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Abstract: Introduction: As a consequence of a sessile lifestyle, plants often have to face a number of 
life threatening abiotic and biotic stresses. Plants counteract the stresses through morphological and 
physiological adaptations, which are imparted through flexible and well-coordinated network of sig-
nalling and effector molecules, where phytohormones play important role. Hormone synthesis, signal 
transduction, perception and cross-talks create a complex network. Omics approaches, which include 
transcriptomics, genomics, proteomics and metabolomics, have opened new paths to understand such 
complex networks. 
Objective: This review concentrates on the importance of phytohormones and enzymatic expressions 
under metal stressed conditions.  
Conclusion: This review sheds light on gene expressions involved in plant adaptive and defence re-
sponses during metal stress. It gives an insight of genomic approaches leading to identification and 
functional annotation of genes involved in phytohormone signal transduction and perception. Moreo-
ver, it also emphasizes on perception, signalling and cross-talks among various phytohormones and 
other signalling components viz., Reactive Oxygen Species (ROS) and Reactive Nitrogen Species (RNS). 
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1. INTRODUCTION 

 Heavy metals are natural component of earth’s crust. 
However, their levels and availability have significantly in-
creased in the past few decades. The anthropogenic activities 
like mining, smelting, industrial applications, use of exces-
sive pesticides etc. as well as natural geogenic activities are 
the sources of heavy metal contamination [1, 2] (Table 1). 
Metals are non-biodegradable [3] and continuously change 
their forms into sulphates, carbonates, oxalates etc. In devel-
oping countries, where industrialization is at boom and envi-
ronmental regulations are still in the phase of development, 
heavy metal pollution has spread vastly in surface and 
groundwater and soils [4, 5]. Hence, a number of heavy met-
als are entering into plant and human body owing to the phe-
nomenon of bioaccumulation and bio-magnification, respec-
tively in greater amounts than required or tolerable. Metals 
are of concern for humans since elements like Arsenic (As) 
and Cadmium (Cd) are toxic and Carcinogenic [6, 7]. 
 In the plants, toxic non-essential metals gain entry in 
competition with essential metals due to ionic mimicry [8, 
9]. The influx of arsenate [As(V)] is driven by phosphate 
transporters [10], while arsenite [As(III)] is taken up by pri-
marily via nodulin 26-like intrinsic proteins class of  
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aquaglyceroporins [8, 11]. The uptake of Cd occurs via 
transporters of divalent cations like Iron (Fe2+), Calcium 
(Ca2+), Zinc (Zn2+), and Manganese (Mn2+) [12, 13]. The 
transport of essential metals takes place through specific 
transporters for the purpose viz., Copper Transporter (COPT) 
protein family for Copper (Cu) [14]. Non-essential metals as 
well as essential metals in more than required amounts affect 
plant growth and biomass accumulation. They also cause 
many deleterious effects on physiological processes of plants 
like mineral nutrient uptake, photosynthesis and plant-water 
relationships [15]. The increased production of reactive oxy-
gen species (ROS), reactive nitrogen species (RNS) and al-
tered redox and energetics status have been considered as the 
major causes of toxic impacts of metals [16]. Plants counter-
act the stress effects through multifaceted response. The an-
tioxidant compounds and enzymes take a lead to keep ROS 
level under control. The alterations in redox state and ener-
getics are controlled through changes in redox molecules like 
glutathione and ascorbate, utilization of alterative pathways 
for electron transport, and regulation of ATP metabolism 
[16, 17]. To avoid any mineral disturbances, transporters 
expression and functions may be regulated. Furthermore, 
plants adapt to continuing metal stress through modified root 
and shoot length, root hair development etc. These multifac-
eted responses are regulated through focal functioning of 
various phytohormones. The metal stress and its effects have 
been illustrated in Fig. (1) along with the possible roles of 
phytohormones in the regulation of these events. 
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Table 1. Sources of toxic heavy metals. 

Heavy Metal Sources 

Arsenic Geogenic processes, thermal power plants, fuel burning 

Chromium Mining, Leather tanning, industrial coolants, chromium salt manufacturing 

Cadmium Waste batteries, e-waste, paint sludge, incinerations, Zinc smelting 

Copper Mining, electroplating, smelting processes 

Mercury Chlor-alkali plants, thermal power plants hospital wastes 

Lead Lead acid batteries, e-waste, paints, coal based thermal plants. 

 

 
Fig. (1). Schematic representation of metal stress mediated response in plants. 

 The use of ‘omics’ approach to study the genes (genom-
ics), proteins (proteomics) and metabolites (metabolomics) 
from different tissues and at various developmental stages 
plays a crucial role in understanding the effects of heavy 
metals on physiology, biochemistry and metabolism of 
plants. Genomics and functional genomics help in discover-
ing genes and their respective functions and in heavy metal 
stress. These tools can help in identifying new genes, com-

paring them with already existing genes and even help in 
studying their roles in plant adaptive responses, which can be 
at physiological, biochemical and molecular level. Genomics 
studies can be further categorized in three sub-levels: Struc-
tural Genomics where genetic and physical mapping of 
genes are carried out, Functional Genomics represents analy-
sis of genes’ functions and Comparative Genomics helps in 
comparing genomes across the species. 
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2. ROLE OF PHYTOHORMONES IN PLANT DE-
FENCE SYSTEMS UNDER HEAVY METAL STRESS 

 Phytohormones are complex organic compounds that 
regulate plant growth and development at different stages of 
their life cycle from seed germination to grain development. 
Plants produce a number of hormones like auxins, cytoki-
nins, gibberellins, Abscisic Acid (ABA), Salicylic Acid 
(SA), ethylene, jasmonates, brassinosteroids, strigalactones 
and some low molecular weight peptides. A number of syn-
thetic compounds are also available, which serve same func-
tions as that of phytohormones, e.g., Indole-3-Acetic Acid 
(IAA) for auxins. Such synthetic compounds are known as 
Plant Growth Regulators (PGRs). Phytohormones are vital 
elements of the signal-transduction pathway and their pres-
ence may stimulate reactions that are signals or causative 
agents for stress responses [18, 19]. In the process of accli-
matization to a long term metal stress, biosynthesis, transpor-
tation, distribution, and conjugation of plant hormones get 
altered [17, 20-23]. The importance of phytohormones has 
also been proved through the exogenous application of plant 
hormones that has resulted in increased stress tolerance 
against heavy metals [17, 23-32] (Fig. 2). In the following 
sections, the roles of various phytohormones are being dis-
cussed under separate subheadings. 

2.1. Auxins 

 Auxins are a class of phytohormones involved in the 
regulation of growth and life cycle of plants. Auxin is syn-
thesised in tissues like young leaves and cotyledons and is 
transported passively to root system via phloem. Auxins 
transportation represents the inverted fountain model [33]. It 
is also transported through active system also known as polar 

auxin transport (PAT), which is mediated by a special class 
of protein family ‘PIN Family’ [34]. There are two types of 
auxin receptors: ABP1 (Auxin Binding Protein 1) and 
TIRs/AFBs (Transport Inhibitor Response 1/ Auxin signal-
ling F-Box) [35]. Another recently identified auxin receptor 
is F-box protein: SKP2A (S-Phase Kinase Associated Pro-
tein 2A) [36].  
 Roots are the first organs to come in contact with the 
stress and hence, roots are an important link in the stress 
perception and signalling. The changes in concentration and 
distribution pattern of auxins have been found in response to 
several heavy metals like Cd, Zn, Cu, and lead (Pb) [29]. 
Therefore, a direct involvement of auxins in metal stress 
signalling is suggested. Further, auxins play crucial role in 
growth of root tissues and may be indirectly involved in 
stress regulation by affecting the expression of transporters. 
In rice AUX1 mutants (OsAUX1), the Cd sensitivity has been 
found to increase along with reduced growth of primary and 
lateral roots and root hairs. The effects could be reversed by 
exogenous supply of auxin analogue suggesting important 
role of AUX1 in response to Cd stress [37]. In silico analysis 
shows that Os08g01480 which is a CYP450 like gene might 
help plants to combat environmental stress via modulation of 
auxin metabolism [38]. In Arabidopsis, Cd exposure has 
been found to affect expression of PINs and AUX1 and in-
duce lateral root density. However, in aux1-7 and pin2-1 
mutants, this effect was not seen. In addition to changes in 
transport of auxins, the level of IAA is also altered due to 
increased activity of IAA oxidase. Excess of Cu and alumin-
ium (Al) was found to inhibit meristematic cell division and 
root elongation by altering the auxin transport and distribu-
tion through changes in the expression of PIN1 and, PIN2 
and AUX1, respectively [39, 40]. An exogenous supply of 

 
Fig. (2). Some specific roles of phytohormones in heavy metal stress condition. 
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IAA has been found to improve the growth of Brassica 
juncea under As stress and also to modulate the expression 
of miR167, miR319, and miR854, suggesting a protective 
role of IAA in enhancing As tolerance through interaction 
with miRNAs [17]. The exogenous application of auxin 
along with selenium (Se) has been found to further improve 
the As toxicity amelioration in rice as compared to that of Se 
alone [41]. In addition to protection of plants under stress, 
exogenous application of IAA has also been enhanced heavy 
metal accumulation in plants [42] and improved metal phy-
toextraction ability viz., for lead (Pb) in maize [43]. It can 
thus be concluded that, auxins play a crucial role in heavy 
metal stress mediated responses.  

2.2. Cytokinins 

 Cytokinin is a N6-prenylated adenine derivative, which is 
involved in various developmental processes like cell divi-
sion, nutrient metabolism, chloroplast development, nodula-
tion, circadian rhythms [18, 44]. This hormone is usually 
synthesised in roots, young fruits and seeds. There are two 
major forms of cytokinins: isopentenyladenine (iP) and 
trans-zeatin [45]. They enter shoot system via xylem. They 
act as the negative regulators of lateral root formation by 
downregulating the expression of PIN genes [46]. The cumu-
lative effect of auxin-cytokinin antagonistic behaviour de-
termines the final root meristem and root growth. Cytokinin 
reduces the number of dividing cells and inhibits root growth 
by promoting cellular differentiation in the transition zone of 
root system [47].  
 A study by Srivastava et al. [48] proposed role of cytoki-
nin in As stress in B. juncea. It was found that cytokinin re-
sponse 1 (CRE1), a cytokinin receptor, was down-regulated 
in response to As that in turn induced the expression of 
Group 1 sulphate transporters. In a recent study on A. 
thaliana also, cytokinin depletion, induced by the expression 
of cytokinin oxidase/dehydrogease 1 (CKX1), was observed 
to initiate the activation of As tolerance mechanism leading 
to the accumulation of thiol compounds like Phytochelatins 
(PCs) [49]. During Cu stress, the inhibition of primary root 
growth has been linked to a significant increase in the 
amount of cytokinin [50]. Cd stress was responsible for re-
duced growth and cytokinin content in soybean [51]. By con-
trast, in other studies, the exogenous application of cytoki-
nins has been reported to increase the stress-tolerance capac-
ity of plants indicating a beneficial effect of cytokinins in the 
regulation of plants’ adaptation to environmental stresses. It 
has also been observed that Cd-treatment inhibited the 
growth rate, chlorophyll content, and net photosynthesis. 
However, the addition of kinetin reduced Cd-induced altera-
tions in pea seedlings [52]. Many deleterious effects of 
heavy metals (Cd, Pb, and Cu) on growth of green algae, 
Chlorella vulgaris have been reported [53]. However, ex-
ogenous application of cytokinins alleviated stress symptoms 
by reducing metal absorption and stimulating the defense 
system. It has been reported that Pb treatment lowered the 
terminal electron transport activity by 25% in root tissues of 
Picea abies. Zeatin mitigated the Pb-induced inhibition of 
root growth and the ETS activity [54]. In a transgenic ap-
proach, tobacco plants expressing an isopentenyl transferase 
(ipt) gene having enhanced cytokinin accumulation were 
found to possess higher tolerance against Cu stress in com-

parison to non-transformed plants. This was accompanied by 
an increased expression of the metallothionein gene (MT-L2) 
[55]. The above studies hence propose that cytokinins also 
play a key role in response strategies adopted by plants 
against heavy metal stress. 

2.3. Gibberellins 

 Gibberellic Acids (GA) were originally identified as a 
fungal toxin causing unusual shoot elongation of rice plants 
[56]. Gibberellins are a large family of tetracyclic diterpinoid 
plant growth substances associated with seed germination, 
leaf expansion, floral initiation, floral organ development 
and induction of some hydrolytic enzymes in the aleurone of 
cereal grains [57]. It has been reported that gibberellins also 
play a role in modulating source-sink relationships under 
environmental stresses [58]. A few studies also propose role 
of gibberellins under metal stresses as discussed below. 
 GA plays a crucial role in providing protection against 
Cd-Stress by diminishing the Cd-induced changes. Cd expo-
sure can increase the expression of iron-regulated transporter 
1 (IRT1), a transporter involved in Cd uptake and this up-
regulation was suppressed by exogenous application of GA 
through reduction in Nitric Oxide (NO) levels in A. thaliana 
[32]. In wheat seedlings, Nickel (Ni) has been reported to 
decrease growth, chlorophyll content, and carbonic anhy-
drase activity by enhancing oxidative stress. However, these 
effects were reversed when seeds were soaked in a combina-
tion of GA and Ca due to enhanced antioxidant potential 
[59]. GA also ameliorated the toxic effects of Chromium 
(Cr) on growth and ammonium assimilation of pea seedlings 
by regulating oxidative stress and the antioxidant system 
[26]. GA alleviated Cd induced adverse effects on seed ger-
mination and growth of Brassica napus by regulating oxida-
tive stress and ROS damage [60]. This hormone also abol-
ished the detrimental effects of Cd and Pb by regulating the 
activities of proteases, catalases, and peroxidases in broad 
bean and lupin plants [61]. Khan and Lee [62] assessed en-
dophyte-metal-plant interaction with Penicillium funiculo-
sum-Cu-Glycine max and observed significant reversal of Cu 
toxicity in endophyte-inoculated plants with increased bio-
mass and Cu accumulation. The positive effects of endo-
phyte were ascribed to its potential of gibberelins secretion 
and to decline in stress-induced ABA levels. Similarly, Khan 
et al. [63] compared the effectiveness of endophyte P. jan-
thinellum or GA3 application on aluminium (Al) tolerance of 
tomato plants and found similar potential of endophyte and 
exogenous GA3. For Arabidopsis, it has been demonstrated 
that the expression of adenosine-5’-phosphosulfate reductase 
(APR), the key enzyme of sulfate assimilation, is increased 
using GA signalling under stress, while other hormones do 
not show such an effect. This suggests GA mediated signal-
ling may be utilized under metal stress to improve sulphur 
metabolism [25]. Through the above studies, it appears that 
gibberellins may regulate heavy metal stress in plants 
through alteration in ROS and RNS levels, expression of 
metal transporters as well as sulphur metabolism. 

2.4. Abscisic Acid 

 Abscisic Acid (ABA) is a carotenoid derivative. It plays 
a specific role in abscission of leaves and fruits, control of 
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seed dormancy, bud growth and in stress responses. It has 
well established role in drought stress [64]. An increase in 
ABA effects stomatal conductance. Basal level of this hor-
mone is important for the plants but it may act as growth 
inhibitor when its levels increase [65]. ABA is synthesised in 
both leaves and roots. The movement of this hormone occurs 
both through xylem and phloem. The known carriers of ABA 
are ABCG40 (importer) and ABCG25 (exporter) (ATP-
Binding Cassette G40 and G25), which are situated in 
plasma membrane [66, 67]. There are multiple receptors 
known for ABA perception. GTG1 and GTG2 (GPCR Type 
G Protein) are plasma membrane localised ABA receptors 
that function in seed germination process [68]. PYR/PYL 
(Pyrabactin Resistance/ Pyrabactin Resistance Like) are nu-
cleocytoplasmic ABA receptors, which are involved in guard 
cell movement [69], while CHLH (Chelate H Subunit) is a 
chloroplast localised receptor and has same function as PYR 
receptors [70]. 
 An elevated level of ABA has been reported under vari-
ous stress conditions that plays an important role in adaptive 
stress responses but rather few reports are available in classi-
fying its role in metal stress. In a study on potato (Solanum 
tuberosum) plants, it was found that Cd supply induced the 
expression of 9-cis-epoxycarotenoid dioxygenase 1 
(NCED1) and ABA synthesis. This in turn led to increased 
synthesis of PCs through induced expression of phyto-
chelatin synthase (PCS) gene. The role of ABA was further 
proved through the use of ABA biosynthesis inhibitor, fluri-
done (Flu), whose application abolished the Cd-induced re-
sponses and decreased ABA level [71]. Silicon mediated Cd 
toxicity amelioration in rice has been found to be associated 
to phytohormone changes including ABA, jasmonic acid and 
salicylic acid [72]. The role of ABA in Cu stress mediated 
accumulation of proline, an important osmolyte and ROS 
scavenger, has been suggested [73]. An elevated concentra-
tion of ABA has been reported under Zn and Pb stresses in 
germinating chickpea seeds [74]. ABA plays a significant 
role in Cr-stressed condition also and its efficiency increases 
with the cross talks among other phytohormones [75]. An 
increase in ABA synthesis under As stress has been found in 
B. juncea. The work suggested an interaction of ABA and 
miR159 to have a role in As stress responses through effects 
on other hormones [17]. In transcriptomic analysis in rice 
under arsenate and arsenite also, changes in ABA metabo-
lism genes were noticed viz., [76]. The mechanistic investi-
gation of ABA mediated metal-stress tolerance has been per-
formed through exogenous supply of ABA to plants [77, 78]. 
In Pb-stressed Atractylodes macrocephala, positive effects 
of an optimum supply of ABA were associated to increased 
antioxidant enzyme activities and reduced oxidative stress 
[77]. In Populus x Canescens subjected to Zn stress, exoge-
nous ABA supply was associated to an increase in endoge-
nous ABA, GA and salicylic acid levels and increased foliar 
ascrobate. The ABA supply led to decline in Zn concentra-
tions through down-regulation of genes involved in Zn up-
take and detoxification viz., yellow stripe-like family protein 
2 (YSL2) and plant cadmium resistance protein 2 (PCR2) 
[78]. 

2.5. Ethylene 

 Ethylene is gaseous plant hormone. The highest produc-
tion of ethylene is reported in meristematic cells and in rip-

ening and stressed tissues. This hormone is basically in-
volved in fruit ripening, sex determination, and abscission 
[79]. Ethylene is strong inhibitor of root elongation and lat-
eral root development but it stimulates root hair formation 
[80]. It also regulates auxin transport within the root tip [81]. 
Ethylene adversely affects the cell expansion capacities by 
increasing the formation of specific cell wall components 
[82]. Ethylene has five receptors ERT1 and ETR2 (Ethylene 
Response 1 and 2), ERS1, ERS2 (Ethylene Response Sensor 
1&2), EIN4 (Ethylene Insensitive 4). These all are negative 
regulators of ethylene signalling pathway and are localized 
on endoplasmic reticulum membrane [83].  
 It has been reported that the level of endogenous ethylene 
increases in metal stress conditions [84]. Cd-stress can cause 
an up-regulation of ethylene responsive genes [85] as well as 
ethylene production in various plants like B. juncea [86, 87] 
and Hordeum vulgare [88]. Ni and Zn exposure also enhance 
ethylene levels in B. juncea [89]. Ethylene can reverse the Ni 
and Zn-mediated inhibition of photosynthesis by changing 
the activity of photosystem II in B. juncea [89] and can also 
influence antioxidant metabolism. In wheat plants, Cd stress 
amelioration was demonstrated through Se and S supplemen-
tation and the effects were associated to changes in ethylene 
levels. The application of ethylene biosynthesis inhibitor, 
aminoethoxyvinylglycine (AVG), reversed the positive ef-
fects of Se and S supplementation indicated an involvement 
of ethylene in Cd-stress resopnses [90]. High concentration 
of Cu induces up-regulation of 1-aminocyclopropane-1-
carboxylate oxidase (ACO) genes that catalyzes the final step 
of ethylene formation in plants [91]. Ethylene also mediates 
the inhibition of root elongation in high Al-stress condition 
[92]. Cd-induced stress also up-regulates 1-
aminocyclopropane-1-carboxylate synthase 2 (ACS2) and 
ACS6 genes which are members of the biosynthesis pathway 
of ethylene [93]. Sesbania drummondii, a Pb hyperaccumu-
lator, also showed increased mRNA levels of the putative 
ACS/ACO gene upon exposure to lead [94]. Cd-tolerance in 
tolerant species of H. vulgare was also related to induction 
of ethylene signalling [95]. Hence, a number of studies re-
veal that ethylene is an important hormone involved in 
plants’ responses to several metal stresses in mediating 
physiological, biochemical and metabolic changes.  

2.6. Jasmonates 

 Jasmonates are oxylipin signalling molecules that regu-
late wound responses, secondary metabolites production, and 
defence against abiotic and biotic stresses [96]. Jasmonic 
Acid (JA) is very effective against necrotrophic pathogens 
and herbivorous insects [97]. Chemically, these compounds 
are tri-unsaturated fatty acids that are released from plastids. 
The most active natural form of JA is JA-Ile (jasmonoyl-L-
isoleucine). JA enhances auxin biosynthesis but conversely 
auxin attenuates JA signalling [96]. JA also inhibits primary 
root growth as it arrests cell division in mitosis stage [98]. 
The JA receptor COI1 (Coronatine Insensitive 1) is an F-box 
protein which binds with negative regulator of JA i.e. JAZs 
(Jasmonate Zim Domain) [99]. 
 JAs can nullify the toxic effects of low concentration of 
Cu and Cd by inducing the accumulation of phytochelatins, 
glutathione and carotenoids [100, 101]. A complex network 
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of JA along with ethylene, ROS, NO and Ca signalling sys-
tems was reported to mediate the Cd-stress responses in pea 
plants including the induction of pathogenesis-related and 
heat shock proteins [102]. Methyl jasmonate also plays role 
in Cu- mediated stress condition by regulating the oxidative 
stress mechanism in Phaseolus coccineus plants [103]. JA 
can modulate antioxidant mechanism of higher plants with 
tight regulation of biomembrane peroxidation making plants 
tolerant to toxic Ni [104]. It has also been reported that toxic 
effects of Cu are nullified by the JA-mediated enhanced ac-
cumulation of osmolytes like proline, glutathione, caro-
tenoids and enhanced antioxidant enzymes [105] in pigeon 
pea. An involvement of jasmonates in the signalling of As-
mediated stress has been proposed in B. juncea [48]. Jas-
monates were proposed to sense the As stress through indi-
rect perception of stress to sulfur metabolism. The proposi-
tion was further proved through monitoring of significant 
changes in JA and MeJA in As stressed B. juncea and by 
visualizing the improved growth and tolerance of plants by 
external supply of JA [17]. In transcriptomic analysis in rice 
under As(III) stress, genes involved in JA biosynthesis and 
JAZs were significantly up-regulated [106]. Conversely, JA 
was suggested to be involved in the toxic action of heavy 
metals rather than for the defence in a few studies [107]. 
Jasmonates appear to be involved in perceiving and signal-
ling the metal stress to plants and to be associated in cross 
talks among phytohormones as well as ROS, RNS and Ca 
signalling networks. 

2.7. Brassinosteroides 

 Brassinolide was the first isolated Brassinosteroid (BR) 
from Brassica napus and since then almost 50 natural ana-
logues have been found in various plants species [108]. 
Chemically they are polyhydroxylated triterpenoids and are 
essential for plant growth. Their major functions include 
male fertility, vascular development, flowering time regula-
tion and plant responses in light, temperature, salt and plant-
pathogen interaction. BRs are found in young tissue, repro-
ductive organs, seeds and fruits. They serve as local signal as 
they do not undergo long distance transport. There are three 
important receptor for brassinosteroides, which are localised 
on plasma membrane; BRI1 (Brassinosteroid Insensitive 1), 
BRL1 and BRL2 (BRI1-Like 1 and 2) [109].  
 The exogenous 24-Epibrassinolides (EBL) caused a sig-
nificant reduction in Cr accumulation and improved the 
growth of seedlings by strengthening antioxidant defence 
system via up-regulation of gene expression in rice viz., su-
peroxide dismutase (Mn-SOD, Cu/Zn-SOD), catalase (Cat 
A, Cat B), ascorbate peroxidase (APX) and glutathione re-
ductase (GR) [110]. Further, it has been confirmed that BRs 
hasve a potential role in mitigating Zn oxide nanoparticles-
induced toxicity in tomato seedlings [111]. In B. napus, BRs 
reduce the toxic effects of Cd by diminishing the damage on 
photochemical centres and by maintaining the activity of 
oxygen evolving complex and electron transport chain in a 
balanced state [112]. Cd stress condition triggers the activa-
tion of BRs signalling pathway in A. thaliana. The conse-
quent high BR contents lead to hypersensitivity to Cd that in 
turn initiates the plant adaptive mechanism [113]. In another 
study, the exogenous foliar application of BRs on Raphanus 
sativa significantly reduced the stress caused due to Zn con-

tamination [114]. An interactive effect of EBL and Se has 
been reported to reduce the Cu stress in B. juncea through 
altered proline metabolism and antioxidants [115]. Exoge-
nous application of EBL also reduced Zn-induced toxicity in 
eggplant seedlings by regulating the glutathione-ascorbate 
dependent detoxification pathway [116]. Ni treatment also 
induces accumulation of BRs viz., 24-EBL, Castasterone, 
Dolicholide and Typhasterole in B. juncea [117]. As-induced 
changes in BRs like castasterone, teasterone, 24-
epibrassinolide, and typhasterol, in B. juncea have also been 
reported [118]. A role of BRs in metal-stressed plants ranges 
from antioxidant and phytochelatin changes to biosorption 
and growth alterations [119]. 

2.8. Salicylic Acid 

 Salicylic Acid (SA) is a phenolic compound. It is synthe-
sized from chorismate compound in chloroplast and from 
phenylalanine in the cytoplasm via different pathways [120, 
121]. The main functions of SA are in regulation of respira-
tion, seed germination and thermo-tolerance. It plays a vital 
role in response to plant pathogens and abiotic stresses [122, 
123].  
 SA treatment stimulates signalling systems related to 
plant defence actions against Cd-induced oxidative stress 
[124]. It has been demonstrated that SA serves as a signal-
ling molecule and hence, it has been used in maize seed 
priming to reduce the accumulation of Cr and to trigger up-
regulation of antioxidants [125]. SA can also act as a direct 
scavenger of ROS species like hydroxyl radicals that are 
formed especially in metal stress conditions. The exogenous 
application of SA has significantly improved Cd-tolerance in 
Phaseolus aureus and Vicia sativa by increasing antioxidant 
enzyme pool of both apoplastic and symplastic compart-
ments and consequently by decreasing H2O2 accumulation 
[126]. It has been reported that SA reduced Cd-uptake, im-
proved photosynthetic efficiency and enhanced antioxidant 
activities in Cannabis sativa [127]. Exogenous application of 
SA was also found to revert growth and oxidative stress 
caused by As in rice and to also reduce As translocation to 
shoots through changes in antioxidants and expression of As 
transporter genes [128]. SA has also been suggested to miti-
gate chlorotic effects caused by Fe deficiency and also en-
hance Fe uptake and transport in Arachis hypogaea [129]. 
Thus, SA plays an important role in providing metal stress 
resistance to plants. 

3. CROSS-TALK AMONG PHYTOHORMONES AND 
REACTIVE OXYGEN SPECIES 

 ROS production and dismutation are natural processes in 
plants owing to oxygen-driven life. However, this need to 
happen in a fine balanced state as whenever this balance is 
disturbed, ROS production may increase substantially lead-
ing to oxidative stress [16]. Heavy metals too cause stress to 
plants through changes in ROS levels. The ROS, activated 
by metal stress, can act as an intra and intercellular signalling 
molecule [130]. Pro-oxidant enzymes like glycolate oxidase 
and NADPH oxidase may also participate in metal induced 
ROS generation [131]. NADPH oxidase mediated ROS ac-
cumulation in apoplast induces activation of GA signalling 
pathway, which in turn triggers seed germination [132]. Fur-
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ther, interconnections of phytohormones with ROS are well 
discovered. Auxin-induced ROS are involved in cell wall 
loosening and cell elongation [133]. A decrease in endoge-
nous auxin level increases plant tolerance to oxidative stress 
[134]. It has been demonstrated that NADPH oxidase activ-
ity is correlated with endogenous levels of BR in cucumber 
[135]. ABA-induced inhibition of primary root growth is 
related with the activation of NADPH oxidases and ROS 
accumulation [136]. Ethylene regulates stomatal closure via 
H2O2 production in A. thaliana [137]. SA modulates cellular 
redox homeostasis by inhibiting catalases in peroxisomes, 
which in turn increase ROS level that activate thiol signal-
ling pathway [138, 139]. All SA mediated responses of ROS 
generation are independent of NADPH oxidases [140]. 
These studies indicate how phytohormones function through 
changes in ROS metabolism and vice versa. Thus, cross-
talks among phytohormones with ROS might play important 
role in perception and signalling of metal stress and to help 
plants’ adapt to the stress. 

4. REACTIVE NITROGEN SPECIES AND THEIR 
ROLE IN METAL STRESS 

 Various NO derived compounds, like nitroxyl anion, ni-
trosonium cation, higher oxides of nitrogen, S-nitrosothiols, 
and dinitrosyl iron complexes are collectively known as Re-
active Nitrogen Species (RNS). These highly reactive spe-
cies can cause cell injury and death by inducing nitrosative 
stress [141]. NO plays a crucial role in signalling mechanism 
and regulates plant responses during abiotic and biotic 
stresses. Further, this hydrophobic gas is important at mo-
lecular level too with protein modifications by binding to 
cysteine residues, heme or iron sulfur centers and tyrosine 
residue nitration [142]. NO also interacts with other signal-
ling molecules and plant hormones. It activates H2O2, SA, 
ABA, JA and ethylene signalling pathways, which in turn 
increase the antioxidant activity and improve oxidative stress 
tolerance [143]. It has been demonstrated that ABA-H2O2-
NO-MAPK (mitogen-activated protein kinase) together 
forms an antioxidant survival cycle [144].  
 It has been found that NO2--dependent NO production in 
Triticum aestivum roots increased under Cd stress [145]. 
Recently, a strong relationship has been established between 
ROS and RNS metabolism in two species of Brassica sub-
jected to Zn stress. Oxidative components were the predomi-
nant players as compared to nitrosative stress [146]. ROS 
and RNS relationship have also been well studied in Arabi-
dopsis where the alteration in their metabolism causes As-
induced nitro-oxidative stress. In this context, As affects the 
activity of the two important enzymes involved in the glu-
tathione metabolism (glutathione reductase and S-
nitrosoglutathione reductase). This in turn decreases GSH 
and GSNO content and causes nitro-oxidative stress [147]. 
In a recent study conducted in model plant Arabidopsis, it 
has been demonstrated that Cd stress causes the over-
production of peroxisomes, which are the endogenous source 
of peroxynitrite implicating a pivotal role of peroxisomes in 
response mechanism against heavy metal stress [148]. An 
interaction of NO with JA and ethylene as well as ROS has 
been proposed in Cd-stressed pea seedlings [99]. Hence, 
RNS metabolism appear to be an important determinant in 
the metal-stress perception and signalling [149] that needs to 
be investigated in more detail in future. 

CONCLUSION 

 Metal stresses are one of the major culprits that limit the 
overall agricultural productivity. With the growing popula-
tion, the need of the hour is to enhance food production even 
in adverse condition in order to satisfy the growing demand 
of food. In past few decades, there has been significant pro-
gress with the help of advancement in biotechnological ap-
proaches, molecular biology approaches and currently the 
‘omics’ era. Various studies discussed above might not have 
included all the research conducted but provide conclusive 
evidences on the role of various phytohormones and plant 
growth regulators during metal stress along with cross-talks 
with ROS and RNS metabolisms. A lot of information about 
growth regulation by phytohormones is well known and 
hence it becomes apparent that phytohormones may also 
play crucial role in adaptive growth changes of plants during 
extended metal stress conditions. The future research needs 
to focus on integrating genomics, metabolomics and pro-
teomics approaches to unravel integrative mechanism of 
metal-stress perception, signalling and responses.  
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