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Brain tumor segmentation in multimodal MRI volumes is of great significance

to disease diagnosis, treatment planning, survival prediction and other relevant

tasks. However, most existing brain tumor segmentation methods fail to make

su�cient use of multimodal information. The most common way is to simply

stack the original multimodal images or their low-level features as the model

input, and many methods treat each modality data with equal importance

to a given segmentation target. In this paper, we introduce multimodal

image fusion technique including both pixel-level fusion and feature-level

fusion for brain tumor segmentation, aiming to achieve more su�cient and

finer utilization of multimodal information. At the pixel level, we present a

convolutional network named PIF-Net for 3D MR image fusion to enrich

the input modalities of the segmentation model. The fused modalities can

strengthen the association among di�erent types of pathological information

captured by multiple source modalities, leading to a modality enhancement

e�ect. At the feature level, we design an attention-based modality selection

feature fusion (MSFF) module for multimodal feature refinement to address

the di�erence among multiple modalities for a given segmentation target.

A two-stage brain tumor segmentation framework is accordingly proposed

based on the above components and the popular V-Net model. Experiments

are conducted on the BraTS 2019 and BraTS 2020 benchmarks. The

results demonstrate that the proposed components on both pixel-level and

feature-level fusion can e�ectively improve the segmentation accuracy of

brain tumors.

KEYWORDS

brain tumor segmentation, medical image fusion, pixel-level fusion, feature-level

fusion, convolutional neural networks

1. Introduction

Automatically and accurately segmenting brain tumor areas from multimodal

magnetic resonance imaging (MRI) scans can provide crucial information about tumors

including shape, volume, and localization. Based on these information, quantitative

assessment of lesions can be carried out, which is of great significance to disease
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diagnosis, treatment planning, survival prediction, and other

relevant tasks. Most existing brain tumor segmentation studies

are concentrating on gliomas since they are the most common

brain tumors in adults. However, due to the factors like the

variety of tumor size, shape and position, the fuzzy boundaries,

and the difference in intensity distribution of MRI data obtained

by different devices, the accurate segmentation of brain tumors

is always a very challenging task (Zhao et al., 2018).

Owing to the good ability in capturing high-resolution

anatomic structure of tissues, MRI is mostly used in brain

tumor segmentation. Commonly-used MRI modalities for

brain tumor segmentation include T1-weighted (T1), contrast-

enhanced T1-weighted (T1c), T2-weighted (T2), and fluid

attenuated inversion recovery (Flair). Figure 1 gives an example

of multimodal MRI volumes for brain tumor segmentation,

which comes from the dataset released by the Brain Tumor

Segmentation (BraTS) challenge (Menze et al., 2015), an

annual event held by the Medical Image Computing and

Computer Assisted Intervention (MICCAI). The segmentation

label (i.e., ground truth) provided by physicians is also shown

in Figure 1. The green, red, and yellow regions indicate edema

(ED), necrosis and non-enhancing tumor (NCR/NET), and

enhancing tumor (ET), respectively. In the BraTS challenge,

the segmentation performance is evaluated on three partially

overlapping sub-regions of tumors, namely, whole tumor (WT),

tumor core (TC), and enhancing tumor (ET). The WT is

the union of ED, NCR/NET, and ET, while the TC includes

NCR/NET and ET. We can see from Figure 1 that different

pathological features of tumors are captured by MRI data of

different modalities.

In recent years, various brain tumor segmentation methods

have been proposed. Traditional image segmentation methods

based on threshold, region, and pixel clustering are difficult

to achieve good results in this task due to its high complexity

as mentioned above (Liu et al., 2014). The performance of

machine learning approaches based on hand-crafted features

and classifiers like support vector machines and random forests

is still limited in most cases. In the last few years, deep learning-

based methods have emerged as the trend in this field due

FIGURE 1

An example of multimodal MRI volumes for brain tumor segmentation. The green, red, and yellow regions in the ground truth indicate edema

(ED), non-enhancing tumor and necrosis (NCR/NET), and enhancing tumor (ET), respectively.

to their obvious advantages on segmentation accuracy (Bakas

et al., 2018). Some methods adopt a 2D or 3D patch-based

manner, in which convolutional networks are applied to predict

the class of the center voxel (Havaei et al., 2017; Kamnitsas

et al., 2017; Zhao et al., 2018). However, these methods tend

to ignore the correlation among different patches within a

large receptive field. To better address the global contextual

information, the encoder-decoder architectures represented by

U-Net (Ronneberger et al., 2015) and V-Net (Milletari et al.,

2016) have become more and more popular in brain tumor

segmentation (Wang et al., 2017; Li et al., 2019a; Zhang et al.,

2020a; Zhou et al., 2020).

As brain tumor segmentation in MRI is essentially a

multimodal image segmentation problem, the joint utilization of

multimodal information plays a critical role in this task (Zhang

et al., 2022). However, we argue that most existing methods

do not pay enough attention to this issue and the utilization

of multimodal information is not sufficient. In existing brain

tumor segmentation methods, the most common way of using

multimodal MR images is to simply stack them or their low-

level features as the model input (Cao et al., 2021; Chen

et al., 2021; Valanarasu et al., 2021; Wang et al., 2021; Zhang

et al., 2021b). In addition, as mentioned above, MR images

with different modalities reflect different pathological features

(Chen et al., 2021; Wang et al., 2021), so their importance

to a given segmentation target should be different. However,

many methods fail to take this difference into consideration in

their segmentation models and there is a lack of refinement for

multimodal features, which will have an adverse effect on the

segmentation performance.

In this paper, we address the above problems via the

multimodal image fusion technique at both the pixel level and

the feature level. For one thing, we adopt pixel-level image

fusion to enrich the input modalities of the segmentation

model and the fused modalities can strengthen the association

among different types of pathological information captured by

multiple source modalities. For another, we embed an attention-

based feature fusion module into the segmentation network to

refinemultimodal features for better segmentation performance.
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Specifically, the main contributions of this work are summarized

into four points:

1. To make use of multimodal information more sufficiently

for brain tumor segmentation, we introduce the multimodal

image fusion technique including both pixel-level fusion and

feature-level fusion into the segmentation task.

2. We present a pixel-level image fusion network (PIF-Net)

to fuse 3D multimodal MR images, aiming to enrich the

input modalities of the segmentation model. This is actually a

modality enhancement approach since the fused modalities

obtained by the PIF-Net can effectively combine the

pathological information from multiple source modalities.

3. To address the difference among multiple modalities for

a given segmentation target, we design an attention-

based modality selection feature fusion (MSFF) module for

multimodal feature refinement and it is embedded into the

segmentation network for performance improvement.

4. We propose a two-stage brain tumor segmentation

framework based on the PIF-Net, the MSFF module and

the V-Net. Experimental results on the BraTS 2019 and

BraTS 2020 benchmarks demonstrate the effectiveness of the

proposed pixel-level and feature-level fusion approaches for

brain tumor segmentation.

The rest of this paper is organized as follows. Section

2 introduces the related works. In Section 3, the proposed

method is presented in detail. The experimental results and

discussion are given in Section 4. Finally, we conclude the paper

in Section 5.

2. Related work

2.1. Brain tumor segmentation

Many automatic brain tumor segmentation methods have

been proposed in recent years. They can be roughly divided into

two categories (Havaei et al., 2017): the generative model-based

methods and the discriminative model-based methods. The

generative model-based methods require domain-specific prior

knowledge about the appearance characteristics of tumorous

and healthy tissues, but they are challenging to characterize due

to the complexity of brain tissues. The discriminative model-

based methods treat brain tumor segmentation as a pattern

classification problem for the voxels in MRI volumes and they

have become the mainstream in this field owing to the rapid

development of machine learning techniques. Popular hand-

crafted features used in brain tumor segmentation include local

histograms (Goetz et al., 2014), structure tensor eigenvalues

(Kleesiek et al., 2014), texture features (Subbanna et al., 2013),

and so on, while typical shallow learning models such as support

vector machines and random forests are frequently adopted in

brain tumor segmentation (Bauer et al., 2011; Meier et al., 2014;

Pinto et al., 2015).

In the last few years, deep learning has rapidly achieved

the dominance in brain tumor segmentation owing to the

significantly improved performance. Some early methods adopt

a patch-based classification manner by utilizing convolutional

networks to predict the class of the center voxel of a 2D or

3D image patch. Havaei et al. (2017) proposed a two-pathway

architecture to extract features with 2D convolutional kernels of

different sizes. They also explored three cascade architectures in

which the output of the first network with larger input size is

supplemented as an additional source for the second network

to extract information of multiple scales simultaneously. The

DeepMedic (Kamnitsas et al., 2017), a well-known 3D brain

tumor segmentation model proposed by Kamnitsas et al., also

adopts a dual pathway architecture that uses patches of different

sizes as the network input, aiming to incorporate both local and

larger contextual information. In addition, the dense training

scheme is employed in Kamnitsas et al. (2017) to address the

relationship among neighboring patches. Zhao et al. (2018)

integrated fully convolutional neural networks (FCNNs) and the

conditional random field (CRF) into a unified framework for

brain tumor segmentation. In their method, features are also

extracted from receptive fields of different sizes.

The above patch-based classification methods can’t fully

consider the correlation among neighboring patches and the

range of the receptive field is always limited, although some

improved strategies are adopted. To address this problem, the

encoder-decoder semantic segmentation architectures such as

U-Net (Ronneberger et al., 2015), 3D U-Net (Çiçek et al.,

2016), and V-Net (Milletari et al., 2016) have become more

and more popular in brain tumor segmentation. Myronenko

(2018) proposed a segmentation method that won the first place

in the BraTS 2018 challenge by adding an variational auto-

encoder (VAE) branch into an encoder-decoder architecture

to obtain an additional regularization to the encoder part. To

alleviate the issue of class imbalance, some methods apply a

cascaded architecture to decompose the original multi-label

segmentation problem into multiple binary segmentation sub-

problems. Wang et al. (2017) cascaded three CNNs to realize

the segmentation of three tumor areas including WT, TC and

ET. Zhang et al. (2020a) proposed a task-structured brain

tumor segmentation network to address the task-modality

and task-task relationship simultaneously. Zhou et al. (2020)

proposed a one-pass multi-task network with cross-task guided

attention for brain tumor segmentation, which integrates the

multiple segmentation sub-tasks into one deep model. Li et al.

(2019a) proposed a multi-step cascaded network that takes the

hierarchical topology of the brain tumor sub-structures into

account and segments the sub-structures from coarse to fine.

However, it is worth noting that current study on brain

tumor segmentation does not pay enough attention to the joint

utilization of multimodal MR images, which is in fact a key
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issue in this multimodal image segmentation task (Zhang et al.,

2022). The most common way of using multimodal MR images

is to simply stack them or their low-level features as the model

input (Cao et al., 2021; Chen et al., 2021; Valanarasu et al.,

2021; Wang et al., 2021; Zhang et al., 2021b). In addition,

many methods treat each modality data with equal importance

to a given segmentation target (Chen et al., 2021; Wang

et al., 2021). These factors motivate us to introduce image

fusion technique including both pixel-level fusion and feature-

level fusion into the brain tumor segmentation framework for

better performance.

2.2. Pixel-level medical image fusion

The purpose of pixel-level medical image fusion is

to integrate the complementary information contained in

multimodal medical images by generating a composite fused

image, which is expected to be more suitable for human

or machine perception. A variety of medical image fusion

methods have been proposed over the past few decades and

most of them are developed under a “decomposition-fusion-

reconstruction” three-phase framework (Li et al., 2017; Liu et al.,

2020b). Specifically, the source images are first decomposed

into a transform domain and the decomposed coefficients from

different source images are then fused. The fused image is

finally reconstructed based on the fused coefficients. Multi-

scale transform (MST) and sparse representation (SR) are two

main categories of image decomposition that are widely used in

medical image fusion (Liu et al., 2015, 2016, 2019, 2021; Du et al.,

2016; Yang et al., 2016; Li et al., 2017; Zhang et al., 2018; Zhu

et al., 2018; Yin et al., 2019).

However, most previous works in medical image fusion

focus on the 2D image fusion problem, while methods for

3D image fusion were rarely studied (Yin, 2018). Using 2D

fusion methods to tackle 3D medical images slice by slice

independently neglects the correlation among adjacent slices

and thereby tends to lose spatial contextual information of

volumetric data. Wang et al. (2014) proposed a 3D multimodal

medical image fusion method based on the 3D discrete shearlet

transform (3D-DST) and designed a global-to-local strategy to

fuse the decomposed coefficients. Yin (2018) introduced the

tensor sparse representation (TSR), which is a high-dimensional

extension of 2D SR, for 3D medical image fusion. Nevertheless,

in these methods, the source images are treated equally in

the fusion framework with identical decomposition approach

and isotropic fusion strategy. As a result, the characteristics of

different source modalities are not fully considered, leading to

the loss of important modality information.

Recently, deep learning has emerged as an active direction

in the field of image fusion (Liu et al., 2018; Zhang et al., 2021a)

and some medical image fusion methods based on deep learning

models like CNNs and generative adversarial networks (GANs)

have been proposed (Liu et al., 2017, 2022; Liang et al., 2019;

Ma et al., 2020a, 2022; Zhang et al., 2020b; Tang et al., 2021; Xu

and Ma, 2021; Xu et al., 2022). By optimizing the loss functions

that are specially designed based on the characteristics of source

modalities, the deep learning-based methods have advantages

over conventional MST-based and SR-based fusion methods

on preserving modality information. However, the above deep

learning-based methods are generally developed for 2D image

fusion. In this work, we present a CNN-based 3Dmedical image

fusion approach and introduce it for brain tumor segmentation

by enriching the input modalities. In fact, current study on pixel-

level medical image fusion is mostly devoted to pursuing good

visual quality for physician observation and high evaluation

results on objective metrics of image fusion, while very few

study focuses on the application of image fusion to some

specific clinical machine vision problems such as classification,

detection and segmentation. Therefore, this work is also of high

significance from the viewpoint of medical image fusion.

3. The proposed method

3.1. Overview

Figure 2 shows the schematic diagram of the proposed brain

tumor segmentation framework. It consists of two stages to

achieve the segmentation result of WT, TC, and ET areas. The

two stages share a similar architecture that is composed of a

PIF-Net to enrich the input modalities of the segmentation

model via pixel-level fusion, an MSFF module to refine the

mutlimodal features via feature-level fusion, and a V-Net

(Milletari et al., 2016) with the encoder-decoder structure to

obtain the segmentation result. The target of the first stage

is to segment the WT area, while the second stage aims to

identify the TC and ET areas. Since the TC and ET areas

are included in the WT area, the segmentation result of the

first stage is used to locate the input region of the second

stage, which is helpful to alleviate the class imbalance issue.

The sliding window-based approach introduced in Lyu and

Shu (2020) is adopted to determine the input region of the

second stage, namely, the window that contains the maximum

number of tumor voxels is selected. In addition, considering

that the peritumoral edema are mainly highlighted in T2 and

Flair modalities, we only use T2 and Flair as the input source

modalities in the first stage. The PIF-Net is used to generate

their fused modality, which is denoted as T2-Flair. These three

modalities (i.e., T2, Flair and T2-Flair) are fed together to the

subsequent MSFF module in the first stage. In the second stage,

all the four source modalities (i.e., T1, T1c, T2, and Flair) are

adopted as the original input. The PIF-Net is applied to obtain

two additional fused modalities, which are the fusion of T1c

and T2 (denoted as T1c-T2), and the fusion of T1c and Flair

(denoted as T1c-Flair). We mainly choose the T1c modality for
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FIGURE 2

The schematic diagram of the proposed brain tumor segmentation framework.

FIGURE 3

The architecture of our PIF-Net for 3D multimodal MR image fusion.

fusion because it is known to be very effective in detecting the TC

and ET areas. By contrast, the T1 modality provides relatively

less information for segmenting brain tumors and it generally

plays an auxiliary role in this task (Bakas et al., 2018; Ma and

Yang, 2018). Thus, the input of the MSFF module in the second

stage contains six modalities in total. The final segmentation

result is achieved by combining the results obtained at two

stages together.

3.2. PIF-Net

Considering the high computational cost andmemory usage

of 3D convolutional networks, we design a relatively plain

network architecture as shown in Figure 3 for 3D pixel-level

image fusion. Note that this is likely to be the first work on CNN-

based 3D medical image fusion to our knowledge, as mentioned

in Section 2.2. The PIF-Net contains two branches for feature
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TABLE 1 Detailed parameter configuration of the PIF-Net.

Layer Ks Ss Ps Ic Oc A

Conv1 3× 3× 3 1 1 1 32 ReLU

Conv2 3× 3× 3 1 1 1 32 ReLU

Conv3-1 3× 3× 3 1 1 32 32 ReLU

Conv3-2 3× 3× 3 1 1 32 32 /

Addition / / / 32 32 ReLU

Conv4-1 3× 3× 3 1 1 32 32 ReLU

Conv4-2 3× 3× 3 1 1 32 32 /

Addition / / / 32 32 ReLU

Conv5-1 3× 3× 3 1 1 64 64 ReLU

Conv5-2 3× 3× 3 1 1 64 64 /

Addition / / / 64 64 ReLU

Conv6 3× 3× 3 1 1 64 32 /

Conv7 3× 3× 3 1 1 32 1 /

Sigmoid / / / 1 1 /

Weighted average / / / 1 1 /

Ks , Ss , Ps , Ic , Oc , and A denote the kernel size, stride, padding size, number of input

channels, number of output channels, and activation operation, respectively.

extraction from two source modalities. Each branch is composed

of a 3 × 3 × 3 convolutional layer and a 3D residual (denoted

as Res3D) block that contains two 3 × 3 × 3 convolutional

layers using the skip connection. The feature maps obtained

from two branches are then concatenated and fed to another

Res3D block. Two 3 × 3 × 3 convolutional layers are further

applied to reduce the number of channels to 1 and a sigmoid

operation is conducted to reconstruct a weight mask. Finally,

the fused modality is reconstructed by performing the weighted

average calculation based on the mask and source images. It is

worth noting that the fused image can also be reconstructed

directly from the fused feature maps without using a weight

mask. However, since the voxels in the meaningless background

regions have zero-valued intensity in each source modality,

a direct regression tends to cause inappropriate non-zero

predictions in these regions, which will affect the fusion

quality. The voxel-wise weighted average strategy adopted

can effectively avoid this problem and we experimentally

found that it can produce good fusion results. The detailed

parameter configuration of the network architecture is given

in Table 1.

The definition of loss function is a key issue in deep learning-

based image fusion methods as it determines the preservation of

modality information from source images. In this work, the loss

function of our PIF-Net is formulated as

Lpif = Lpixel + αLssim, (1)

where Lpixel and Lssim indicate the pixel loss and the structural

similarity loss, respectively. α is the regularization parameter

that balances these two terms, and it is experimentally set to

450 in our method. The pixel loss is designed to preserve the

intensity information, which is often related to the lesions(e.g.,

edema) that have very high or low intensity in some MRI

modalities. It is defined as

Lpixel = ||F− S1||
2
F + β||F− S2||

2
F , (2)

where S1 and S2 denote the source images, and F denotes the

fused image. β is the trade-off parameter and || · ||2F denotes the

tensor Frobenius norm. The structural similarity loss is adopted

to extract anatomic structure information from source images

and it is defined as

Lssim = γ (1− SSIM(F, S1))+ (1− SSIM(F, S2)), (3)

where SSIM(·, ·) represents the 3D structural similarity measure

and γ is the trade-off parameter.

The parameters β and γ are set according to the specific

characteristics of fusion problems. In the first stage, for the

fusion of T2 and Flair images, β and γ are both set to 1 since

these two modalities have relatively similar pathological and

structural information. In the second stage, let S1 and S2 denote

the T1c and T2/Flair images, respectively. Considering that the

T2/Flair image contains more lesion information regarding the

edema area, we increase the weight of T2/Flair images in Lpixel.

Meanwhile, since the T1c image captures more tissue structures

in the TC and ET areas, a larger weight is assigned to the T1c

image in Lssim. In our method, we set both β and γ to 2 for the

fusion of T1c and T2/Flair images.

The PIF-Net is trained based on the training set released by

the BraTS challenge 2019. The training set contains 335 cases of

multimodal MRI volumes and four modalities (i.e., T1, T1c, T2,

and Flair) are provided in each case. The original volumes of size

155 × 240 × 240 are cropped into patches of size 80 × 80 × 80

by the sliding window technique to enlarge the scale of the

training set. The learning rate is fixed as 10−4 during the training

process and the Adam optimizer is adopted to train the network.

Figure 4 shows an example of fusion results obtained by the

PIF-Net. The results of two representative 3D medical image

fusionmethods 3D-DST (Wang et al., 2014) and TSR (Yin, 2018)

are also provided for comparison. The results of T2 and Flair

fusion and T1c and Flair fusion are given at the first and second

rows in Figure 4, respectively. It can be seen that the PIF-Net

achieves higher fusion quality than the other two methods on

the tumor areas, especially for the T1c and Flair fusion, in which

the 3D-DST and TSR methods fail in preserving the edema

information contained in the Flair images well, while the PIF-

Net simultaneously preserve important modality information

from both two source images.
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FIGURE 4

An example of fusion results obtained by di�erent 3D medical image fusion methods.

FIGURE 5

The architecture of our MSFF module for multimodal feature refinement.

3.3. MSFF module

TheMSFFmodule is designed to refine the features extracted

from multimodal MRI volumes for subsequent segmentation.

Inspired the selective kernel network (SKNet) for multi-scale

feature extraction (Li et al., 2019b), an attention-based feature

fusion module is presented to adaptively adjust the weights of

the features from different modalities. The architecture of our

MSFF module is shown in Figure 5. Let M1,M2, . . . ,MN ∈

R
L×H×W×1 denote the input multimodal MRI volumes that

involve both the original source modalities and the fused

modalities obtained by the PIF-Net, where N is total number

of input modalities. A 3 × 3 × 3 convolutional layer is

firstly performed on each input volume for feature extraction.

The obtained features are denoted as U1,U2, . . . ,UN ∈

R
L×H×W×C, where L × H × W denotes the size of the 3D

feature map and C denotes the number of feature maps. In our

method, C is set to 16. The features from different sources are

firstly merged via an element-wise summation as

U =

N∑

i=1

Ui. (4)

Then, we embed the global information by a channel-wise

global average pooling (GAP) operation to get a feature vector
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s ∈ R
1×1×1×C. Specifically, the c-th element of s is calculated as

sc = 8GAP(Uc) =
1

L×H ×W

L∑

i=1

H∑

j=1

W∑

k=1

Uc(i, j, k). (5)

Further, a compact feature z ∈ R
1×1×1×C/r is generated by

a 1 × 1 × 1 convolutional layer for channel reduction, which is

actually equivalent to a fully connected layer. The ratio factor r

is set to 4 in our model. Next, we adopt N parallel channel up-

scaling convolutions with kernel size of 1× 1× 1 to reconstruct

N C-dimensional vectors t1, t2, . . . , tN ∈ R
1×1×1×C. This

is actually the excitation operation used in the SENet (Hu

et al., 2018). Subsequently, a channel-wise softmax calculation is

performed on each element across all theN vectors (indicated by

the purple frame) to obtain the attention vectors s1, s2, . . . , sN ∈

R
1×1×1×C. Specifically, the c-th element of si is calculated as

si,c =
eti,c

N∑
j=1

etj,c

, (6)

where ti,c denotes the c-th element of ti, i ∈ {1, 2, . . . ,N}, c ∈

{1, 2, . . . ,C}.

Finally, the fused feature V ∈ R
L×H×W×C is calculated by

a channel-wise weighted average over the source features using

the attention weights as

V =

N∑

i=1

si · Ui. (7)

According to a recent survey on attention mechanism (Guo

et al., 2022), the attention mechanism used in our MSFF module

belongs to the branch attention, which can be viewed as a

dynamic branch selection mechanism and typically used in a

multi-branch architecture. In the proposed method, to be more

specific, the attention mechanism can be regarded as a kind of

modality attention, aiming to extract features from multimodal

MR images more effectively.

3.4. Segmentation loss

The loss function used for training the segmentation model

is defined as

Lseg = Ldice + λLbce, (8)

where Ldice and Lbce denote the dice loss and the binary cross

entropy (BCE) loss, respectively, as

Ldice = 1−

2
N∑
i=1

pigi

N∑
i=1

p2i +
N∑
i=1

g2i + ε

, (9)

Lbce = −
1

N

N∑

i=1

[gi log pi + (1− gi) log(1− pi)], (10)

where gi ∈ G is the ground truth binary volume, pi ∈ P is the

network prediction, and N denotes the number of voxels. The

parameter ε is a small constant to avoid dividing by 0. The Dice

loss is known to be capable of alleviating the class imbalance

issue (Milletari et al., 2016), while the BCE is the mostly used

loss function for binary classification or segmentation. In brain

tumor segmentation, the union of these two losses is a common

way as it can combine their complementary advantages. The

parameter λ controls the trade-off between these two losses and

it is experimentally set to 0.5 in our method.

4. Experimental results and
discussion

4.1. Data and implementation details

The BraTS 2019 and BraTS 2020 benchmarks (Menze

et al., 2015) are adopted to demonstrate the effectiveness

of the proposed method. The multimodal MRI data in a

BraTS benchmark is divided into three parts: a training set, a

validation set and a testing set. Only the training set releases the

segmentation label (i.e., ground truth) annotated by experts to

the public. The validation set is used to adjust model training

and theMRI data is available, but the label is not provided. Users

must upload their segmentation results to the organizer’s sever

at https://ipp.cbica.upenn.edu/ to obtain the evaluation results.

Both data and label in the testing set are not available to users.

In our experiments, just as most previous studies in this field, we

adopt the training set for model training and validation, while

use the validation set for performance evaluation. In particular,

the BraTS training set is further divided into two parts: 80%

samples are used for network training and the remaining 20%

samples are used as a validation set to guide the training process.

The BraTS 2019 training dataset includes 335 cases, while BraTS

2020 has a larger one comprising 369 cases. These multimodal

MRI data have been skull-striped, re-sampled, and co-registered.

Each case contains MRI data of four modalities (i.e., T1, T1c, T2,

and Flair) and each volume is of size 155× 240 × 240.

For data pre-processing and augmentation, the popular z-

score normalization approach is applied to each MRI volume,

namely, the data is subtracted by the mean and divided by the

standard deviation of the non-zero region. The training volume

is randomly cropped into patches of size 128× 192× 160 before

fed to the network in the first stage. For each volume, the patch of

size 128×128×128 that containsmaximum tumor voxels is used

for training in the second stage. Moreover, in both two stages,

the intensity of each volume is randomly shifted by a value in

[−0.1σ , 0.1σ ] (σ denotes the standard deviation) and randomly
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FIGURE 6

Impact of the parameters α and λ on the model performance.

scaled by a factor in [0.9, 1.1]. In addition, a random flipping

along each axis is applied with a probability of 50%.

Our network is implemented in PyTorch and trained on

two NVIDIA TITAN RTX GPUs. The Adam optimizer is used

for updating weights. The learning rate is progressively decayed

using the following rule:

l = l0 × (1−
i

N
)0.9, (11)

where l0 is the initial learning rate, i is an epoch counter andN is

the total number of the epochs. We experimentally set l0 to 10
−4

and N to 300.

The labels provided by the BraTS benchmark include the

ED, NCR/NET and ET, while the evaluation of segmentation

accuracy is performed on three partially overlapping regions:

WT (ET + NCR/NET + ED), TC (ET + NCR/NET) and ET,

as mentioned in Section 1. In our experiments, we adopt

the region-based training strategy, which directly optimizes

these three sub-regions instead of individual labels, since

its effectiveness has been widely verified in brain tumor

segmentation (Isensee et al., 2020). For post-processing, we also

adopt a frequently-used approach that the ET is replaced by the

NCR/NET when its volume is less than 500 voxels to remove

possible false predictions on ET (Isensee et al., 2020; Lyu and

Shu, 2020; Zhang et al., 2020a). Two popular objective metrics

including the Dice score and the Hausdorff distance (%95) are

used to evaluate the segmentation accuracy.

4.2. Parameter analysis

The loss functions in our method contain several trade-off

parameters such as α, β , γ , and λ. The principle for determining

the values of β and γ has been detailed in Section 3.2. In this

subsection, we analyze the effect of the parameters α and λ on

the segmentation performance of the proposed method. The

parameter α is used to balance the pixel loss and the structural

similarity loss, and these two terms should have relatively close

values so that both of them can have sufficient contribution.

Based on the experimental observations, we set α to 150, 300,

450, 600, and 750 to study its impact. The corresponding

results are shown in the first two sub-figures in Figure 6. It

can be seen that the proposed method can obtain relatively

stable performance when α is set between 150 and 750, and

in particular between 300 and 600. Based on these results, we

set α to 450 by default in our experiments. The parameter λ

controls the balance between the dice loss and the BCE loss in the

segmentation model. Similarly, we set λ to 0.1, 0.3, 0.5, 0.7, 0.9 to

analyze its effect on the model performance. The corresponding

results are given in the last two sub-figures in Figure 6. We can

see that the setting of 0.5 can result in the best performance

in most cases, so the parameter λ is set to 0.5 by default in

our method.

4.3. Ablation study of the proposed
method

In this subsection, an ablation study is conducted to evaluate

the effectiveness of our PIF-Net and MSFF module in the

proposed method. Specifically, the following four models are

considered in this study:

- OURS w/o PIF-Net&MSFF: Removing the PIF-Net and the

MSFF module simultaneously from the proposed brain tumor

segmentation framework. In each stage, only the V-Net is

remained for segmentation. This is the original baseline for

our method.

- OURS w/o PIF-Net: Removing the PIF-Net from the

proposed brain tumor segmentation framework. The MSFF

module is embedded before the V-Net to realize multimodal

feature refinement for segmentation in both stages.

- OURS w/o MSFF: Removing the MSFF module from

the proposed brain tumor segmentation framework.

The PIF-Net is used to generate the fused modalities

as the additional input of the segmentation model in

both stages.

- OURS: The complete model proposed in this work.

The evaluation results on the BraTS 2019 and BraTS 2020

benchmarks are listed in Tables 2, 3, respectively. method
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TABLE 2 Objective evaluation results for the ablation study of the proposed method on the BraTS 2019 validation sets.

Tumor region Metrics OURS w/o PIFnet &MSFF OURS w/o PIFnet OURS w/o MSFF OURS

WT Dice 0.8635 0.8771 0.8832 0.8942

Hausdorff 7.1211 7.7784 7.1654 5.3490

TC Dice 0.7788 0.8065 0.8045 0.8142

Hausdorff 15.7345 10.1822 14.4599 10.8988

ET Dice 0.7682 0.7698 0.7692 0.7710

Hausdorff 9.1385 5.3155 6.4719 5.8548

Average Dice 0.8035 0.8178 0.8190 0.8265

Hausdorff 10.6647 7.7587 9.3657 7.3675

Bold values indicate the best-performing scores on each metric (each row in the tables) among all the four models.

TABLE 3 Objective evaluation results for the ablation study of the proposed method on the BraTS 2020 validation sets.

Tumor region Metrics OURS w/o PIFnet &MSFF OURS w/o PIFnet OURS w/o MSFF OURS

WT Dice 0.8678 0.8725 0.8878 0.8950

Hausdorff 11.5732 9.6274 7.8896 5.3117

TC Dice 0.8025 0.8153 0.8139 0.8178

Hausdorff 11.6728 10.4340 10.9337 9.4285

ET Dice 0.7631 0.7730 0.7678 0.7745

Hausdorff 6.9469 5.9442 7.1674 4.4715

Average Dice 0.8111 0.8203 0.8232 0.8291

Hausdorff 10.0643 8.6685 8.6636 6.4039

Bold values indicate the best-performing scores on each metric (each row in the tables) among all the four models.

generally has a better a slightly better performance for BraTS

2020 than performance for BraTS 2020 than BraTS 2019, which

is mainly because the BraTS 2020 benchmark contains more

training samples in the training set, with additional 34 samples

in comparison to the BraTS 2019 benchmark. The comparison

between OURS and OURS w/o PIFnet&MSFF demonstrates

that the utilization of our PIF-Net and MSFF module can

significantly improve the performance (1.8% to 2.3% in terms

of the mean Dice score, and 3.3 to 3.7 in terms of the mean

Hausdorff distance) over the baseline model. The comparison

between OURS w/o MSFF and OURS w/o PIF-Net&MSFF

(as well as the comparison between OURS and OURS w/o

PIF-Net) verifies the effectiveness of the PIF-Net in improving

the segmentation accuracy. The comparison between OURS

w/o PIF-Net and OURS w/o PIF-Net&MSFF (as well as the

comparison between OURS and OURS w/o MSFF) shows

that the MSFF module is also beneficial for the segmentation

performance. Some segmentation results obtained byOURSw/o

PIF-Net&MSFF, OURS w/o PIF-Net, OURS w/o MSFF, and

OURS are visualized in Figure 7. It can be seen that the complete

model can generally obtain more accurate segmentation

results than the baseline methods when compared to the

ground truth.

An interesting observation we can obtain from Tables 2,

3 are that the improvements achieved by the PIF-Net and

the MSFF module have their characteristics on different sub-

regions. Specifically, for the WT area, the PIF-Net is more

effective in improving the segmentation accuracy than theMSFF

module. On the other hand, for the TC and ET areas, the MSFF

module is more helpful in comparison to the PIF-Net. This

phenomenon can be observed from the comparison between

OURS w/o PIF-Net and OURS w/o MSFF. The results shown

in Figure 7 also verify this point. By referring to the ground

truth, we can see that OURS w/o MSFF generally obtains

more accurate results for the ED area (shown in green) than

OURS w/o PIF-Net, while OURS w/o PIF-Net performs better

for the NCR/NET and ET areas (shown in red and yellow).

We provide an explanation to this observation as follows. The
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FIGURE 7

Examples of brain tumor segmentation results obtained by di3�erent methods in the ablation study. The green, red, and yellow regions indicate

edema (ED), non-enhancing tumor and necrosis (NCR/NET), and enhancing tumor (ET), respectively.

segmentation of WT is mainly based on the ED area that can be

effectively captured in the T2 and Flair volumes. The modality

characteristics on the ED area in T2 and Flair volumes are

generally close, so the requirement of multimodal feature fusion

or selection is not very urgent. By contrast, the pixel-level image

fusion achieved by the PIF-Net can enrich the input modalities

for the segmentation model and this modality enhancement

approach can also be viewed as a data augmentation method

to some extent, which tends to be relatively more effective for

WT segmentation as only two source modalities are used. In

comparison to WT, the segmentation of TC and ET is more

difficult due to the factors like smaller size, more irregular

shape, etc. As a result, more modalities are typically required in

TC and ET segmentation. In such a situation, the refinement

of multimodal features achieved by the MSFF module is of

higher significance. Therefore, the segmentation of TC and ET

benefits more from the MSFF module. Nevertheless, it is worth

noting that our PIF-Net and MSFF module both improve the

segmentation accuracy of all the three sub-regions, just with

different extents.

4.4. Comparison with other methods

In this subsection, we compare the proposed method

with some existing brain tumor segmentation methods, which

are mainly included in the proceedings of BraTS 2019-2021

challenges and generally have good performance. Tables 4, 5

report the evaluation results of different methods on BraTS 2019

and BraTS 2020 validation sets, respectively. For the comparison

methods, the results reported in the original publications are

adopted since the benchmarks used are exactly the same. In

addition, the results obtained by a single model instead of multi-

model ensemble are used for the sake of fair comparison. In each

case, the best score is indicated in bold and the second best score

is underlined.We can observe from Tables 4, 5 that the proposed

method achieves very competitive performance among all the

methods. ForWT and TC regions, the proposed method obtains

the highest Dice scores on both BraTS 2019 and BraTS 2020

validation sets. Our method achieves 0.8265 and 0.8291 in terms

of the mean Dice score on these two datasets, which are both in

the second place among all the methods. It is worth mentioning
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TABLE 4 Objective evaluation results of di�erent brain tumor segmentation methods on the BraTS 2019 validation sets.

References WT TC ET Average

Dice Hausdorff Dice Hausdorff Dice Hausdorff Dice Hausdorff

Xu et al. (2019) 0.8930 6.9640 0.8070 7.6630 0.7590 4.1930 0.8197 6.2733

Baid et al. (2019) 0.8700 13.3600 0.7700 12.7100 0.7000 6.4500 0.7800 10.8400

González et al. (2019) 0.8882 8.1231 0.7833 7.5618 0.7231 4.9132 0.7982 6.8660

Lorenzo et al. (2019) 0.8904 - 0.7511 - 0.6634 - 0.7683 -

Ahmad et al. (2019) 0.8518 9.0083 0.7576 10.6744 0.6230 8.4683 0.7441 9.3837

Abraham and Khan (2019) 0.8605 - 0.7108 - 0.6323 - 0.7345 -

Bhalerao and Thakur (2019) 0.8527 8.0793 0.7091 9.5708 0.6668 7.2700 0.7429 8.3067

Yan et al. (2019) 0.8600 40.3100 0.7300 10.4000 0.6600 18.5300 0.7500 23.0800

Iantsen et al. (2019) 0.8700 8.3500 0.7900 9.5800 0.6700 7.8200 0.7767 8.5833

Astaraki et al. (2019) 0.8700 5.9000 0.8100 7.1600 0.7100 6.0200 0.7967 6.3600

Cao et al. (2021) 0.8938 7.5050 0.7875 9.2600 0.7849 6.9250 0.8221 7.8967

Wang et al. (2021) 0.8889 7.5990 0.8141 7.5840 0.7836 5.9080 0.8289 7.0303

Valanarasu et al. (2021) 0.8760 8.9420 0.7392 9.8930 0.7321 6.3230 0.7824 8.3860

OURS 0.8942 5.3490 0.8142 10.8988 0.7710 5.8548 0.8265 7.3675

Bold and underlined values indicate the best scores and second best scores on each metric (each column in the tables) among all the methods.

TABLE 5 Objective evaluation results of di�erent brain tumor segmentation methods on the BraTS 2020 validation sets.

References WT TC ET Average

Dice Hausdorff Dice Hausdorff Dice Hausdorff Dice Hausdorff

Jun et al. (2020) 0.8780 6.3000 0.7790 11.0200 0.7520 30.6500 0.8030 15.9900

Liu et al. (2020a) 0.8823 6.4900 0.8012 6.6800 0.7637 21.3900 0.8157 11.5200

Messaoudi et al. (2020) 0.8413 - 0.6804 - 0.6537 - 0.7251 -

Sun et al. (2020) 0.8920 - 0.7880 - 0.7230 - 0.8010 -

Cirillo et al. (2020) 0.8926 6.3900 0.7919 14.0700 0.7504 36.0000 0.8116 18.8200

Pang et al. (2020) 0.8811 18.0901 0.7605 29.0570 0.7538 34.2391 0.7985 27.1287

Sundaresan et al. (2020) 0.8900 4.4000 0.7700 15.3000 0.7700 29.4000 0.8100 16.3667

Ballestar and Vilaplana (2020) 0.8300 12.3400 0.7700 13.1100 0.7200 37.4200 0.7733 20.9567

McHugh et al. (2020) 0.8810 6.7200 0.7890 10.2000 0.7120 40.6000 0.7940 19.1733

Ma et al. (2020b) 0.8794 - 0.7731 - 0.7040 - 0.7855 -

Cao et al. (2021) 0.8934 7.855 0.7760 14.5940 0.7895 11.0050 0.8196 11.1513

Wang et al. (2021) 0.8900 6.4690 0.8136 10.4680 0.7850 16.7160 0.8295 11.2177

Zhang et al. (2021b) 0.8800 6.9500 0.7400 30.1800 0.7000 38.6000 0.7733 25.2433

OURS 0.8950 5.3117 0.8178 9.4285 0.7745 4.4715 0.8291 6.4039

Bold and underlined values indicate the best scores and second best scores on each metric (each column in the tables) among all the methods.

that the performance of proposed method may be slightly

inferior to some latest state-of-the-art methods. However, the

main purpose of this work is to verify the effectiveness of the

proposed pixel-level and feature-level image fusion approaches

for brain tumor segmentation. The segmentation model and

loss function adopted in this work are both plain while popular

approaches (i.e., the original V-Net and the BCE-and-Dice-

based loss) in 3D medical image segmentation. By introducing

some advanced architectures and loss functions, we believe that

the segmentation performance can be further improved.

5. Conclusion

In this paper, we mainly introduce pixel-level and feature-

level image fusion techniques for MRI-based brain tumor

segmentation, aiming to achieve more sufficient and finer

utilization of multimodal information. Specifically, we present

a CNN-based 3D pixel-level image fusion network named

PIF-Net to enrich the input modalities of the segmentation

model and design an attention-based feature fusion module

named MSFF for multimodal feature refinement. A two-stage
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brain tumor segmentation framework is accordingly proposed

based on the PIF-Net, the MSFF module and the V-Net.

Experimental results on the BraTS 2019 and BraTS 2020

benchmarks show that the proposed components on both

pixel-level and feature-level fusion can effectively improve

the segmentation accuracy of all the three tumor sub-regions

including whole tumor, tumor core and enhancing tumor.

The pixel-level image fusion network in this work is trained

independently to the segmentation model. Future work may

concentrate on integrating image fusion and segmentation into

a unified network for better feature learning to further improve

the segmentation performance.
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