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Human and mouse CD4+FoxP3+ T cells (Tregs) comprise non-redundant regulatory
compartments which maintain self-tolerance and have been found to be of potential
therapeutic usefulness in autoimmune disorders and transplants including allogeneic
hematopoietic stem cell transplantation (allo-HSCT). There is substantial literature
interrogating the application of donor derived Tregs for the prevention of graft versus
host disease (GVHD). This Mini-Review will focus on the recipient’s Tregs which persist
post-transplant. Although treatment in patients with low dose IL-2 months post-HSCT are
encouraging, manipulating Tregs in recipients early post-transplant is challenging, in part
likely an indirect consequence of damage to the microenvironment required to support
Treg expansion of which little is understood. This review will discuss the potential for
manipulating recipient Tregs in vivo prior to and after HSCT (fusion proteins, mAbs).
Strategies that would circumvent donor/recipient peripheral blood harvest, cell culture and
ex-vivo Treg expansion will be considered for the translational application of Tregs to
improve HSCT outcomes.
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INTRODUCTION

CD4+FoxP3+ Tregs have demonstrated immune regulatory activity which can provide therapeutic
application to allogeneic transplantation including hematopoietic stem cell transplants (HSCT).
Their use in experimental as well as clinical transplants has shown the ability to promote
engraftment and diminish both host versus graft (HVG) and graft versus host (GVH) responses
(1–5). To date, the majority of experimental studies have focused on donor - not recipient - Tregs as
strategies to reduce allo-immune responses and promote tolerance post-HSCT (1, 6–12). Some
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earlier studies did adoptively transfer “recipient” Tregs obtained
from syngeneic animals and demonstrated their capacity to
ameliorate acute and chronic GVHD (13–15).

Interestingly, manipulation of Tregs in recipients of clinical
HSCT with chronic GVHD has shown encouraging results;
however, the precise origin of these Tregs within the patients
(i.e. donor versus recipient) was not a focus of the study (3, 12).
Following transplant, the source of Tregs is variable and may
include transplanted mature and subsequently de novo derived
populations of both donor and recipient origin (Table 1) derived
from persisting hematopoietic precursor cells (16, 17).
Immediately post-transplant, recipient Tregs have been
identified by a number of investigators and their manipulation
has been reported to ameliorate GVHD (2, 18). In the present
review, we will focus on recipient Tregs and their ability and
potential use to regulate GVHD following allo-HSCT.
Specifically, recipient Tregs (rTregs) will be defined as those
cells persisting/surviving following conditioning and transplant.
We posit rTregs have been underappreciated to date. Strategies
to optimize and exploit their regulatory capacity in different
recipient tissues may lead to novel translational strategies for
improving allo-HSCT outcomes.
RECIPIENT TREG PRESENCE
AND FUNCTION FOLLOWING
ALLOGENEIC HSCT

During the last 15 years, several groups including our own have
reported identifying recipient Tregs (rTregs) post-HSCT which
possess functional suppressive capacity in vivo. Early studies by
Shlomchik and colleagues found that radiation-resistant recipient T
cells ameliorated GVHD in a chronic murine model (14).
Experiments demonstrated that this process was mediated only
by persisting host CD4+CD25+ but not CD4+CD25- host T cells
(14). Studies by our laboratory definitively demonstrated persisting
or “residual” rTregs following varying conditioning levels using
syngeneic transplants with congenic markers to discriminate donor
and recipient populations (18). The results following allogeneic T
cell depleted grafts were similar to the syngeneic HSCT results, i.e.
rTregs persisted and comprised a higher frequency of surviving
CD4 T cells after sublethal and lethal TBI conditioning. Notably,
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some rTregs persisted weeks after transplant, underwent a
significant expansion dependent primarily on IL-2, and possessed
suppressive function inhibiting T cell proliferation in vitro and
providing in vivo protection against development of autoimmune
disease (18, 19). Other reports also noted Tregs exhibit radiation
resistance resulting in increased FoxP3+ frequency within the
animal’s CD4 compartment (20, 21). Qu et al. found that Tregs
were more resistant to gamma TBI (5 Gy) compared to CD4 Tconv
cells. This observation was accompanied by a higher Bcl-2
expression in Tregs. Although persisting Tregs from irradiated
mice exhibited suppressive ability, their function was slightly
reduced when compared to Tregs from non-irradiated mice (20).
In studies utilizing scurfy bone marrow chimeras, restoration of the
peripheral Treg pool was found to be contributed to by
radioresistant host cells (22). Studies examining resistance to
bone marrow engraftment following MHC-matched allo-HSCT
found rTregs after conditioning (5.5 Gy) and transplant which
could respond to subsequent activating (IL-2) signals (discussed
below) (2) (Figure 1A). In total, these pioneering studies raised the
notion that such recipient cells could be useful in regulating
transplant outcomes.

Importantly, several clinical studies have noted the persistence
of tissue resident recipient T cells in patients following HSCT. For
example, a recent clinical investigation reported the presence of a
significant frequency of host T cells up to a year post-HSCT in
transplant recipient tissues, like colon and skin but not peripheral
blood (23, 24). Based on T cell clonal analyses pre- and post-
HSCT, the authors interpreted these cells as persisting/surviving
recipient populations. Interestingly, similar to the experimental
findings concerning Tregs post-HSCT (2, 18, 19), these human
recipient CD4 T cells were present in patients who received
myeloablative or nonmyeloablative conditioning (myeloablative,
median 22%, range 6%–87%; nonmyeloablative, median 12%,
range 7%–41%) (23). The authors proposed that CD25 and Ki67
expression on host T cells as well as expression of IFN-g and IL-17
in situ evidenced their activated and functional state and
hypothesized that these host T cells contributed to tissue GVHD
(23). Similarly, an independent investigation characterized radio/
chemotherapy-resistant tissue-resident memory T cells in the skin
of patients following allo-HSCT including FoxP3+ Tregs which
contained a small subset of CD69+ FoxP3+ cells suggesting an
activated status (24). Analysis of oral mucosal tissue in patients
found that FoxP3+ cells were observed in the basement membrane
TABLE 1 | Sources of Tregs in recipients before and after hematopoietic stem cell transplants.

Potential sources of Tregs present in recipients of HSCT Populations of Tregs present in recipients at the time-period in vivo treatment administered:

Pre-conditioning and transplant Post-transplant

Donor origin (dTregs)

Transplanted mature Tregs Not applicable Yes
De novo derived Tregs from transplanted stem cells Not applicable Yes

Recipient origin (rTregs)

Mature Tregs Yes Yes (“persisting”)
De novo derived from surviving stem cells Yes Yes
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in acute (small numbers of FoxP3+CD8+ T cells) and chronic
GVHD patients, although the origin of these Tregs were not
examined (25). A recent study examining blood following
autologous HSCT for non-Hodgkin lymphoma patients reported
that high levels of proliferating Tregs within a month post-
transplant correlated with higher relapse rates. The investigators
speculated that the rapid expansion of these regulatory cells
resulted from either the host’s residual T cells or via donor cells
from the graft (26).
MANIPULATION OF TREGS IN
RECIPIENTS OF HSCT

Administration of reagents directed at activating Tregs post-HSCT
are thought to be primarily targeting transplanted, i.e. donor Tregs
(dTregs). As described above, studies from a number of
laboratories have shown that rTregs persist following a variety of
conditioning levels including some ablative strategies and
transplant and hence could be manipulated as well (2, 18, 20).
While transplanted dTregs have been spared direct effects of the
conditioning regimens, both persisting rTregs together with dTregs
‘find themselves’ present within a microenvironment which has
Frontiers in Immunology | www.frontiersin.org 3
undergone varying levels of damage dependent on the type and
aggressiveness of the conditioning regimen employed. A limited
clinical study reported only a transient Treg increase following IL-2
administration early post-HSCT, however Tregs levels fell and no
improvement in GVHDwas observed (27). Notably, it was possible
to expand and activate rTregs using an rIL-2/aIL-2 complex
following a reduced intensity conditioning (5.5 gy TBI) protocol
(2). Therefore, we posit that in addition to providing appropriate
signaling via surface receptors on Tregs which are present
immediately post-transplant, other signals from the
microenvironment are likely required for effective expansion and
functional activation. To circumvent these issues, Treg stimulation
prior to the conditioning and transplant may provide a novel
approach to reduce GVHD and improve outcomes.

Many studies have reported strategies administering reagents
into mice to manipulate Tregs in vivo, reviewed in (28).
Targeting cell surface receptors such as CD25 (IL-2Ra),
TNFRSF1B (TNFR2), TNFRSF4 (OX-40), ST-2 (IL-33R) and
TNFRSF25 (DR3) by injection of mAbs and fusion proteins can
expand Tregs in both hematolymphoid and other compartments,
including GVHD target tissues i.e. GI tract, skin, and eye
(6, 7, 21, 29–39). Driving Treg expansion via these molecules
enabled investigations interrogating how their application could
A

B

FIGURE 1 | Recipient Treg persistence and manipulation in allogeneic hematopoietic stem cell transplantation (A) Persisting Tregs (rTregs) have been identified after
different conditioning protocols in recipients post-autologous or T cell depleted allo-HSCT (18). These findings established the opportunity to consider manipulating
this population before and/or after transplants to diminish GVHD and improve overall outcomes. (B) Manipulation of the Treg compartment in experimental and
clinical HSCT. In contrast to the post-transplant period when both rTreg and dTreg populations could be present in recipients (Table 1), in the pre-transplant period
only rTregs can be regulated. Reagents which engage receptors on Tregs were utilized in vivo to activate these cells and diminish GVHD. As noted, some treatments
were administered only in the pre-transplant period (anti-TNFRSF25mAb +/- rIL-2; IL-2/aIL-2mAb) and another pre and early post-HSCT (IL-33). Notably, studies in
clinical HSCT recipients administered the reagent (rIL-2) only following transplant and GVHD diagnosis. Created with BioRender.com.
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be applied to recipients undergoing HSCT. Preclinical findings
led to clinical studies demonstrating in vivo administration of
low-dose recombinant human (rIL-2LD) into patients’ months
post-HSCT with diagnosed cGVHD, increased their peripheral
blood Treg levels and function which correlated with reduced
cutaneous GVHD (3, 40, 41). These studies were not directed to
determine the source of the Tregs responding to rIL-2LD which
could have included each of the populations described in
Table 1. Importantly, early experimental studies from our
laboratory examined resistance to bone marrow engraftment
following MHC-matched allo-HSCT under sub-lethal
conditioning regimens and reported that administration of rIL-
2/aIL-2 mAb complex before transplantation induced activation
and expansion of rTregs resulting in a transient increase of donor
hematopoietic engraftment (2) (Figure 1B). More recently, IL-33
administration peri-allo-HSCT increased levels of ST2
expressing immune cells including rTreg. This regulatory
population was demonstrated to persist after high intensity
conditioning mediating the protection against acute GVHD
following MHC-mismatched allo-HSCT (21). Furthermore, IL-
33-expanded rTregs regulated macrophage activation and
suppressed effector T cell infiltration of the small intestine – a
key GVHD-target tissue (21). TNFR2 activation before allo-
HSCT was also shown to expand radiation resistant rTregs
resulting in improved overall survival and decreased of GVHD
severity (32). Another member of the TNFR superfamily,
TNFRSF25, was demonstrated to effectively expand rTegs in
the context of BMT. Nishikii and colleagues demonstrated that
prophylactic administration of a single injection of aTNFRSF25
mAb to recipient mice pre-HSCT increased rTregs, but not
dTregs, leading to a significant reduction of GVHD (42).
However, using the same mAb post-transplant promoted
GVHD by inducing activation and proliferation of donor T
cells (42). Lastly, our laboratory recently demonstrated that
targeting TNFRSF25, with an agonistic fusion protein (TL1A-
Ig), and rIL-2LD prior to conditioning alone or with transplant
(8.5 Gy, Figure 1B), significantly increased rTreg levels (both
FoxP3+Rorgt- and FoxP3+Rorgt+) in the lamina propria of the
large intestine 4 days post-allo-HSCT which persisted up to 10
days (43). Importantly, this preclinical prophylactic regimen
with TL1A-Ig+Il-2LD enhanced GVHD overall survival in an
MHC-mismatched allo-HSCT model (43, 44).

In total, findings to date demonstrate that Tregs can be
manipulated in recipients before and following transplant. The
type of transplant (allogeneic vs autologous) and level of
conditioning (myeloablative vs reduced intensity) will impact
the effectiveness of pre- and post-transplant Treg stimulation.
For example, following aggressive conditioning and allo-HSCT,
Treg manipulation may be delayed due to an impaired
microenvironment needing time to reconstitute. In contrast,
targeting of the rTreg compartment prior to transplant can
circumvent these events enabling potent expansion of these
cells. Furthermore, the presence of increased levels of activated
effector T cells post-transplant likely would decrease the selective
targeting of Tregs by the reagents discussed. Lastly, in contrast to
applying the beneficial effects of only peripheral blood dTregs,
Frontiers in Immunology | www.frontiersin.org 4
treatment of recipients is not restricted to circulating populations
but includes all tissues comprising key targets of GVHD.
FUTURE APPLICATION OF HOST TREGS
TO CLINICAL HSCT

As mentioned above, recent clinical studies have reported the
presence and survival of host T cells in GVHD target tissues post-
conditioning and transplant and posited such cells may contribute
to GVHD (23, 24). These findings together with experimental
work identifying rTregs early post-HSCT indicate that some
lymphoid cells do survive chemo/radio insults and can also
undergo subsequent division when the appropriate signals are
present.While the mechanisms which underlie the persistence and
survival of Tregs post-HSCT have not been formally identified,
CD137 (41BB), a survival signal is expressed on Tregs (45).
Increased levels of anti-apoptotic signals have been reportedly
increased in Tregs after TBI (20) and ligand signaling during
inflammation can elevate bcl-2, bcl-x2 and survivin (46, 47). After
administration of cyclophosphamide post-transplant, elevated
ALDH in Tregs as noted may afford some protection from
alkylation effects (48, 49). Although we are not presently aware
of reports in the literature, it is possible that following conditioning
protocols using cyclophosphamide (typically combined with TBI),
persisting rTregs may be present. Interestingly, EGFR has been
shown to be expressed on Tregs under inflammatory conditions
and contributes to their optimal function (50). Amphiregulin/
EGFR signaling was reported to protect hematopoietic stem cells
post-irradiation exposure via augmenting DNP-kinase activity,
promoting DNA repair pathways (51). The abundant presence of
amphiregulin in the GI tract and skin, together with the
inflammatory milieu post-conditioning, might therefore promote
rTregs survival through a similar amphiregulin/EGFR signaling
pathway (52–54).

Based on the overall findings reported to date, we speculate that
exploiting Treg suppression systemically together with such cells
within GVHD target tissues will provide the highest likelihood to
successfully ameliorate acute GVHD during the early post-
transplant period. Evidence supports the notion that Tregs in
hematolymphoid compartments versus tissues, including the skin
and GI, differ in part due to their microenvironment. For example,
Tregs at barrier sites are phenotypically distinct from their
lymphoid-organ counterparts, and such ‘tissue’ signatures can
reflect their tissue-adapted function. This could result from
metabolic processes dependent on local substrate availability in
part regulated by microbiota (55). Recipient Tregs physiologically
present in the transplant recipient’s tissues may be thought of as
“in place” and therefore could be effective immediately at the
outset of transplantation. To test such a hypothesis, strategies need
to be designed to manipulate and take advantage of both systemic
and tissue resident populations. Regarding the former, donor
Tregs included in the transplant inoculum enter the recipient
systemic circulation and have been shown to rapidly access
hematolymphoid compartments post-infusion (56). Such infused
dTregs are not directly exposed to conditioning and therefore can
June 2022 | Volume 13 | Article 932527
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provide, a) an efficient ‘therapy’ to regulate the peripheral
hematolymphoid compartments immediately post-transplant
together with b) the potential for self-renewing Treg populations
contained within the CD62L+KLRG1- central “cTreg”
compartment (57, 58).

Some rTregs clearly persist post-HSCT, including within
GVHD target tissues (2, 13, 18, 43), however little is known
regarding how they may be manipulated to provide optimal
tissue regulation, decrease inflammation, and lymphoid
suppression early post-transplant. Negrin and colleagues
administered an anti-TNFRSF25 mAb two days prior to HSCT
and reported diminished GVHD (42). The investigators proposed
this result occurred as a consequence of increased peripheral Tregs,
which presumably involved rTregs although Tregs in recipient
tissues were not examined in the study. Based on antibody half-life,
it’s direct stimulation of donor Tregs might also have contributed
to the improved outcomes (Figure 1B). Pre- and post-HSCT IL-33
infusion (D-10➔+4) reportedly increased Treg levels in the colon
2-3 weeks post-transplant with a significant component expressing
ST2 (21). Notably, this strategy diminished GVHD and prolonged
recipient survival (Figure 1B). Our group reported that
administering an agonistic fusion protein (FP) containing the
TNFRSF25 ligand, TL1A, for 4 days (Day -7 to Day -4) followed
by low dose IL-2 (Days -4, -3, -2) prior to conditioning and HSCT,
resulted in dramatic improvement in animal survival following
MHC-mismatched experimental HSCT (43, 44). The short half-life
(hours) of the aTNFRSF25 FP (13 hrs.) compared to the mAb (5
days) virtually eliminated the likelihood of its presence post-HSCT
so donor T cell populations would not be stimulated (59). Marked
increases in rTreg frequency and numbers were identified in the
colon of these animals up to 2 weeks post-transplant (43, 44).

All Tregs present in recipients post-transplant are subject to the
extant microenvironment which nurtures and maintains
homeostasis of the compartment. Our laboratory and others
have struggled to successfully manipulate Tregs in situ early
post-HSCT and we posit this is a consequence of conditioning
induced damage to the Treg micro-environment and the requisite
signals required to promote their activation, differentiation, and
proliferation. We believe studies are urgently needed to identify
Frontiers in Immunology | www.frontiersin.org 5
and define the key elements of this environment and importantly,
the kinetics of its reconstitution following allogeneic as well as
syngeneic HSCT. The varying conditioning regimens (radiation,
chemo, Abs. etc.) are likely to differentially disrupt the
microenvironment as well as influence the kinetics of its repair
and rebound. Based on our own work, we postulate that 3-4 weeks
is minimally needed to “rejuvenate/re-build” the Treg
microenvironment under moderately aggressive conditioning
regimens. Although identifying the key signals can ultimately
lead to efforts to minimize/protect the microenvironment from
conditioning induced damage, developing strategies to target
Tregs prior to conditioning currently provides an excellent
opportunity to exploit the rTregs before environmental
disruption and early findings suggest such manipulations can
improve overall survival and function early post-HSCT.
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