (New Brunswick an Eppendorf company, Galaxy 48R,
41,823) for adhesion. The cells were fed with neurobasal medium
(Gibco, 15630-106) supplemented with 0.2% B-27 (Gibco, 17504-044),
40 μg/ml Gentamycin (Abbott), 25 mM HEPES (Himedia, TL1108) and
1% Glutamax (Gibco35050-061). The culture was maintained at 37 °C

and 5% CO2 in the CO2 incubator. 2/3rd of the old culture medium was
replaced by fresh medium on every third day.

2.2. Exposure to mild heat stress

The neurons were divided into two groups; a control group and the
mild heat stressed group. In the control group, the neurons were in-
cubated at 37 °C without any heat stress. For deciding the dose of mild
heat stress i.e. temperature and exposure time, the neurons were sub-
jected to varied temperatures from 37.5, to 40 °C at an increment of
0.5 °C. These trials were carried out for 30min and 60min duration of
incubation. The results were biphasic (i.e. Non-linear) and the exposure
to 38 °C for 30min exerted beneficial effects in terms of cytoarchi-
tectural alternations and hence this dose was used as an optimal dose.
The neurons from the experimental group were subjected to hy-
perthermic stress of 38 °C for 30min on 2nd, 4th and 6th day of seeding
the cells.

2.3. Fixation of cells for the cytochemical staining

After completion of 24 h of the third mild heat stress, the cells from
both the groups were fixed in 4% paraformaldehyde containing 4%
sucrose, washed three times in chilled PBS. The cells were permeabi-
lized by treating with 0.02% Triton X-100 for 15min, washed three
times in chilled PBS. These cells were further used for various cyto-
chemical staining procedures.

2.4. Cytochemical staining of the neurofibrillary tangles

Neurofibrillary tangles were stained by Silver staining method de-
scribed by Bielschowsky and Cobb’s (1925). The fixed neurons were
treated with pre-warmed 10% silver nitrate for 30min (40 °C), washed
three times with distilled water and treated with freshly prepared 10%
ammonium silver nitrate solution for 30min at 40 °C. Afterwards, the
neurons were treated with the developer solution for one minute.
Subsequently, the neurons were treated with 5% sodium thiosulphate
solution and washed three times with distilled water, dehydrated in
ascending grades of ethanol, cleared in xylene and mounted in DPX.
The cells showing the neurofibrillary tangles were counted at 400X
magnification.

2.5. Cytochemical staining of amyloid beta (senile plaque)

Staining of the senile plaque was carried out using Highman’s Congo
red method described by Puchtler et al. (1962). The fixed neurons were
treated with 80% ethanol saturated sodium chloride for 30min and
stained by 0.5% Congo red for 30min. The neurons were rapidly de-
hydrated in ascending grades of ethanol, cleared in xylene and mounted
in DPX. The Congophilic neurons were counted at 400X magnification.

2.6. Cytochemical staining of lipofuscin granules

The lipofuscin granules were stained using Ziehl Neelson carbol
fuchsin method as described by Troyer (1980). After fixation, the
neurons were stained by 1% carbol fuchsin for 3 h at 60 °C, rinsed with
distilled water and differentiated in acid alcohol (1% HCl in 70%
ethanol) until excess stain was washed off. Subsequently, the neurons
were counterstained with 0.5% toluidine blue for one min., washed in
distilled water, dehydrated in ascending grades of ethanol, cleared in
xylene and mounted in DPX. The neurons containing lipofuscin gran-
ules were counted and the numbers of lipofuscin granules per neuron
were counted at 1000X magnification.

2.7. Cytochemical staining of Nissl substance

Nissl substance was stained by Nissl staining method of Powers and
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Clark (1955). The fixed neurons were stained with 0.1% Cresyl violet
acetate solution for 15min, washed three times and rapidly dehydrated
in ascending grades of ethanol, cleared in xylene and mounted in DPX.
Nissl positive neurons were recorded at 400X magnification.

2.8. Statistical analysis

The observed data from the control group and the mild heat stressed
group were expressed as arithmetic mean ± standard deviation and

Fig. 1. Photomicrograph (×1000) of the neurocytopathological alterna-
tions in the control group and the mild heat stressed group. A1 and A2:
Silver nitrate staining of Neurofibrillary tangles: more brown and black
coloured deposition of neurofibrillary tangles and damaged neuronal net-
work in the control group as compared to the mild heat stressed group. B1
and B2: Congo red staining of amyloid β; intense orange coloured staining
of neurons (Congophilic neurons) in the control group, whereas in the mild
heat stressed group neurons show less intense staining (Non-Congophilic
neurons). C1 and C2: Ziehl Neelson carbol fuchsin staining of lipofuscin
granules; high deposition of lipofuscin granules in the neurons from the
control group (arrow in C1), whereas, the neurons from the mild heat
stressed group are with less accumulation of lipofuscin granules (arrow in
C2). D1 and D2: Cresyl violet acetate staining of Nissl substance; the
neurons from the control group show weak violet coloured staining,
whereas, the neurons from the mild heat stressed group are darkly stained.
NFTS: Neurofibrillary tangles; DNN: Damaged neuronal network; INN:
Intact neuronal network; CN: Congophilic neurons; NCN: Non-Congophilic
neurons; LG: Lipofuscin granules; NS: Nissl substance. E: Graph depicts
quantification of neurocytopathological alternations from the control group
and the mild heat stressed group. The results were analyzed using Student’s
t-test. Data is represented as arithmetic mean±SD *** p<0.001 versus
control.
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the level of significance was calculated using unpaired Student’s t-test.

3. Results

The results of the cytochemical studies of the neurons from the
control group and the mild heat stressed group (age six days in vitro) are
shown in Fig. 1.

60.83 ± 3.88% neurons from the control group exhibited deposi-
tion of NFTs, whereas, in the mild heat stress group 9.38 ± 3.16%
neurons were showing NFTs deposition. In the control group,
41.0 ± 4.22% neurons exhibited Congophilic (beta-amyloid) material,
whereas, in the mild heat stress group it was 23.72 ± 2.34%.

39.44 ± 3.98% neurons from the control group revealed deposition
of lipofuscin granules, whereas, in the mild heat stress group
10.34 ± 1.96% neurons showed lipofuscin deposition.
69.23 ± 2.04% neurons from the control group exhibited loss of Nissl
substance, whereas, in the mild heat stress group 15.88 ± 3.14%
neurons showed loss of Nissl substance. In the mild heat stress group,
neuropathological structures like NFTs, Congophilic neurons, lipofuscin
granules were significantly (p < 0.001) decreased as compared to the
control group and the Nissl substance was significantly (p < 0.001)
preserved.

4. Discussion

In the present study, the neurons from the control group exhibited
neuropathological alterations such as accumulation of neurofibrillary
tangles, senile plaques, lipofuscin granules and the loss of Nissl sub-
stance. These alterations were significantly lower in the neurons from
the mild heat stressed group. Hormesis is a biphasic dose-response
phenomenon in which low dose of mild stressful condition exerts
adaptive responses that elicits beneficial effects, whereas a higher dose
of the stress causes deleterious changes and cell death (Calabrese and
Baldwin, 2000). This was evidenced in the pilot trials during finalizing
the exposure temperature and duration of exposure.

It is a well-known fact that the mild heat stress induces expression of
many heat shock proteins (Kristensen et al., 2003; Banerjee Mustafi
et al., 2009). These heat shock proteins act as molecular chaperones
and prevent misfolding as well as aggregation of proteins thereby re-
ducing the formation of neurofibrillary tangles and β-amyloid (Welch
et al., 1993). Dou et al.(2003) demonstrated that increase in the ex-
pression of heat shock proteins causes increased solubility of tau and
stable association of tau with microtubules. Therefore, in the present
investigations significantly decreased deposition of NFTs in the heat
stressed group could be because of expression of heat shock proteins as
a response to mild heat stress given to these neurons on every alternate
day.

Many in vivo and in vitro studies demonstrated that Congo red dis-
plays high affinity to amyloid peptide (Puchtler et al., 1962; Glenner
et al., 1972). In the present study, there was a significant decrease in
the Congophilic neurons in the mild heat stressed group as compared to
the control group. This might be due to the expression of heat shock
proteins. Muchowski et al. (2000) found that the Hsp70 with its co-
chaperone Hsp40 inhibits aggregation of polyglutamine protein (polyQ)
into insoluble amyloid like fibrils. Evans et al. (2006) demonstrated that
the purified Hsp70 and Hsp40 when mixed with synthetic amyloid beta
(1–42), inhibited the aggregation of synthetic amyloid beta (1–42) by
binding to the amyloidogenic peptides. The present investigation de-
monstrates the effect of mild heat stress in reducing the aggregation of
amyloid beta in situ, which might be due to the activation of heat shock
responsive pathways thereby expressing the heat shock proteins.

Accumulation of lipofuscin granules within the neurons is the major
indication of neuronal stress and aging related neuropathology
(Dowson et al., 1995; Brunk and Terman, 2002). Lipofuscin granules
contain polymorphic waste material including damaged mitochondria
and worn out cell organelles accumulated in the lysosomes of

postmitotic cells (Terman et al., 2007). In several studies, it was re-
ported that accumulation of lipofuscin granules declines cellular and
molecular functions of the cell including lysosomal degradation (Ivy
et al., 1989), antioxidant defence (Beckman and Ames, 1998), and
proteasomal activity (Sitte et al., 2000). Deposition of lipofuscin gran-
ules causes generation of intralysosomal reactive oxygen species (ROS)
leading to oxidative cross-linking of lysosomal proteins (Brunk and
Terman, 2002). In the present investigations there was a decline in the
accumulation of lipofuscin granules in the neurons from the mild heat
stressed group as compared control. This might be due to stimulation of
degradative capacity of the lysosomes by the mild heat stress. The
present results demonstrate that the mild heat stress improves the ly-
sosomal efficiency of recycling and thus maintain the intracellular
clean-up functions.

Nissl substance consists of ribonucleoprotein particles which are the
prime sites of protein synthesis (Palay and Palade, 1955). In many
physiological conditions and pathological disorders, Nissl substance
disappears, known as chromatolysis (Nandy, 1968; Torvik, 1976;
Wakayama, 1992). Martin (1999) reported that chromatolysis in the
spinal motor neurons is the main neuropathological characteristic of
Amyotrophic lateral sclerosis.

In the present study, neurons from the mild heat stress group ex-
hibited intense staining with cresyl violet as compared to the control
group. This indicates that mild heat stress might be involved in the
preservation of Nissl substance. This might be due to the expression of
molecular chaperones that take care of cells from incorrect folding of
proteins. According to Verbeke et al. (2000), mild heat stress stimulates
expression of heat shock proteins and other components of the stress
response pathways.

Vogel et al.(1997) examined the effect of heat shock on primary rat
neuronal culture. Moderate heat injury of 30min exposure to
43 °C–44 °C resulted in delayed neurodegeneration. Snider and Choi
(1996) investigated the effect of sublethal heat stress in murine cortical
cell culture exposed to combined oxygen and glucose deprivation. In
this study, the investigators found that a conditioning heat stress is able
to attenuate both the excitotoxic and the apoptotic components of
oxygen–glucose deprivation induced neuronal death in vitro. Rattan
(1998) and Verbeke et al. (2000) observed that repeated mild heat
stress prevents the onset of age-related alterations in human fibroblast
undergoing aging in vitro. Rattan (2004) found that, exposure of serially
passaged human fibroblast to 41 °C for 1 h twice a week throughout
their replicative lifespan in vitro leads to beneficial antiaging effects
such as maintenance of youthful morphology, increased antioxidant
abilities, increased resistance to ethanol and H2O2. The present in-
vestigation suggests that the beneficial effects of mild heat stress on the
primary culture of mouse prefrontal cortical neurons are due to the
preservation of cytoarchitecture and reduction in the neurocyto-
pathology.

According to Calabrease et al., (2007) preconditioning hormesis
comprises of the administration of conditioning stimulation i.e. mild
stress, which is followed by a challenging dose. In the present study,
such challenging dose was not given. According to Calabrese et al.
(2007); Van Wijk and Wiegant (2010); Calabrese (2013, 2016a, 2016b);
in postconditioning hormesis, a challenging dose is given prior to the
conditioning stimulation. In the present investigations, the control
group was not subjected to any kind of mild heat stress, whereas, the
neurons from the experimental group were subjected to repeated mild
heat stress of 38 °C for 30min at an interval of 48 h from the 2nd day up
to the 6th day. Therefore, the study neither depicts the preconditioning
hormesis nor the postconditioning hormesis. Repeated exposure to mild
hyperthermic stress of 38 °C for 30min might have stimulated the
adaptive responses within the neurons.

The cytopathological alternations observed in the prefrontal cere-
brocortical neuronal culture indicates gradual degenerative changes.
Although, the seventh day of in vitro life is not an aging model in the
true sense, however, the cytopathological alternations and their extent
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suggest age related neurodegeneration. According to Rattan et al.
(2004), the aging related changes are primarily the result of a failure of
maintenance and repair mechanisms. Calabrese (2018) termed it as a
background disease process. The exposure of neurons to repeated mild
heat stress has preserved the cytoarchitecture of neurons to a healthy
condition. This might be due to the stimulation of stress response
pathways and strengthening the cellular adaptability i.e. home-
odynamics (Verbeke et al., 2001; Rattan, 2014), overcompensation
response (Calabrese and Baldwin, 2002) and according to Calabrese
(2018) it may be reducing the background disease burden i.e. ‘sub-
traction to background’.

In conclusion, the present study demonstrates that the mild heat
stress exerts beneficial effects to slow down the occurrence of cyto-
pathological alterations in the mouse prefrontal cerebrocortical neurons
and helps maintain the cytoarchitecture of these neurons to a healthier
condition.
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