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Abstract: Wildfires, which are becoming more frequent and intense in many countries, pose serious
threats to human health. To determine health impacts and provide public health messaging,
satellite-based smoke plume data are sometimes used as a proxy for directly measured particulate
matter levels. We collected data on particulate matter <2.5 µm in diameter (PM2.5) concentration from
16 ground-level monitoring stations in the San Francisco Bay Area and smoke plume density from
satellite imagery for the 2017–2018 California wildfire seasons. We tested for trends and calculated
bootstrapped differences in the median PM2.5 concentrations by plume density category on a 0–3 scale.
The median PM2.5 concentrations for categories 0, 1, 2, and 3 were 16, 22, 25, and 63 µg/m3, respectively,
and there was much variability in PM2.5 concentrations within each category. A case study of the
Camp Fire illustrates that in San Francisco, PM2.5 concentrations reached their maximum many days
after the peak for plume density scores. We found that air pollution characterization by satellite
imagery did not precisely align with ground-level PM2.5 concentrations. Public health practitioners
should recognize the need to combine multiple sources of data regarding smoke patterns when
developing public guidance to limit the health effects of wildfire smoke.
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1. Introduction

The number and intensity of wildfires in the United States (U.S.) and elsewhere around the world
have been increasing over the past several years and are projected to further increase with progressive
climate change [1–4]. The recent wildfires in the Western U.S. have burned over 6 million acres of land,
and the resulting smoke has spread far distances to the Eastern U.S. and even Northern Europe [5].
In addition, wildfires in Brazil and Australia recently garnered international media attention for
their devastating effects on global communities, exposing millions of people to hazardous levels
of air pollutants [6,7]. Wildfires are a significant source of particulate matter <2.5 µm in diameter
(PM2.5) [8,9], which has been found to be associated with negative respiratory, cardiovascular, neurologic,
skin, and metabolic health effects [10–13]. Climate change is predicted to increase the number of
high-pollution smoke days in the Western U.S., which may cause excess future hospitalizations for
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respiratory disease [14]. As climate change progresses, the impacts of smoke from wildfires on public
health are becoming increasingly larger.

Prior research suggests that air pollution exposure attributable to wildfires has effects on both
individuals and healthcare systems. These effects are likely due to its associations with both a wide
range of harmful effects on human health and increased hospitalization rates, which have implications
for public health practice and policy [15–19]. Many epidemiologic studies demonstrate increased risk
for adverse health outcomes (cardiovascular, respiratory, and mortality) in association with wildfire
smoke exposure [20–25].

These studies use varying approaches to exposure assessment, including concentrations of
air pollutants measured by ground monitors [20–23], air quality indices created by government
agencies [20], and smoke plume density scores determined by satellite imagery [24]. In addition,
some researchers have combined spatiotemporal data sets to perform sophisticated modeling of
PM2.5 exposure from wildfire smoke using data-adaptive machine learning and coupled empirical
and deterministic models [26–28]. Each approach has its strengths and weaknesses, which affect the
interpretation of study findings and the translation of research to public health practice.

Public messaging about changes in air quality due to wildfire smoke in the U.S. currently
depends on ground-level concentrations of PM2.5 to calculate an air quality index, but satellite-based
monitoring of smoke plumes to describe the haziness of atmospheric conditions is also available.
These exposure datasets are more likely to be used by public health practitioners than complex
metrics, such as aerosol optical depth and fire radiative power observations, because data on pollutant
concentrations from ground-level monitors and smoke density scores from satellite imagery are
open-access, easily accessible, and straightforward to interpret. Both have been integrated into
the U.S. Environmental Protection Agency’s newly updated fire and smoke map (fire.airnow.gov),
which is used to provide information on air quality during wildfire events to the national public [29].
Some investigators have attempted to combine data on PM2.5 concentrations and smoke density to
improve wildfire smoke exposure assessment [23,24]. Here, we present our experience comparing
ground-level monitoring and satellite imagery data to demonstrate previously unreported disparities in
exposure assessment methods, highlighting nuances of characterizing wildfire-associated air pollution
that can affect public communication and research about wildfire smoke exposure.

2. Materials and Methods

We assessed the impacts of wildfires on air quality in the San Francisco Bay Area during the
2017 and 2018 wildfire seasons, from 1 June to 30 November of both years (N = 366 days, ranging
from 346–366 observations per monitor due to some days when measurements were not available
for select monitors). To do so, we collected air pollution data from two publicly available sources:
PM2.5 concentration data from Bay Area Air Quality Management District (BAAQMD, San Francisco,
CA, USA, www.baaqmd.gov) monitoring stations and smoke plume density data from the National
Oceanic and Atmospheric Administration Hazard Mapping System (NOAA HMS, Suitland, MD, USA)
for Fire and Smoke product (www.ospo.noaa.gov/Products/land/hms.html).

We gathered data on daily 24-h average and daily maximum hourly average PM2.5 concentrations
(µg/m3) from the BAAQMD. We included all the BAAQMD ground-level monitors in the Bay Area
that measured PM2.5 concentrations during 2017 and 2018, which yielded a total of 16 stations in both
urban and non-urban settings. The locations of these stations are displayed in Figure 1. The BAAQMD
validates their data through audits for quality assurance that meet the U.S. Environmental Protection
Agency’s requirements.

In addition, we gathered data on daily maximum smoke plume density score, ranging from 0 to
3, for the zip code where each BAAQMD air-quality monitoring station is located from the Hazard
Mapping System (HMS), which integrates data on the geographic spread of smoke plumes from satellite
images. Fire detection zones and smoke analyses are updated several times per day. The estimates are
separated into four categories—no wildfire plume (0); and light (1), medium (2), and heavy smoke
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(3)—that describe air quality for a given geographic area. A score of 0 refers to no wildfire smoke
contributing to air pollution, and scores 1–3 theoretically reference PM2.5 concentrations attributable to
wildfire smoke: light (1), 0–10 µg/m3; medium (2), 10.5–21.5 µg/m3; and heavy (3), ≥22 µg/m3 [30,31].
Int. J. Environ. Res. Public Health 2020, 17, x FOR PEER REVIEW 3 of 9 
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Figure 1. Map displaying the locations of Bay Area Air Quality Management District (BAAQMD)
ground-level monitors measuring particulate matter <2.5 µm in diameter (PM2.5) that were included in
the analysis (N = 16). (Map tiles by Stamen Design, CC BY 3.0).

Statistical analyses and visualizations were performed with the R statistical programming language,
version 3.6.3, using the following packages: boot, DescTools, dplyr, ggplot2, lubridate, perm, SF,
and tmap. Data on daily PM2.5 concentrations and smoke plume density scores at all 16 locations
were collectively analyzed. Analyses using both the daily 24-h average and daily maximum hourly
average PM2.5 concentrations yielded similar results, so we only report results using the latter.
The PM2.5 concentrations occurring during the four smoke plume categories were compared using
the Jonckheere–Terpstra test, a ranks-based test that non-parametrically assesses differences among
ordered groups. One-sided alternative hypotheses were used to specifically test whether increasing
smoke plume score corresponded with increasing PM2.5. Post-hoc testing was performed using
both permutation tests and bootstrapped estimates. Bootstraps were calculated with 95% confidence
intervals for the differences in the medians calculated using the percentile technique.

3. Results

3.1. Analysis of the Full Wildfire Seasons

When analyzing data from the entire 2017–2018 wildfire seasons in California, we found that
there is much variability in maximum daily PM2.5 concentrations within each smoke plume category
(Figure 2). Categories 0, 1, and 2 have many outliers at the upper end of their distribution of PM2.5

concentrations, which indicates high PM2.5 concentrations on days assigned a smoke plume score less
than 3. Outliers were distributed across monitoring sites, with no sites particularly prone to outlier
values. The median values for daily maximum hourly average PM2.5 concentration for smoke plume
density categories 0, 1, 2, and 3 are 16, 22, 25, and 63 µg/m3, respectively. These findings do not align
well with the theoretical target PM2.5 concentration range referenced for smoke plume categories 1–3
(0–10; 10.5–21.5; ≥22) [30,31]. Despite this variability, a test for trend indicates a significant increasing
trend in PM2.5 when considering all four categories (p < 0.001) and only the categories where a smoke
plume is present (categories 1, 2, and 3; p < 0.001).
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monitoring and the HMS during this time frame. While the daily maximum PM2.5 concentration 
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concentrations at this location are substantially higher than the intended smoke plume 3 values for 
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and satellite imagery of smoke plumes differ temporally. Use of the smoke plume data alone could 
give the false impression that wildfire smoke exposure posed a higher health risk early in the event. 

Figure 2. Box plot comparing ground-level PM2.5 concentrations and smoke plume density categories
for each day in the entire 2017–2018 California wildfire seasons. The thick line within each box
represents the median value, and the top and bottom of each box represent the 75th and 25th percentiles,
respectively. The whiskers end at the value within the data that is no more than 1.5 times the interquartile
range away from the edge of the box, and the dots beyond these whiskers are outliers.

The estimated median differences in the daily maximum PM2.5 concentrations between days with
smoke plumes (ratings of 1, 2, or 3) and days without smoke plumes (rating of 0) are all positive.
Similarly, the PM2.5 concentrations on days with a smoke plume rating of 3 are generally higher than
those on days with a lower rating, though there is great variance. For instance, the estimated difference
in the median PM2.5 concentrations on days with a smoke plume rating of 3 compared to days with a
rating of 2 is 35.1 µg/m3 (95% CI: 13.5, 51.0). The estimated difference in median PM2.5 concentrations
between days with smoke plume rating of 2 and 1 is much smaller: 3.5 µg/m3 (95% CI: 1.0, 6.0).

3.2. Case Study of the Camp Fire Smoke Reaching San Francisco

Focusing on the 2018 Camp Fire as an example, the time-series plot (Figure 3) demonstrates
that PM2.5 concentrations and smoke plume density scores in the city of San Francisco started to
significantly increase around 8 November 2018 and decreased by 21 November 2018: a 2-week period.
Both of these increases are associated with high levels of air pollution that can be attributable to the
wildfire. However, there is a significant disparity in PM2.5 characterization by ground-level monitoring
and the HMS during this time frame. While the daily maximum PM2.5 concentration spikes to its
maximum during the second week, the smoke plume density score is highest at the beginning of
this time frame and remains smaller for the rest of the period. Notably, the PM2.5 concentrations at
this location are substantially higher than the intended smoke plume 3 values for the entire interval,
and air pollution assessment via ground-level monitoring of PM2.5 concentration and satellite imagery
of smoke plumes differ temporally. Use of the smoke plume data alone could give the false impression
that wildfire smoke exposure posed a higher health risk early in the event.
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the Camp Fire.

4. Discussion

Different exposure assessment methodologies have been used to communicate wildfire smoke
hazards to the public, but these convey different information about smoke-related air pollution.
Ground-leveling monitoring and satellite imagery are two commonly used pollution assessment
techniques. Both are reported with high spatial variability on the AirNow fire and smoke map,
which communicates information about fire and air quality to the U.S. public [29]. Some investigators
have examined the impacts of wildfire-associated fine particulate matter by using the NOAA HMS
smoke plume density scores to categorically assess exposure [23]. However, in our analysis of PM2.5

arising from the full 2017–2018 California wildfire seasons, we demonstrate that the ground-level
PM2.5 concentrations recorded by BAAQMD air monitors in the San Francisco Bay Area did not closely
correlate with the NOAA HMS smoke plume density scores for those same locations. While there
was a significant increasing trend in PM2.5 concentrations across smoke plume categories, there was
substantial variability within each of the categories as well. The extent of overlap in the range of
PM2.5 concentrations for each smoke plume category is a good reminder that using smoke plume
data alone may not be a good proxy for quantifying atmospheric PM2.5 concentrations. This issue is
further illustrated by our analysis of the 2-week period of the Camp Fire, during which the smoke
plume density score was highest at the beginning of the first week and then decreased, while the PM2.5

concentration reached its maximum in the second week.
These differences highlight the fact that the two sources of data understandably characterize

wildfire-associated air pollution differently. The NOAA HMS uses visible band satellite imagery with
a 4-km resolution to ascribe a density score for smoke plumes [32]. These scores may not precisely
or accurately describe the concentration of PM2.5 for the corresponding geographic area because
they measure anything that is blocking light, including particles of many sizes, not only PM2.5.
Misclassification of exposure between the ground level and what is observed higher in the atmosphere
can occur because the vertical position of the smoke plume is often unknown on satellite imagery [15].
Additionally, many factors can influence the spread of smoke plumes and particles of different sizes.
The presence of outliers in each smoke plume category could be explained by wind, temperature,
relative humidity, and coastal marine fog. These climatic and geographic factors can affect the spread
of wildfire smoke from the source to ground-level sensors, leading to differences in estimated pollution
levels. For the example of the Camp Fire, we hypothesize that while the smoke was heaviest at
the beginning of the fire, PM2.5 may have accumulated in San Francisco later. Thus, ground-level
measurements are an important supplement to smoke plume data, as decreasing smoke plume scores
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alone are insufficient to suggest that health risks are decreasing. Similarly, the absence of a visible smoke
plume may not be sufficient to rule out wildfire smoke as a contributor to elevated particulate matter
levels. Guidance provided to the public, including those with chronic heart or lung conditions that may
be exacerbated by exposure to wildfire smoke, should incorporate both sources of exposure information.

This study’s findings have implications for future public health research related to climate change
and wildfires. As researchers continue to study the effects of wildfire-associated air pollution on
morbidity and mortality, they must understand that their results should be interpreted within the
limitations of their chosen exposure assessment techniques. For example, many environmental
epidemiology studies use exposure lag analysis to account for cumulative or delayed impacts of
wildfire smoke exposure on health outcomes [17,20,23,33,34]. The associations that researchers find
between exposure and outcomes at various lag times can be affected by the use of specific exposure
assessment methods; our analysis of the Camp Fire shows that the time course of the exposure patterns
can vary by exposure method over the duration of the same wildfire event. Further research on
exposure assessment should explore differences in how other techniques, such as aerosol optical depth
and fire radiative power observations, estimate wildfire-associated air pollution.

This study has some limitations. We analyzed wildfire-associated air pollution using data from
ground-level monitoring stations located in one geographic area in Northern California, which may
limit the generalizability of our results. Our findings demonstrate that ground-level measurements
of PM2.5 did not always characterize air quality in a similar manner to data from satellite imagery,
and additional studies are needed to see whether these results hold true in other cases of wildfires in
different geographic areas. Additionally, it is possible that the measurements of PM2.5 concentrations
could have been impacted by factors other than wildfires, though the high increases above background
levels that we observed consistently correspond to the timing of wildfires.

Quantifying wildfire-associated particulate matter pollution is challenging, and two commonly
used sources of particulate matter data in public health research are satellite imagery and ground
monitor measurements. These data are publicly available and commonly used by public health
practitioners to inform policy and decisions regarding health risks and public safety. Our findings
suggest that NOAA smoke plume density scores did not accurately and consistently reflect
ground-level PM2.5 concentrations in the Bay Area during the 2017–2018 California wildfire seasons.
Therefore, ground monitors can effectively capture surface level concentrations of PM2.5, while the
HMS may be better suited for characterizing the spatial distribution of smoke plumes from wildfires.
This distinction is critical because low smoke plume density scores on a given day may suggest
that the air quality is healthy enough for prolonged outdoor activity when particulate pollution
is actually still high. Accurate risk communication about hazardous air quality conditions during
wildfires is important because exposure to PM2.5 is associated with many harmful negative health
effects [35–37]. Public health researchers and practitioners should be aware of the limitations of
different wildfire-associated particulate matter estimation methodologies when interpreting data for
important policy decisions and communicating information on air quality to the public.

Due to these limitations, we support the refinement of combined air pollution exposure assessment
methods, including the integration of measured and modeled atmospheric data. As examples,
the Community Multiscale Air Quality (CMAQ) model is a multipollutant, deterministic modeling
system with temporal and spatial flexibilities, and the Forum for Air Quality Modelling in Europe
(FAIRMODE) is a network that strives to harmonize the use of air pollution assessment practices [38,39].
More robust data integration methods will strengthen the accuracy and precision of air pollution
exposure assessment, including for wildfire smoke that is becoming more prevalent. For example,
one study reported on how well a model with satellite, meteorologic, and geographic/ecological inputs
predicted PM2.5 measurements during wildfire smoke episodes at ground monitoring stations [40].
A developing opportunity for enhanced exposure assessment that can advance environmental health
research is the fusion of data from low-cost sensors, reference monitors, and modeling techniques
for the investigation of air pollution-related health effects [41]. Improved assessment could also lead
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to future improvements in forecasting, which could help the public avoid periods of exposure to
hazardous air quality.

5. Conclusions

We found that measurements of PM2.5 concentrations from ground-level air monitoring stations
in the Bay Area and smoke plume density scores calculated based on satellite imagery from the NOAA
HMS characterized air pollution associated with the 2017–2018 wildfire seasons in California differently.
Therefore, these two exposure assessment techniques commonly used in public health research and
practice may convey different information about health risks associated with air quality conditions
during wildfires. Incorporating data from both techniques and developing combination methods will
better inform public health communication and research that aim to reduce exacerbation and incidence
of disease.
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