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Genome-wide DNA methylation
measurements in prostate tissues uncovers
novel prostate cancer diagnostic
biomarkers and transcription factor binding
patterns
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Abstract

Background: Current diagnostic tools for prostate cancer lack specificity and sensitivity for detecting very early
lesions. DNA methylation is a stable genomic modification that is detectable in peripheral patient fluids such as
urine and blood plasma that could serve as a non-invasive diagnostic biomarker for prostate cancer.

Methods: We measured genome-wide DNA methylation patterns in 73 clinically annotated fresh-frozen prostate
cancers and 63 benign-adjacent prostate tissues using the Illumina Infinium HumanMethylation450 BeadChip array.
We overlaid the most significantly differentially methylated sites in the genome with transcription factor binding
sites measured by the Encyclopedia of DNA Elements consortium. We used logistic regression and receiver
operating characteristic curves to assess the performance of candidate diagnostic models.

Results: We identified methylation patterns that have a high predictive power for distinguishing malignant prostate
tissue from benign-adjacent prostate tissue, and these methylation signatures were validated using data from The
Cancer Genome Atlas Project. Furthermore, by overlaying ENCODE transcription factor binding data, we observed
an enrichment of enhancer of zeste homolog 2 binding in gene regulatory regions with higher DNA methylation in
malignant prostate tissues.

Conclusions: DNA methylation patterns are greatly altered in prostate cancer tissue in comparison to benign-
adjacent tissue. We have discovered patterns of DNA methylation marks that can distinguish prostate cancers with
high specificity and sensitivity in multiple patient tissue cohorts, and we have identified transcription factors
binding in these differentially methylated regions that may play important roles in prostate cancer development.
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Background
Currently, the most frequently used methods for detecting
prostate cancer are a digital rectal exam and a blood test to
determine levels of prostate-specific antigen (PSA) produced
by the prostate gland [1]. However, these diagnostic tools
can lack the sensitivity required to detect very early prostate
lesions [2]. Furthermore, PSA levels can increase for reasons
unrelated to cancer or not increase when cancer is present
[2]. If a prostate cancer is suspected, prostate biopsies are
performed. However, prostate biopsies are invasive, and can
lead to false-negatives and repeat biopsies, as they do not
sample the entire prostate. Recent developments in prostate
cancer detection include measuring the non-coding RNA
prostate cancer antigen 3 (PCA3) and transmembrane pro-
tease, serine 2 (TMPRSS2):v-ets erythroblastosis virus E26
oncogene homolog (avian) (ERG) gene fusion in urine to
identify patients requiring repeat biopsies despite an initial
negative biopsy [3–5]. However, there is a clear need to
identify novel biomarkers for diagnostic purposes that are
sensitive and specific to prostate cancer.
Epigenetic patterns are known to be altered in several

different cancer types, including prostate cancer, and sig-
natures of DNA methylation may serve as potential
diagnostic or prognostic biomarkers [6]. Cancer-derived,
methylated DNA has been identified and purified from
both patient serum and urine, making it a promising op-
tion for a non-invasive biomarker [7]. Previous studies
investigating DNA methylation patterns at select gen-
omic loci in prostate cancer resulted in discoveries of
epigenetic differences between prostate cancer tissue
and benign-adjacent prostate in genes such as glutathi-
one s-transferase 1 (GSTP1), Ras association domain
family member 1 (RASSF1), and adenomatous polyposis
coli (APC), among others [8–10]. Recently, there have
been studies using global approaches in prostate cancer
that have identified DNA methylation alterations in ma-
lignant prostate tissue, including a previous study from
our group [11–17]. We sought to expand upon our pre-
vious discoveries by performing genome-wide measure-
ments of DNA methylation in 73 clinically annotated
fresh-frozen prostate cancers and 63 benign-adjacent
prostate tissues using the Illumina Infinium Human-
Methylation450 BeadChip array, which offers greater
genomic coverage compared to the Methyl27 array that
we previously used [11]. We present here novel DNA
methylation-based diagnostic models, and discuss
transcription factors whose binding sites are enriched in
regions of differential methylation in prostate cancer.

Methods
Tissue collection and nucleic acid extraction
We collected the prostate cancer and benign-adjacent tis-
sues used in this study at Stanford University Medical
Center between 1999 and 2007 from patients undergoing

radical prostatectomy with patient informed consent
under an IRB-approved protocol. The percentage of pros-
tate cancer epithelial cells in each sample was assessed by
a pathologist specializing in genitourinary cancers on
hematoxylin and eosin (H & E) stained frozen sections of
the tissues from which the DNA was extracted. We se-
lected those samples in which at least 90% of the epithelial
cells were cancerous for nucleic acid extractions, and used
the QIAGEN AllPrep DNA/RNA mini kit (QIAGEN) to
extract DNA and RNA.

DNA methylation analysis via Illumina Infinium
HumanMethylation 450 K
We assayed DNA methylation levels by using the Illu-
mina Infinium HumanMethylation 450 K beadchip array
(Illumina, San Diego, CA, USA) [18] and calculated the
methylation beta score as: b = IntensityMethylated/(Inten-
sityMethylated + IntensityUnmethylated). We converted data
points that were not significant above background inten-
sity to NAs. We removed CpGs having greater than 10%
missing values prior to normalization. Data was normal-
ized with the ComBat R package [19]. Post-ComBat
normalization, we observed that the Infinium I and II as-
says showed two distinct bimodal b-value distributions,
so we developed a regression method to convert the type
I and type II assays to a single bimodal b-distribution
corresponding to Reduced Representation Bisulfite Se-
quencing (RRBS) b-values [20]. After the Methylation
450 K data was converted to RRBS b-values, any values
less than zero were assigned zeros and values greater
than one were assigned ones. The equations for correc-
tion are shown below:
Infinium I to RRBS:

RRBSβ ¼ 0:00209þ 0:4377� Methyl450β þ 0:6303

�Methyl4502β

Infinium II to RRBS:

RRBSβ ¼ ‐0:01146þ 0:2541� Methyl450β þ 0:9832

� Methyl4502β

Linear mixed model and logistic regression analysis
Linear mixed model analysis of the methylation data was
performed using the lme command in R, with patient as
a random effect, and age and ethnicity as fixed effects.
Logistic regression was performed using the glm com-
mand (family = binomial). The p-values were adjusted
using the Benjamini and Hochberg method [21]. CpGs
with a standard deviation of less than 1% across samples
were removed prior to analysis.
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RNA-seq library construction and differential expression
analysis
We constructed RNA sequencing libraries using a
transposase-mediated construction method described
previously [22]. Four RNA-seq libraries were pooled into
each lane and sequenced using Illumina HiSeq 2000 in-
struments to generate paired-end 50 sequencing reads
(Illumina, San Diego, CA, USA). Read-pairs were aligned
to Gencode (version 9.0) using TopHat (version 1.4.1),
and the relative abundance of each transcript was
quantified using Cufflinks (version 1.3.0) and BEDTools
[23–26]. Differential expression analysis was conducted
based on tumor status using DESeq2 (version 1.8.1) with
default settings in likelihood ratio test (LRT) mode.
Transcripts from the X and Y-chromosomes were
removed prior to differential expression analysis.

Pathway enrichment analysis
Chromosomal positions of significant CpGs were anno-
tated using RefSeq (hg19 assembly) [27]. The Gene Set
Enrichment Analysis (GSEA) tool was used to analyze
enriched cellular pathways [28]. GSEA was run with
Kegg and Reactome selected, and used an FDR-
corrected q-value cutoff of 0.05.

Hierarchical clustering
Hierarchical clustering was performed using Cluster 3.0
[29]. Data was mean-centered and clustered by both
gene and array using Euclidean distance with average
linkage. Clusters were visualized using TreeView [30].

TCGA data
TCGA DNA methylation (Illumina Methylation 450 k)
datasets and associated clinical data for prostate
(PRAD_2013_09_07), lung (LUAD_2013_09_07), breast
(BRCA_2013_09_07) and pancreatic (PAAD_2013_09_07)
tissues were downloaded from the UCSC cancer genome
browser at time of manuscript preparation. Datasets were
normalized prior to validation analysis.

Transcription factor overlap
ENCODE transcription factor binding data was downloaded
from http://genome.ucsc.edu/cgi-bin/hgTrackUi?db=hg19&
g=wgEncodeRegTfbsClusteredV3. We overlapped the CpGs
found within gene regulatory regions (promoter, first exon
or first intron) from the top 10,000 most significant CpGs
from regression analysis with the ENCODE transcription
factor binding sites, and used a Fisher’s exact test to deter-
mine transcription factor binding sites enriched for differen-
tial methylation over background. For EZH2 binding site
overlap, we overlapped significant CpGs (FDR p-value < 0.05)
with EZH2 binding data previously published [31].
For gene expression analysis, genes that were differen-
tially expressed between tumor and normal (DESeq2-

based FDR p-value < 0.05) were designated as over-
lapping a TF binding site if greater than 50% the
binding site fell within the transcript promoter region.
The promoter region was defined as 1000 bp
upstream to 500 bp downstream of the transcription
start site. Transcription factors with a Bonferroni-
corrected p-value <0.05 were classified as significantly
enriched.

Results
Identification of differentially methylated cytosines in
prostate cancer
To investigate differential DNA methylation associated
with prostate cancer, we used the Illumina Infinium
HumanMethylation450 BeadChip Methylation Assay,
which covers more than 485,000 CpGs located through-
out the human genome [18]. DNA methylation patterns
were measured in 73 patient prostate cancer tissues and
63 benign-adjacent tissues, 52 of which are patient-
matched (Table 1). Mixed model linear regression ana-
lysis identified (LME) 226,235 CpGs with significantly
different methylation levels (LME, FDR-adjusted p-value
<0.05) in cancer tissues compared to benign-adjacent
prostate tissues. Of the 226,235 significant CpGs, ~67%
had increased methylation and ~33% had decreased
methylation in the cancer tissues compared to the
benign-adjacent tissues (Fig. 1a). CpGs with higher
methylation levels in tumor tissues were more likely to
be within CpG islands (Fisher’s Exact Test, p-value
3.44e–154, OR = 1.18, 95% CI = 1.18–1.12), and statisti-
cally significant CpGs were also found in greater propor-
tion in gene regulatory regions (promoter, first exon, or
first intron) than in gene body regions (other exon, other
intron, or 3′ proximal region), although this association
did not reach statistical significance. (Table 2A, B).
To explore the genes and cellular pathways found in

differentially methylated regions, we analyzed the top
10,000 most significant CpGs between the prostate
cancer tissue and unaffected prostate tissue (LME, FDR
p-value cutoff of <4.27e-13) (Fig. 1b). Of these, 75% had
a higher methylation level in the cancer tissues. We di-
vided the top 10,000 CpGs that were uniquely annotated
to one gene by whether they resided in the gene regula-
tory region (promoter, first exon, and first intron) or the
gene body (other exon, other intron, and 3 prime prox-
imal region) and found that the CpGs with higher
methylation in the cancer compared to benign tissue
were statistically more likely to be associated with a gene
regulatory region (Fisher’s Exact Test, p-value 0.015,
OR = 1.10, 95% CI = 1.018–1.18) (Table 2C).
We used Gene Set Enrichment Analysis (GSEA) to

determine which gene pathways are represented in the
top 10,000 most significant CpGs [28]. We observed
3165 CpGs in the regulatory regions of 1589 genes with
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higher DNA methylation in the prostate cancer com-
pared to benign tissue. GSEA analysis of those 1589
genes showed a strong signature for glycosaminoglycan
metabolism, with five of the top 10 significantly enriched
pathways associated with heparan sulfate metabolism
and chondroitin sulfate metabolism (Additional file 1:
Table S1). Other pathways included focal adhesion,
pathways in cancer, Wnt signaling pathway, develop-
mental biology and axon guidance. The enrichment

for glycosaminoglycan metabolism pathways was spe-
cific to CpGs in regulatory regions with higher
methylation in the cancer. Conversely, there were 776
CpGs located in gene regulatory regions of 621 genes
with lower methylation in prostate cancer tissue.
GSEA analysis of these genes showed enrichment for
olfactory signaling, G-protein coupled receptor signal-
ing, metabolism of carbohydrates, apoptosis, immune
system, neuronal growth factor signaling pathway, and
hemostasis (Additional file 2: Table S2).

Overlap of ENCODE transcription factor ChIP-seq data
and differential DNA methylation highlights the import-
ance of EZH2 in prostate cancers
We compared the DNA methylation data with transcrip-
tion factor chromatin immunoprecipitation sequencing
data (ChIP-seq) measured by the Encyclopedia of DNA
Elements (ENCODE) Consortium to test whether there
was an enrichment of transcription factor binding sites
coinciding with the top 10,000 most differentially
methylated CpGs between prostate cancer and benign-
adjacent tissues. Enhancer of zeste homolog 2 (EZH2)
was the most significantly enriched TF overlapping
CpGs with higher methylation in the cancer tissues from
our dataset (Fisher’s Exact Test, Bonferroni adj. p-value
7.54e-172, OR = 3.4, 95% CI = 3.14–3.68), and this
observation was validated in The Cancer Genome Atlas
(TCGA) prostate methylation dataset (Fisher’s Exact
Test, Bonferroni adj. p-value 6.48e-120, OR = 2.48, 95%
CI = 2.29–2.69) (Fig. 2a and Additional file 3: Table S3A
and B). ENCODE TF binding data was generated from
multiple types of cell lines. To determine whether EZH2
binding enrichment occurs in prostate cancer specific-
ally, we compared the significant CpGs differentially
methylated between prostate cancer and benign-adjacent
tissue (FDR p-value cutoff of <0.05) with previously pub-
lished EZH2 binding events from androgen-dependent
(AD) and androgen-independent (AI) cell line models
[31]. EZH2 binding events were significantly enriched in
both the AD and AI contexts, although we observed a
higher level of enrichment in the AI context (Fisher’s
Exact Test, AD enrichment p-value =0.01, OR = 1.15,
95% CI = 1.01–1.30; AI enrichment p-value =0.00013,
OR = 1.18, 95% CI = 1.08–1.29) (Additional file 3: Table
S3C). Notably, in our tissue cohort, significant CpGs
found in proximity to EZH2-bound sites are mostly
hypermethylated (Fig. 2b). We also observed that a
majority of transcripts that contain EZH2 binding sites
in the promoter region that are differentially expressed
between prostate cancer tissue and the benign-adjacent
tissues have decreased expression in the prostate cancer
tissue (Fig. 2b).
For CpGs with lower methylation in the prostate can-

cer tissues in comparison with the adjacent-unaffected

Table 1 Clinical data for patients used in this study

Training cohort Testing cohort (TCGA)

Patients [n]

Tumor tissues 73 213

benign-adjacent tissues 63 49

patient-matched tissues 52 49

Age

Mean [years] 59.9 60.4

Median [years] 61 61

Range age [years] 43–73 43–75

Preoperative PSA [ng/mL]

Range 0.94–42 1.6–87

Mean 6.8 10.9

Median 5.62 7.4

< 4 [n] 15 19

4–10 [n] 44 100

> 10 [n] 9 55

unknown 5 39

Gleason Grade [n]

(<7) 16 15

(3 + 4) 40 84

(4 + 3) 10 50

8 4 25

(>8) 2 39

unknown 1 0

T Category

T2 2 NA

T2a 3 8

T2b 50 2

T2c NA 82

T3a 8 71

T3b 7 43

T4 1 5

unknown 2 2

Nodal Status

N0 66 160

N1 5 22

unknown 2 31
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tissue, there were two TFs with significant overlap
that were bound in these regions: FOXA2 and
SETDB1 (Additional file 3: Table S3D). However, we
were unable to validate the enrichment we observed
for these TFs in the TCGA prostate methylation data-
set (Additional file 3: Table S3E).

Discovery and validation of most distinguishing DNA
methylation sites in prostate tissues
To discover DNA methylation patterns that best distin-
guish prostate cancer tissue from benign-adjacent tissue,
we performed logistic regression on the 100 most
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Fig. 1 a Histogram of differentially methylated CpGs (LME, FDR < 0.05). Blue represents CpGs that have significantly higher methylation in
benign-adjacent prostate tissue when compared to prostate cancer tissues (73,912 CpGs), and red represents CpGs that have significantly higher
methylation in prostate cancer tissues (152,324 CpGs). b Heatmap of the top 10,000 CpGs with the most statistically significant DNA methylation
differences between unaffected prostate tissue and prostate cancer tissue based on LME p-value. Color bar represents beta score with
0.5 subtracted

Table 2 Genomic regions of differentially methylated CpGs

Genomic location Sig. CpGs more
methylated in
tumor

Sig. CpGs less
methylated in
tumor

Fisher’s exact
p-value

A. Island versus non-island

CG Island 93,536 35,639 3.44E-154

Non-CG Island 58,787 38,273

B. Regulatory region versus gene body (All significant CpGs)

Regulatory Region 55,029 23,056 0.49

Gene Body 46,502 19,858

C. Regulatory Region Versus Gene Body (Top 10,000 most
significant CpGs)

Regulatory Region 3165 776 1.50E-02

Gene Body 1902 700

Regulatory Region = promoter, first exon, first intron
Gene Body = other exon, other intron, 3′ proximal
CG Island = CG islands, CG shelves, and CG shores
A) Analysis of CpGs in islands versus non-islands. B) Analysis of CpGs in gene
bodies versus gene regulatory regions for all significant CpGs. C) Analysis of
CpGs in gene bodies versus gene regulatory regions for the top 10,000 most
significant CpGs
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Fig. 2 Overlap of top 10,000 most significant (LME p-value) DNA
methylation sites in gene regulatory regions and higher methylation
in prostate cancer tissues with ENCODE transcription factor binding
sites highlights the role EZH2 plays in prostate cancer. a Barplot
showing the relative percent of ENCODE transcription factor binding
sites containing significant methylation changes. Dashed red lines
represent the upper and lower 95% confidence intervals generated
from enrichment values of randomly selected methylation sites. b
Pie charts demonstrating the directionality of significant DNA
methylation sites and gene expression levels within 1 kb of EZH2
binding sites
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statistically significant CpGs from the linear mixed
model regression (FDR p-value cutoff of <8.22e-15). We
tested each combination of three CpGs within the top
100 most significant CpGs, as models containing three
CpGs resulted in the smallest Akaike Information Criter-
ion (AIC) value. We calculated the Area Under the
Curve (AUC) for each Receiver Operating Characteristic
(ROC) curve to identify the model with a maximal AUC.
The top DNA methylation diagnostic model based on
AUC from our analysis consists of cg00054525,
cg16794576, and cg24581650 (Fig. 3, Additional file 4:
Table S4). This DNA methylation model produces a
ROC curve with an AUC of 0.97 in our cohort of pros-
tate tissues and has a specificity of 98.4% and a sensitiv-
ity of 87.5%, indicating that DNA methylation status at
these three genomic positions has very high predictive
power for distinguishing malignant tissue from benign
tissue (Fig. 4a). The corresponding waterfall plot demon-
strates the high accuracy our top DNA model performs
in classifying the prostate tissues (Fig. 4a). Based on ana-
lysis of methylation data from other tissue types, these
methylation differences are unique to prostate cancer
cells, as DNA methylation levels at these sites performed
poorly in distinguishing lung, pancreatic, and breast can-
cer tissue from benign tissue (Additional file 5: Figure
S1). The top three diagnostic CpGs are in close proxim-
ity to four total transcripts based on annotation, includ-
ing CYBA, ERGIC1, HLA-J, and NCRNA00171. Out of
these four transcripts, ERGIC1 has a statistically signifi-
cant difference in mRNA expression level between
prostate malignant tissue and benign tissue (DESeq2,
adj. p-value 6.4e-06) (Additional file 6: Figure S2).
We utilized prostate data from TCGA as a validation

cohort for our DNA methylation signature (Table 1).
The TCGA methylation data was also measured using

the Human Methylation 450 BeadChip and included 213
prostate cancer tissues and 49 normal tissues. Our
model, based on 3 CpGs, could distinguish normal from
malignant prostate tissues with a sensitivity of 84.5% and
a specificity of 91.7% in the TCGA dataset, resulting in a
ROC curve with an AUC of 0.920 (Fig. 4b, Additional
file 4: Table S4). To determine how our top diagnostic
model performs in the context of benign prostate hyper-
plasia (BPH), we used a previously published cohort
(GEO accession: GSE55599) to see if our top DNA
methylation model could distinguish prostate cancer
tissue from prostate tissue obtained from patients with
benign-hyperplasia and found that our model could per-
fectly discriminate these two types of tissues (Additional
file 7: Figure S3) [32].
Additionally, we investigated prostate diagnostic

markers from significant CpGs from the linear mixed
model analysis that exclusively demonstrated an increase
in methylation in cancers, as biomarkers that are hyper-
methylated in the cancer tissues are potentially more
easily translatable to the clinic. In this context, the top
model consists of cg15338327, cg00054525, and
cg14781281 (Additional file 8: Figure S4), resulting in a
ROC curve with an AUC of 0.97 in our dataset and an
AUC of 0.92 in the TCGA prostate validation dataset
(Additional file 9: Figure S5A-B). This hypermethylated
diagnostic model also performed well at distinguishing
benign-hyperplasia prostate tissue from prostate cancer
tissue, with an AUC of 0.85 (Additional file 9: Figure
S5C-D).

Discussion
Shifts in epigenetics play a large role in cancer formation
and maintenance, and DNA methylation is a stable
modification that can be detected non-invasively in

Fig. 3 Boxplots of CpGs in the top diagnostic models. Normal data is from benign-adjacent tissues and Tumor Data is from patient cancer tissues
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fluids such as urine, blood and saliva. For these reasons,
DNA methylation is an attractive cancer biomarker can-
didate. In our study, we identified a large number of
CpG loci with statistically significant DNA methylation
levels between our cohort of prostate cancer tissues and
the adjacent, unaffected prostate tissues. More than half
of the significant CpGs were found to be hypermethy-
lated in the prostate tumor tissues. Our previous work
strongly suggests that these methylation changes are the
result of dysregulation of the DNA methyltransferases
DNMT3A2 and DNMT3B [11].
Global DNA methylation changes implicate genes as-

sociated with the stroma and tumor microenvironment
as being enriched targets for methylation changes. We
observed an overwhelming signature of glycosaminogly-
can (GAG) metabolism in the regulatory regions of tran-
scripts with higher methylation in malignant tissues.
GAGs are long polysaccharides that have both structural
and signaling roles within the extracellular matrix and
cellular membranes and have a documented role in
many cancers [33]. In prostate cancer, altered expression
of GAGs has been observed in early stage prostate can-
cer and correlates with malignant progression. A large
body of literature documents numerous ways that
altered proteoglycan metabolism can influence prostate
cancer development and progression, including altering

prostate cancer cell growth, motility, survival, local
diffusion of growth factors, and cell signaling [34]. The
enrichment of GAG metabolism, and specifically
heparan sulfate and chondroitin sulfate metabolism, in
regions with lower DNA methylation in benign-adjacent
prostate tissues likely points to the structural changes
occurring in the extracellular space surrounding the can-
cer, and we confirmed that the majority of these genes
have higher expression in the benign-adjacent tissues
(Additional file 10: Table S5A). A recent study investi-
gating transcriptional activity of genes involved in hepa-
ran sulfate biosynthesis in prostate tissues found that
these genes have lower expression in prostate cancer tis-
sues compared to prostate tissue from individuals with
no prostate cancer, and findings from our study suggest
that the expression of these genes is down-regulated in
prostate cancer, at least in part, due to epigenetic
changes [35].
Regions of the genome with reduced DNA methylation

in the prostate cancer tissue were enriched for a diverse
collection of cellular pathways. Olfactory signaling was
represented among the enriched pathways. We observed a
large number of odorant receptor genes had less methyla-
tion in their gene regulatory region in the prostate cancer
tissue in comparison with benign-adjacent prostate tissue,
and their gene expression levels were mostly higher in the

A

B

Fig. 4 ROC curve and waterfall plots for performance of the top 3 CpG diagnostic model in a training and b validation datasets. The value of the
classifier is given by 6.52–17.04*cg00054525 + 24.18*cg16794576–13.82*cg24581650, where the intercept and coefficients have been regressed by
a binomial generalized linear model. A threshold value of this classifier was chosen to yield maximal non-unity specificity in the training set. The
red dot on the ROC curve corresponds to the sensitivity and specificity of the classifier at the chosen threshold. The dashed line on the waterfall
plots is drawn at the chosen threshold value of the classifier
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cancer tissues (Additional file 10: Table S5B). A recent
study demonstrated that activation of odorant receptors
increases cell invasion into collagen gel [36].
We overlaid ENCODE TF ChIP-seq data with sites of

differential methylation and observed that EZH2 was the
most highly enriched TF binding in these regions. EZH2
is part of the polycomb repressive complex that is
known to regulate chromatin structure during develop-
ment primarily through repression of expression of a
large and diverse set of genes [37]. EZH2 functions to
repress gene expression through methylation of histone
H3 at lysine 27 (H3K27 methylation), and EZH2 can also
recruit DNA methyltransferases to EZH2-target pro-
moters [31, 38, 39]. EZH2 expression increases through-
out prostate cancer progression and EZH2 expression
levels are associated with methylation level in prostate
cancer [11, 40]. Our data suggest that EZH2-directed
methylation alterations are critical for the formation and
maintenance of prostate cancer, in addition to roles
EZH2 plays in castration-resistant prostate cancer.
A practical application of genome wide DNA methylation

profiling is the identification of candidate diagnostic bio-
markers. We have demonstrated that as few as three CpGs
can be used to distinguish benign-adjacent from malignant
prostate tissues with high sensitivity (92.6%) and specificity
(87.8%). Methylation biomarkers have been identified in
prostate cancer previously, including promoter segments of
GSTP1, RASSF1, and APC, which are used in commercial
tissue-based test to identify patients needing repeat biopsies
after an initial negative biopsy [41]. Clinical validation
studies of this commercial methylation-based assay ob-
tained a sensitivity level of 68% and a specificity level of
64% [42, 43]. We also investigated candidate diagnostic
models developed from CpGs that have higher methylation
in prostate cancer tissue. Hypermethylated CpGs appear to
retained throughout all stages of prostate cancer, likely due
to selection pressures, whereas CpGs that become hypo-
methylated in prostate cancer are less likely to be preserved
[44]. In this context, we tested a 3-CpG model that pro-
vided a sensitivity of 90% and a specificity of 82% that again,
exceed those reported for DNA methylation markers cur-
rently in use. One of the diagnostic the diagnostic CpGs
(cg00054525) falls within the regulatory region of the CYBA
gene. Methylation of CYBA has been previously associated
with the progression of melanoma [45, 46]. However, other
genes associated with our diagnostic CpGs, such as HLA-J
and a non-coding RNA, have not yet been associated with
cancer, to our knowledge, and thus, introduce new bio-
logical aspects to explore. Our model’s diagnostic perform-
ance is relatively poor in lung, breast and pancreas
adenocarcinomas, suggesting it has some specificity to
prostate cancer. This is a characteristic that could hold
value in future studies pursuing a non-invasive, peripheral
fluids-based assay.

It is important to note that currently available prostate
cancer patient cohorts, including our own, are limited in
numbers of samples, and future studies will elucidate
the value of our DNA methylation signatures across lar-
ger cohorts of prostate cancer patients. Furthermore, the
full utility of these DNA methylation-based diagnostic
biomarkers will be realized when they can be measured
in peripheral fluids from patients. Thus, an important
future direction of our study is to determine whether
these DNA methylation signatures can be detected in
patient urine or blood. To definitively determine their
clinical relevance, it will be important to directly com-
pare these diagnostic biomarkers to clinically established
markers, such as PSA. Finally, given the recent identifi-
cation of molecular subtypes of prostate cancer, it will
be important to determine DNA methylation patterns
that not only distinguish tumor tissue from benign
tissue, but also can inform about the molecular subtype
of the tumor [17].

Conclusions
Our results indicate that DNA methylation can be used
to successfully distinguish prostate cancer tissue from
benign-adjacent tissue and that our 3-CpG DNA methy-
lation signatures are not common to other cancers. Sites
of differential methylation point to a role for odorant
receptors and GAG metabolism and integration of EN-
CODE transcription factor binding data demonstrates
EZH2 enrichment at the sites of altered DNA methyla-
tion. These data have the potential to impact both diag-
nosis and treatment of prostate cancer.
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