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Abstract: The measures of information transfer which correspond to non-additive entropies have
intensively been studied in previous decades. The majority of the work includes the ones belonging
to the Sharma–Mittal entropy class, such as the Rényi, the Tsallis, the Landsberg–Vedral and the
Gaussian entropies. All of the considerations follow the same approach, mimicking some of the
various and mutually equivalent definitions of Shannon information measures, and the information
transfer is quantified by an appropriately defined measure of mutual information, while the maximal
information transfer is considered as a generalized channel capacity. However, all of the previous
approaches fail to satisfy at least one of the ineluctable properties which a measure of (maximal) in-
formation transfer should satisfy, leading to counterintuitive conclusions and predicting nonphysical
behavior even in the case of very simple communication channels. This paper fills the gap by propos-
ing two parameter measures named the α-q-mutual information and the α-q-capacity. In addition
to standard Shannon approaches, special cases of these measures include the α-mutual information
and the α-capacity, which are well established in the information theory literature as measures of
additive Rényi information transfer, while the cases of the Tsallis, the Landsberg–Vedral and the
Gaussian entropies can also be accessed by special choices of the parameters α and q. It is shown
that, unlike the previous definition, the α-q-mutual information and the α-q-capacity satisfy the set of
properties, which are stated as axioms, by which they reduce to zero in the case of totally destructive
channels and to the (maximal) input Sharma–Mittal entropy in the case of perfect transmission,
which is consistent with the maximum likelihood detection error. In addition, they are non-negative
and less than or equal to the input and the output Sharma–Mittal entropies, in general. Thus, unlike
the previous approaches, the proposed (maximal) information transfer measures do not manifest
nonphysical behaviors such as sub-capacitance or super-capacitance, which could qualify them as
appropriate measures of the Sharma–Mittal information transfer.

Keywords: rényi entropy; tsallis entropy; landsberg—vedral entropy; gaussian entropy; sharma—
mittal entropy; α-mutual information; α-channel capacity

1. Introduction

In the past, extensive work has been written on defining the information measures
which generalize the Shannon entropy [1], such as the one-parameter Rényi entropy [2], the
Tsallis entropy [3], the Landsberg–Vedral entropy [4], the Gaussian entropy [5], and the two-
parameter Sharma–Mittal entropy [5,6], which reduces to former ones for special choices
of the parameters. The Sharma–Mittal entropy can axiomatically be founded as the unique
q-additive measure [7,8] which satisfies generalized Shannon–Kihinchin axioms [9,10] and
which has widely been explored in different research fields starting from statistics [11]
and thermodynamics [12,13] to quantum mechanics [14,15], machine learning [16,17] and
cosmology [18,19]. The Sharma–Mittal entropy has also been recognized in the field
of information theory, where the measures of conditional Sharma–Mittal entropy [20],
Sharma–Mittal divergences [21] and Sharma–Mittal entropy rate [22] have been established
and analyzed.
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Considerable research has also been done in the field of communication theory in
order to analyze information transmission in the presence of noise if, instead of Shannon’s
entropy, the information is quantified with (instances of) Sharma–Mittal entropy and, in
general, the information transfer is quantified by an appropriately defined measure of
mutual information, while the maximal information transfer is considered as a generalized
channel capacity. Thus, after Rényi’s proposal for the additive generalization of Shannon
entropy [2], several different definitions for Rényi information transfer were proposed
by Sibson [23], Arimoto [24], Augustin [25], Csiszar [26], Lapidoth and Pfister [27] and
Tomamichel and Hayashi [28]. These measures have been explored thoroughly and their
operational characterization in coding theory, hypothesis testing, cryptography and quan-
tum information theory was established, which qualifies them as a reasonable measure
of Rényi information transfer [29]. Similar attempts have also been made in the case of
non-additive entropies. Thus, starting from the work of Daroczy [30], who introduced a
measure for generalized information transfer related to the Tsallis entropy, several attempts
followed for the measures which correspond to non-additive particular instances of the
Sharma–Mittal entropy, so the definitions for the Rényi information transfer were consid-
ered in [24,31], for the Tsallis information transfer in [32] and for the Landsber–Vedral
information transfer in [4,33].

In this paper we provide a general treatment of the Sharma–Mittal entropy transfer
and a detailed analysis of existing measures, showing that all of the definitions related to
non-additive entropies fail to satisfy at least one of the ineluctable properties common to
the Shannon case, which we state as axioms, by which the information transfer has to be
non-negative, less than the input and output uncertainty, equal to the input uncertainty
in the case of perfect transmission and equal to zero, in the case of a totally destructive
channel. Thus, breaking some of these axioms implies unexpected and counterintuitive
conclusions about the channels, such as achieving super-capacitance or sub-capacitance [4],
which could be treated as nonphysical behavior. As an alternative, we propose the α-q-
mutual information as a measure of Sharma–Mittal information transfer, maximized with
the α-q-capacity. The α-q mutual information generalizes the α-mutual information by
Arimoto [24], which is defined as a q-difference between the input Sharma–Mittal entropy
and the appropriately defined conditional Sharma–Mittal entropy if the output is given,
while the α-q-capacity represents a generalization of Arimoto’s α-capacity in the case of
q = 1. In addition, several other instances can be obtained by specifying the values of
parameters α and q, which includes the information transfer measures for the Tsallis, the
Landsber–Vedral and the Shannon entropy, as well as the case of the Gaussian entropy
which was not considered before in the context of information transmission.

The paper is organized as follows. The basic properties and special instances of the
Sharma–Mittal entropy are listed in Section 2. Section 3 reviews the basics of communica-
tion theory, introduces the basic communication channels and establishes the set of axioms
which information transfer measures should satisfy. The information transfer measures
which are defined by Arimoto are introduced in Section 4, and the alternative definitions
for Rényi information transfer measures are discussed in Section 5. Finally, the α-q-mutual
information and the α-q-capacities are proposed and their properties analyzed in Section 6
while the previously proposed measures of Sharma–Mittal entropy transfer are discussed
in Section 7.

2. Sharma–Mittal Entropy

Let the sets of positive and nonnegative real numbers be denoted with R+ and R+
0 ,

respectively, and let the mapping ηq : R→ R be defined in

ηq(x) =


x, for q = 1

2(1−q) x − 1
(1− q) ln 2

, for q 6= 1
(1)
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so that its inverse is given in

η−1
q (x) =


x, for q = 1

1
1− q

log((1− q)x ln 2 + 1), for q 6= 1
. (2)

The mapping ηq and its inverse are increasing continuous (hence invertible) functions such
that η(0) = 0. The q-logarithm is defined in

Logq(x) = ηq(log x) =


log x, for q = 1

x(1−q) − 1
(1− q) ln 2

, for q 6= 1
, (3)

and its inverse, the q-exponential, is defined in

Expq(y) =

{
2y, for q = 1

(1 + (1− q)y ln 2)
1

1−q for q 6= 1
, (4)

for 1 + (1− q)y ln 2 > 0. Using ηq, we can define the pseudo-addition operation ⊕q [7,8]

x⊕q y = ηq

(
η−1

q (x) + η−1
q (y)

)
= x + y + (1− q)xy; x, y ∈ R, (5)

and its inverse operation, the pseudo substraction

x	q y = ηq

(
η−1

q (x)− η−1
q (y)

)
=

x− y
1 + (1− q)y ln 2

; x, y ∈ R. (6)

The ⊕q can be rewritten in terms of the generalized logarithm by settings x = log u and
y = log v so that

Logq(u · v) = Logq(u)⊕q Logq(v); u, v ∈ R+. (7)

Let the set of all n-dimensional distributions be denoted with

∆n ≡
{
(p1, . . . , pn)

∣∣∣ pi ≥ 0,
n

∑
i=1

pi = 1

}
; n > 1. (8)

Let the function Hn : ∆n → R+
0 satisfy the following the Shannon–Khinchin axioms, for all

n ∈ N, n > 1.

GSK1 Hn is continuous in ∆n;
GSK2 Hn takes its largest value for the uniform distribution, Un = (1/n, . . . , 1/n) ∈ ∆n,

i.e., Hn(P) ≤ Hn(Un), for any P ∈ ∆n;
GSK3 Hn is expandable: Hn+1(p1, p2, . . . , pn, 0) = Hn(p1, p2, . . . , pn) for all

(p1, . . . , pn) ∈ ∆n;
GSK4 Let P = (p1, . . . , pn) ∈ ∆n, PQ = (r11, r12, . . . , rnm) ∈ ∆nm, n, m ∈ N, n, m > 1 such

that pi = ∑m
j=1 rij, and Q|k = (q1|k, . . . , qm|k) ∈ ∆m, where qi|k = rik/pk and α ∈ R+

0
are some fixed parameters. Then,

Hnm(PQ) = Hn(P)⊕q Hm(Q|P), where Hm(Q|P) = f−1

(
n

∑
k=1

p(α)k f (Hm(Q|k))

)
, (9)

where f is an invertible continuous function and P(α) = (p(α)1 , . . . , p(α)n ) ∈ ∆n is the
α-escort distribution of distribution P ∈ ∆n defined in

p(α)k =
pα

k
∑n

i=1 pα
i

, k = 1, . . . , n, α > 0. (10)
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GSK5 H2

(
1
2 , 1

2

)
= Logq(1).

As shown in [9], the unique function Hn, which satisfies [GSK1]-[GSK5], is Sharma–
Mittal entropy [6].

In the following paragraphs we will assume that X and Y are discrete jointly dis-
tributed random variables taking values from sample spaces {x1, . . . , xn} and {y1, . . . , ym},
and distributed in accordance to PX ∈ ∆n and PY ∈ ∆m, respectively. In addition, the joint
distribution of X and Y will be denoted in PX,Y ∈ ∆nm and the conditional distribution

of X given Y will be denoted in PX|Y =
PX,Y(x,y)

PY(y)
∈ ∆m, provided that PY(y) > 0. We will

identify the entropy of a random variable X with the entropy of its distribution PX and the
Sharma–Mittal entropy will be denoted with Hα,q(X) ≡ Hn(PX).

Thus, for a random variable which is distributed to X, Sharma–Mittal entropy can be
expressed in

Hα,q(X) =
1

1− q

(∑
x

PX(x)α

) 1−q
1−α

− 1

, (11)

and it can equivalently be expressed as the ηq transformation of Rényi entropy as in

Hα,q(X) ≡ ηq(Rα(X)). (12)

Sharma–Mittal entropy, for α, q ∈ R+
0 \ 1, being a continuous function of the parameters

and the sums goes over the support of PX . Thus, in the case of q = 1, α 6= 1, Sharma–Mittal
reduces to Rényi entropy of order α [2]

Rα(X) ≡ Hα,1(X) =
1

1− α
log

(
∑
x

PX(x)α

)
, (13)

which further reduces to Shannon entropy for α = 1, q = 1, [34]

S(X) ≡ H1,1(X) = ∑
x

PX(x) log PX(x), (14)

while in the case of q 6= 1, α = 1 it reduces to Gaussian entropy [5]

Gq(X) ≡ H1,q(X) =
1

(1− q) ln 2

(
n

∏
i=1

PX(x)PX(x) − 1

)
. (15)

In addition, Tsallis entropy [3] is obtained for α = q 6= 1,

Tq(X) ≡ 1
(1− q) ln 2

(
∑
x

PX(x)q − 1

)
, (16)

while in the case of for q = 2− α it reduces to the Landsberg–Vedral entropy [4]

Lα(X) ≡ Hα,2−α(X) =
1

(α− 1) ln 2

(
1

∑x PX(x)α
− 1
)

. (17)

3. Sharma–Mittal Information Transfer Axioms

One of the main goals of information and communication theories is characteriza-
tion and analysis of the information transfer between sender X and receiver Y, which
communicate through a channel. The sender and receiver are described by probability
distributions PX and PY while the communication channel with the input X and the output
Y is described by the transition matrix PY|X :

P(i,j)
Y|X ≡ PY|X(yj|xi). (18)
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We assume that maximum likelihood detection is performed at the receiver, which is
defined by the mapping d : {y1, . . . , ym} → {x1, . . . , xn} as follows:

d(yj) = xi ⇔ PY|X(yj|xi) > PY|X(yj|xk); for all k 6= i, (19)

assuming that the inequality in (19) is uniquely satisfied. Thus, if the input symbol xi
is sent and the output symbol yj is received, the xi will be detected if xi = d(yj) and
a detection error will be made otherwise, and we define the error function functions
φ : {x1, . . . , xm} × {y1, . . . , ym} → {0, 1} as in

φ(xi, yj) =

{
1, if xi = d(yj)

0, otherwise,
(20)

the detection error if a symbol xi is sent

Perr(xi) = ∑
yj

PY|X(yj|xi)φ(xi, yj); for all xi, (21)

as well as the average detection error

P̄err = ∑
xi

PX(xi)Perr(xi) = ∑
xi ,yj

PX,Y(x, y)φ(xi, yj). (22)

Totally destructive channel: A channel is said to be totally destructive if

P(i,j)
Y|X = PY|X(yj|xi) = PY(yj) =

1
m

; for all xi, (23)

i.e., if the sender X and receiver Y are described by independent random variables,

X ⊥⊥ Y ⇔ PX,Y(x, y) = PX(x)PY(y), (24)

where the relationship of independence is denoted in ⊥⊥. In this case, φi(yj) = 1 for all yj
and the probability of error is Perr(xi) = 1; for all xi, as well as the average probability of
error P̄err = 1, which means that a correct maximum likelihood detection is not possible.

Perfect communication channel: A channel is said to be perfect if for every xi,

PY|X(yj|xi) > 0, for at least one yj (25)

and for every yj
PY|X(yj|xi) > 0, for exactly one xi. (26)

Note that in this case PY|X(yj|xi) can still take a zero value for some yj and that
φi(yj) = 0 for any non-zero PY|X(yj|xi). Thus, the error probability is equal to zero
Perr(xi) = 0; for all xi, as well as the average probability of error P̄err = 0, which means
that perfect detection is possible by means of a maximum likelihood detector.

Noisy channel with non-overlapping outputs: A simple example of a perfect trans-
mission channel is the noisy channel with non-overlapping outputs (NOC), which is
schematically described in Figure 1. It is a 2-input m = 2k-output channel (k ∈ N) defined
by the transition matrix:

PY|X =

[
PY|X(·|x1)

PY|X(·|x2)

]
=

[ 1
k . . . 1

k 0 . . . 0
0 . . . 0 1

k . . . 1
k

]
(27)

(in this and in the following matrices, the symbol “· · · ” stands for the k-time repletion). In
the case of k = 1 and m = 2k = 2, the channel reduces to the noiseless channel. Although
the channel is noisy, the input can always be recovered from the output (if yj is received
and j ≤ k, the input symbol x1 is sent, otherwise x2 is sent). Thus, it is expected that the
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information which is passed through the channel is equal to the information that can be
generated by the input. Note that for a channel input distributed in accordance with

PX =

[
PX(x1)
PX(x2)

]
=

[
a

1− a

]
; 0 ≤ a ≤ 1, (28)

the joint probability distribution PX,Y can be expressed as in:

PX,Y =

[ a
k . . . a

k 0 . . . 0
0 . . . 0 1−a

k . . . 1−a
k

]
(29)

and the output distribution PY, which can be obtained by the summations over columns, is

PY = [PY(y1), . . . , PY(ym)]
T =

[
a
k

, . . . ,
a
k

,
1− a

k
, . . . ,

1− a
k

]T
. (30)

Binary symmetric channels: The binary symmetric channel (BSC) is a two input two
output channel described by the transition matrix

PY|X =

[
PY|X(·|x1)

T

PY|X(·|x2)
T

]
=

[
1− p p

p 1− p

]
, (31)

which is schematically described in Figure 2. Note that for p = 1
2 BSC reduces to a totally

destructive channel, while in the case of p = 0 it reduces to a perfect channel.

y1

x1
...

yk

yk+1

x2
...

y2k

1/k

1/k

1/k

1/k

Figure 1. Noisy channel with non-overlapping outputs.



Entropy 2021, 23, 702 7 of 23

x1 y1

x2 y2

1 − p

p

p

1 − p

Figure 2. Binary symmetric channel.

Sharma–Mittal Information Transfer Axioms

In this paper, we search for information theoretical measures of information transfer
between sender X and receiver Y, which communicate through a channel if the information
is measured with Sharma–Mittal entropy. Thus, we are interested in the information
transfer measure, Iα,q(X, Y), which is called the α-q-mutual information and its maximum,

C = max
PX

Iα,q(X, Y), (32)

which is called the α-q-capacity and which requires the following set of axioms to be satisfied.

(A1) The channel cannot convey negative information, i.e.,

Cα,q(PY|X) ≥ Iα,q(X, Y) ≥ 0. (33)

(A2) The information transfer is zero in the case of a totally destructive channel, i.e.,

PY|X(y|x) =
1
m

, for all x, y ⇒ Iα,q(X, Y) = Cα,q(PY|X) = 0, (34)

which is consistent with the conclusion that the average probability of error is one,
P̄err = 1, in the case of a totally destructive channel.

(A3) In the case of perfect transmission, the information transfer is equal to the input
information, i.e.,

X = Y ⇒ Iα,q(X, Y) = Hα,q(X), Cα,q(PY|X) = Logqn, (35)

which is consistent with the conclusion that the average probability of error is zero,
P̄err = 0, in the case of a perfect transmission channel, so that all the information
from the input is conveyed.

(A4) The channel cannot transfer more information than it is possible to be sent, i.e.,

Iα,q(X, Y) ≤ Cα,q(PY|X) ≤ Logq n, (36)

which means that a channel cannot add additional information.
(A5) The channel cannot transfer more information than it is possible to be received, i.e.,

Iα,q(X, Y) ≤ Cα,q(PY|X) ≤ Logq m, (37)

which means that a channel cannot add additional information.
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(A6) Consistency with the Shannon case:

lim
q→1,α→1

Iα,q(X, Y) = I(X, Y), and lim
q→1,α→1

Cα,q(PY|X) = C(PY|X) (38)

Thus, the axioms (A2) and (A3) ensure that the information measures are consistent
with the maximum likelihood detection (19)–(21). On the other hand, the axioms (A1),
(A4) and (A5), prevent a situation in which a physical system conveys information in spite
of going through a completely destructive channel, or in which the negative information
transfer is observed, indicating that the channel adds or removes information by itself,
which could be treated as nonphysical behavior without an intuitive explanation. Finally,
the property (A6) ensure that the information transfer measures can be considered as
generalizations of corresponding Shannon measures. For these reasons, we assume that
the satisfaction of the properties (A1)–(A5) is mandatory for any reasonable definition of
Sharma–Mittal information transfer measures.

4. The α-Mutual Information and the α-Capacity

One of the first proposals for the Rényi mutual information goes back to Arimoto [24],
who considered the following definition of mutual information:

Iα(X, Y) =
α

1− α
log

∑
y

(
∑
x

P(α)
X (x)Pα

Y|X(y|x)
) 1

α

, (39)

where the escort distribution PX(α) is defined as in (10), and he also invented an iter-
ative algorithm for the computation of the α-capacity [35], which is defined from the
α-mutual information:

Cα(PY|X) = max
PX

Iα(X, Y). (40)

Notably, Arimoto’s mutual information can equivalently be represented using the
conditional Rényi entropy

Rα(X|Y) = α

α− 1
log2 ∑

y
PY(y)

(
∑
x

PX|Y=y(x)α

) 1
α

, (41)

as in
Iα(X, Y) ≡ Rα(X)− Rα(X|Y), (42)

which can be interpreted as the input uncertainty reduction after the output symbols are
received and, in the case of α→ 1, the previous definition reduces to the Shannon case. In
addition, this measure is directly related to the famous Gallager exponent

E0(ρ, PX) = − log

∑
y

(
∑
x

PX(x)P
1

1+ρ

Y|X (y|x)
)1+ρ

, (43)

which has been widely used to establish the upper bound of error probability in channel
coded communication systems [36] via the relationship [29]

Iα(X, Y) =
α

1− α
E0

(
1
α
− 1, P(α)

X

)
. (44)

In addition, in the case of α→ 1, it reduces to

I1(X, Y) = lim
α→1

Iα(X, Y) = I(X, Y), (45)
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where

I(X, Y) = ∑
x,y

PX,Y(x, y) log
PX,Y(x, y)

PX(x)PY(y)
(46)

stands for Shannon’s mutual information [37].
The α-mutual information Iα(X, Y) and the α-capacity Cα(PYX ) satisfy the axioms

(A1)–(A6) for q = 1 and α > 0, as stated by the following theorem, which further justifies
their usage as the measures of (maximal) information transfer.

Theorem 1. The mutual information measures Iα and Cα satisfy the following set of properties:

(A1) The channel cannot convey negative information, i.e.,

Cα(PY|X) ≥ Iα(X, Y) ≥ 0. (47)

(A2) The (maximal) information transfer is zero in the case of a totally destructive channel, i.e.,

PY|X(y|x) =
1
m

, for all x, y ⇒ Iα(X, Y) = Cα(PY|X) = 0. (48)

(A3) In the case of perfect transmission, the (maximal) information transfer is equal to the
(maximal) input information, i.e.,

X = Y ⇒ Iα(X, Y) = Rα(X), Cα(PY|X) = log n. (49)

(A4) The channel cannot transfer more information than it is possible to be sent, i.e.,

Iα(X, Y) ≤ Cα(PY|X) ≤ log n; (50)

(A5) The channel cannot transfer more information than it is possible to be received, i.e.,

Iα(X, Y) ≤ Cα(PY|X) ≤ log m. (51)

(A6) Consistency with the Shannon case:

lim
α→1

Iα(X, Y) = I(X, Y), and lim
α→1

Cα(PY|X) = C(PY|X) (52)

Proof. As shown in [38], Rα(X|Y) ≤ Rα(X), and the nonnegativity property (A1) follows
from the definition of Arimoto’s mutual information (42). In addition, if X ⊥⊥ Y, then
PY|X(y|x) = PY(y) so that the definition (61) implies the property (A2). Furthermore, in the
case of a perfect transmission channel, the mutual information (61) can be represented in

Iα(X, Y) =
α

α− 1
log

∑y

(
∑x PX(x)αPα

Y|X(y|x)
) 1

α

(
∑x P(α)

X (x)
) 1

α

=
α

α− 1
log

∑y

(
PX(d(y))αPα

Y|X(y | d(y))
) 1

α

(
∑x P(α)

X (x)
) 1

α

, (53)

and since

∑
y

(
PX(d(y))αPα

Y|X(y | d(y))
) 1

α
= ∑

y
PX(d(y))PY|X(y | d(y)) =

∑
x

∑
y:d(y)=x

PX(d(y))PY|X(y | d(y)) = ∑
x

PX(x) ∑
y:d(y)=x

PY|X(y|x) = 1, (54)

we obtain Iα(X, Y) = Rα(X), which proves the property (A3). Moreover, from the definition
as shown in [38], Arimoto’s conditional entropy is positive and satisfies the weak chain rule
Rα(X|Y) ≥ Rα(X)− log m, so that the properties (A4) and (A5) follow from the definition
of Arimoto’s mutual information (42). Finally, the property (A6) follows directly from the
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equation (45) and can be approved using L’Hôpital’s rule, which completes the proof of
the theorem.

5. Alternative Definitions of the α-Mutual Information and the α-Channel Capacity

Since Rényi’s proposal, there have been several lines of research to find an appropriate
definition and characterization of information transfer measures related to Rényi entropy,
which are established by the substitution of the Rényi divergence measure

Dα(P||Q) =
1

α− 1
log

(
∑
x

P(x)αQ(x)1−α

)
, (55)

instead of the Kullback–Leibler one,

D(P||Q) = D1(P||Q) = ∑
x

P(x) log
P(x)
Q(x)

, (56)

in some of the various definitions which are equivalent in the case of Shannon information
measures (46) [29]:

I(X, Y) = min
QY

E
[

Dα

(
PY|X‖QY

)]
= min

QY
E
[

Dα

(
PY|X‖QY

)]
= min

QX
min
QY

Dα(PX,Y‖QXQY) = Dα(PX,Y‖PXPY) = S(X)− S(X|Y) (57)

where S(X|Y) stands for the Shannon conditional entropy,

S(X|Y) = ∑
x,y

PX,Y(x, y) log PX|Y(x|y). (58)

All of these measures are consistent with the Shannon case in view of the property
(A6), but their direct usage as measures of Rényi information transfer leads to a breaking
of some the properties (A1)–(A5), which justifies the usage of Arimoto’s measures from
the previous section as appropriate ones in the context of this research. In the following
section, we review the alternative definitions.

5.1. Information Transfer Measures by Sibson

Alternative approaches based on Rényi divergence were proposed by Sibson [23] and
considered later by several authors in the context of quantum secure communications [39–44],
who introduced

J1
α(X; Y) = min

QY
Dα

(
PY|XPX‖QYPX

)
, (59)

which can be represented as in [26]

J1
α(X, Y) =

α

α− 1
log

∑
y

(
∑
x

PX(x)Pα
Y|X(y|x)

) 1
α

 (60)

and, in the discrete setting, can be related to the Gallager exponent as in [29]:

J1
α(X, Y) =

α

1− α
E0

(
1
α
− 1, PX

)
, (61)

which differs from Arimoto’s definition (61) since in this case the escort distribution does
not participate in the error exponent, but an ordinary one does. However, in the case of a
perfect channel for which X = Y, the conditional distribution Pα

Y|X(y|x) = 1 for x = y and
zero otherwise, so Sibson’s measure (60) reduces to R1/α(X), thus breaking the axiom (A3).
This disadvantage can be overcome by the reparametrization α↔ 1/α so that J1

1/α(X, Y)
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is used as a measure of Rényi information transfer, and the properties of the resulting
measure can be considered in a manner similar to the case of Arimoto.

5.2. Information Transfer Measures by Augustin and Csiszar

An alternative definition of Rényi mutual information was also presented by Au-
gustin [25], and later Csiszar [26], who defined

J2
α(X; Y) = min

QY
E
[

Dα

(
PY|X‖QY

)]
, (62)

However, in the case of perfect transmission, for which X = Y, the measure reduces to
Shannon entropy

J2
α(X; Y) = S(X), (63)

which breaks the axiom (A3).

5.3. Information Transfer Measures by Lapidoth, Pfister, Tomamichel and Hayashi

A similar obstacle to the case of the Augustin–Csiszar measure can be observed in
the case of mutual information which was considered by Lapidoth and Pfister [27] and
Tomamichel and Hayashi [28], who proposed

J3
α(X; Y) = min

QX
min
QY

Dα(PX,Y‖QXQY). (64)

As shown in [27] (Lemma 11), if X = Y, then

J3
α(X; Y) =

{
α

1−α limα→∞ Rα(X) if α ∈
[
0, 1

2

]
,

R α
2α−1

(X) if α > 1
2

(65)

so the axiom (A3) is broken in this case, as well.

Remark 1. Despite the difference between the definitions of information transfer, in the discrete
setting, the alternative definitions discussed above reach the same maximum over the set of input
probability distributions, PX , [26,29,45].

5.4. Information Transfer Measures by Chapeau-Blondeau, Delahaies, Rousseau, Tridenski, Zamir,
Ingber and Harremoes

Chapeau-Blondeau, Delahaies and Rousseau [31], and independently Tridenski, Zamir
and Ingber [46] and Harremoes [47], defined the Rényi mutual information using the Rényi
divergence (55), so that the mutual information defined using the Rényi divergence

J4
α(X, Y) = Dα(PX,Y‖PXPY) (66)

for α > 0 and α 6= 1, while in the case of α = 1 it reduces to Shannon mutual information.
However, the ordinal definition can correspond only to a Rényi entropy of order 2− α
since in the case of X = Y it reduces to J4

α(X, Y) = R2−α(X) (see also [47]), which can be
overcome by the reparametrization α = 2− q, similar to the case of Sibson’s measure. This
measure has been discussed in the past with various operational characterizations, and
could also be considered as a measure of information transfer, although the satisfaction of
all of the axioms (A1)–(A6) is not self-evident for general channels.

5.5. Information Transfer Measures by Jizba, Kleinert and Shefaat

Finally, we will mention the definition by Jizba, Kleinert and Shefaat [48],

J4
α(X, Y) ≡ Rα(X)− R̂α(X|Y), (67)
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which is defined in the same manner as in Arimoto’s case (42), but with another choice of
conditional Rényi entropy

R̂α(X|Y) = 1
1− α

log ∑
x

P(α)
X (x)2(1−α)Rα(X|Y=y), (68)

which arises from the Generalized Shannon–Khinchin axiom [GSK4] if the pseudo-additivity
in the equation (9) is restricted to an ordinary addition, in which case the GSK axioms
uniquely determine Rényi entropy [49]. However, despite its wide applicability in the
modeling of causality and financial time series, this mutual information can take negative
values which breaks the axiom (A1), which is assumed to be mandatory in this paper. For
further discussion of the physicalism of negative mutual information in the domain of
financial time series analysis, the reader is referred to [48].

6. The α-q Mutual Information and the α-q-Capacity

In the past several attempts have been done to define an appropriate channel ca-
pacity measure which corresponds to instances of the Sharma–Mittal entropy class. All
of them follow a similar recipe by which the channel capacity is defined as in (32), as a
maximum of appropriately defined mutual information Iα,q. However, all of the classes
consider only special cases of Sharma–Mittal entropy and all of them fail to satisfy at least
one of the properties (A1)–(A6) which an information transfer has to satisfy, as will be
discussed Section 7.

In this section we propose a general measures of the α-q mutual information and the
α-q-capacity by the requirement that the axioms (A1)–(A6) are satisfied, which could qualify
them as appropriate measures of information transfer, without nonphysical properties. The
special instances of the α-q (maximal) information transfer measures are also discussed and
the analytic expressions for a binary symmetric channel are provided.

6.1. The α-q Information Transfer Measures and Its Instances

The α-q-mutual information (42) is defined using the q-subtraction defined in (6),
as follows:

Iα,q(X, Y) = Hα,q(X)	q Hα,q(X|Y), (69)

where we introduced the conditional Sharma–Mittal entropy Hα,q(Y|X) as in

Hα,q(X|Y) = ηq(Rα(X|Y)) = 1
(1− q) ln 2


∑

y
PY(y)

(
∑
x

PX|Y=y(x)α

) 1
α


α(1−q)

α−1

− 1

, (70)

Rα(X|Y) stands for Arimoto’s definition of the conditional Rényi entropy (41). The expres-
sion (69) can also be obtained if the mapping ηq is applied to both sides of the equality (42),
by which Arimoto’s mutual information is defined, so we may establish the relationship

Iα,q(X, Y) = ηq(Iα(X, Y)) = ηq

 α

1− α
log

∑
y

(
∑
x

P(α)
X (x)Pα

Y|X(y|x)
) 1

α

, (71)

which can be represented using the Gallager error exponent (43) as in

Iα,q(X, Y) = ηq

(
α

1− α
E0

(
1
α
− 1, P(α)

X

))
=

1
(1− q) ln 2

(
2

α(1−q)
1−α E0

(
1
α−1,P(α)

X

)
− 1
)

. (72)

Arimoto’s α-q-capacity is now defined in

Cα,q = max
PX

Iα,q(X, Y), (73)
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and using the fact that ηq is increasing, it can be related with the corresponding α-capacity
as in

Cα,q = max
PX

Iα,q(X, Y) = max
PX

ηq(Iα(X, Y)) = ηq

(
max

PX
Iα(X, Y)

)
= ηq

(
Cα(PY|X)

)
. (74)

Using the expressions (45) and (71), in the case of α = 1, the α-q mutual information reduces to

I1,q =
1

(1− q) ln 2

(
∏
x,y

2
PX,Y(x,y) log

PX,Y (x,y)
PX (x)PY (y) − 1

)

=
1

(1− q) ln 2

(
∏
x,y

(
PX,Y(x, y)

PX(x)PY(y)

)PX,Y(x,y)

− 1

)
. (75)

The α-q-capacity is given in

C1,q = max
PX

(
1

(1− q) ln 2

(
∏
x,y

(
PX,Y(x, y)

PX(x)PY(y)

)PX,Y(x,y)

− 1

))
(76)

and these measures can serve as (maximal) information transfer measures correspond-
ing to Gaussian entropy, which was not considered before in the context of information
transmission. Naturally, if in addition q → 1, the measures reduce to Shannon’s mutual
information and Shannon capacity [37].

Additional special cases of the α-q (maximal) information transfer include the α-mutual
information (42) and the α-capacity (40), which are obtained for q = 1; the measures which
correspond to Tsallis entropy can be obtained for q = α and the ones which correspond to
Landsberg–Vedral entropy for q = 2− α. These special instances are listed in Table 1.

As discussed in Section 7, previously considered information measures cover only
particular special cases and break at least one of the axioms (A1)–(A5), which leads to unex-
pected and counterintuitive conclusions about the channels, such as negative information
transfer and achieving super-capacitance or sub-capacitance [4], which could be treated as
a nonphysical behavior. On the other hand, apart from the generality, the α-q information
transfer measures proposed in this paper overcame the disadvantages which could qualify
them as appropriate measures, as stated in the following theorem.

Theorem 2. The α-q information transfer measures Iα,q and Cα,q satisfy the set of the axioms
(A1)–(A6).

Proof. The proof is the straightforward application of the mapping ηq to the equations
in the α-mutual information properties (A1)–(A5), while the (A6) follows from the above
discussion.

Remark 2. Note that the symmetry Iα,q(X, Y) = Iα,q(Y, X) does not hold in general in the case
of the α-q mutual information nor in the case of the α mutual information [50,51] and if the
mutual information is defined so that the symmetry is preserved, some of the axioms (A1)–(A6)
might be broken. In addition, the alternative definition of the mutual information, Iα,q(Y, X) =
Hα,q(Y)− Hα,q(Y|X), which uses an ordinary substraction operator instead of 	q operation, can
also be introduced, but in this case the property (A5) might not hold in general, as discussed
in Section 7.

6.2. The α-q-Capacity of Binary Symmetric Channels

As shown by Cai and Verdú [45], the α-mutual information of Arimoto’s type Iα is
maximized for the uniform distribution PX = (1/2, 1/2), and Arimoto’s α-capacity has
the value

Cα(BSC) = 1− rα(p), (77)
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where the binary entropy function rα is defined as

rα(p) = Rα(p, 1− p) =
1

1− α
log(pα + (1− p)α), (78)

for α > 0, α 6= 1, while in the limit of α→ 1, the expression (78) reduces to the well-known
result for the Shannon capacity (see Fano [52])

C1(BSC) = lim
α→1

Cα(BSC) = 1 + p log p + (1− p) log(1− p). (79)

The analytic expressions for the α-q-capacities of binary symmetric channel’s can be ob-
tained from the expressions (74) and (77), so that

Cα,q(BSC) = ηq(Cα(BSC)) =
1

(1− q) ln 2

(
21−q(pα + (1− p)α)−

1−q
1−α − 1

)
; (80)

in the case of q = 1, it reduces to the case of Rényi entropy while, in the case of α = 1, to
the case of Gaussian entropy (77)

C1,q(BSC) =
1

(1− q) ln 2

(
2pp(1− p)1−p − 1

)
. (81)

The analytic expressions for BSC α-q capacities for other instances can straightforwardly be
obtained by specifying the values of the parameters, whose instances are listed in Table 1,
while the plots of the BSC α-q-capacities, which correspond to the Gaussian and the Tsallis
entropies, are shown in Figures 3 and 4.

The α-q-capacity (80) can equivalently be expressed in

Cα,q(BSC) = Logq 2	q hα,q(p), (82)

where the Sharma–Mittal binary entropy function is defined in

hα,q(p) = Hα,q(p, 1− p) =
1

1− q

(
(pα + (1− p)α)

1−q
1−α − 1

)
, (83)

which reduces to the Rényi binary entropy function, in the case of q = 1,

hα,1(p) = lim
q→1

hα,q(p) = Rα(p, 1− p) =
1

1− α
log(pα + (1− p)α)), (84)

to the Tsallis binary entropy function, in the case of α = 1,

hq,q(p) = hq,q(p) = Tq(p, 1− p) =
1

1− q
(pq + (1− p)q − 1), (85)

to the Gaussian binary entropy function, in the case of α = 1,

h1,q(p) = lim
α→1

hα,q(p) = Gq(p, 1− p) =
1

(1− q) ln 2

(
p−(1−q)p(1− p)−(1−q)(1−p) − 1

)
, (86)

and to the Shannon binary entropy function, in the case of α = q = 1,

h1,1(p) = lim
q,α→1

hα,q(p) = S(p, 1− p) = −p log p− (1− p) log(1− p). (87)

The expression (82) can be interpreted similarly as in the Shannon case. Thus, a
BSC channel with input X and output Y can be modeled with an input–output relation
Y = X⊕ Z where ⊕ stands for modulo 2 sum and Z is channel noise taking values from
{1, 0}, distributed in accordance with (p, 1− p). If we measure the information which is
lost per bit during transmission with the Sharma–Mittal entropy Hα,q(Z) = hα(p), then
Cα,q stands for useful information left over for every bit of information received.
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Table 1. Instances of the α-q-mutual information for different values of the parameters and corresponding expressions for
the BSC α-q-capacities.

Hα,q Iα,q Cα,q

S
α = q = 1 ∑x,y PX,Y(x, y) log

PX,Y(x, y)
PX(x)PY(y)

1 + p log p + (1− p) log(1− p)

Rα

q = 1
α

1− α
E0

(
1
α − 1, P(α)

X

)
1− log(pα + (1− p)α)

1− α

Tq
q = α

1
(1− q) ln 2

(
2qE0

(
1
q−1,P(q)

X

)
− 1
)

1
(1− q) ln 2

(
21−q(pq + (1− p)q)−1 − 1

)
Lα

q = 2− α
1

(α− 1) ln 2

(
2−αE0

(
1
α−1,P(α)

X

)
− 1
)

1
(1− α) ln 2

(
2α−1(pα + (1− p)α)− 1

)
Gq

α = 1
1

(1− q) ln 2

(
∏x,y

(
PX,Y(x, y)

PX(x)PY(y)

)PX,Y(x,y)
− 1

)
1

(1− q) ln 2

(
21−q p(1−q)p(1− p)(1−q)(1−p) − 1

)

E0(ρ, PX) = − log

(
∑y

(
∑x PX(x)P

1
1+ρ

Y|X(y|x)
)1+ρ

)

0 1 2 3 4 5 6 7 8 9 10

q
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0.2

0.4
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0.8
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1
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2 ,

1
2

)

= Logq(2)

p = 0.5

Figure 3. The α-q-capacity of BSC for the Gaussian entropy (the case of α = 1) as a function of q
for various values of the channel parameter p from 0.5 (totally destructive channel) to 0 (perfect
transmission). All of the curves lies between 0 and Logq2, which is the maximum value of the
Gaussian entropy.
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= Logq(2)
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Figure 4. The α-q-capacity of BSC for the Tsallis entropy (the case of α = q) as a function of q
for various values of the channel parameter p from 0.5 (totally destructive channel) to 0 (perfect
transmission). All of the curves lies between 0 and Logq2, which is the maximum value of the
Tsallis entropy.

7. An Overview of the Previous Approaches to Sharma–Mittal Information
Transfer Measures

In this section, we review the previous attempts at a definition of Sharma–Mittal
information transfer measures, which are defined from the basic requirement of consistency
with the Shannon measure as given by the axiom (A6) . However, as we show in the
following paragraphs, all of them break at least one of the axioms (A1)–(A5) , which are
satisfied in the case of the α-q (maximal) information transfer measures (69) and (73), in
accordance with the discussion in Section 6.

7.1. Daróczy’s Capacity

The first considerations of generalized channel capacities and generalized mutual
information for the q-entropy go back to Daróczy [30], who introduced conditional Tsal-
lis entropy

T̄q(Y|X) = ∑
x

Pq
X(x)Tq(Y|X = x), (88)

where the row entropies are defined as in

Tq(Y|X = x) =
1

(1− q) log(2)

(
∑
x

PY|X(y|x)q − 1

)
(89)
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and the mutual information is defined as in

J5
α,q(X, Y) = Tq(Y)− T̄q(Y|X). (90)

However, in the case of a totally destructive channel, X ⊥⊥ Y, PY|X(y|x) = PY(y),
Tq(Y|X = x) = Tq(Y) and

Tq(Y|X) = Tq(Y)∑
x

PX(x)q (91)

so that

J5
α,q(X, Y) = Tq(Y)

(
1−∑

x
PX(x)q

)
=

(
1−∑

x
PX(x)q

)
Logqm. (92)

This expression is zero for an input probability distribution PX = (1, 0, . . . , 0) and its
permutations, but, in general, it is negative for q < 1, positive for q > 1 and 0 only for
q = 1, so the axiom (A2) is broken (see Figure 5). As a result, the channel capacity, which
is defined in accordance to (32), is zero for q ≤ 1 and positive for q > 1, as illustrated in
Figure 6 by the example of BSC for which the Daroczy’s channel capacity can be computed
as in [30,53]

C5
q(BSC) =

1− 21−q

q− 1
− 2−q

q− 1
[1− (1− p)q − pq]. (93)

In the same figure, we plotted the graph for the α-q channel capacities proposed in this
paper, and all of them remain zero in the case of a totally destructive BSC, as expected.

7.2. Yamano Capacities

Similar problems to the ones mentioned above arise in the case of mutual information
and corresponding capacity measures considered by Yamano [33], who addressed the
information transmission characterized by Landsberg–Vedral entropy Lq, given in (17).

Thus, the first proposal is based on the mutual information of the form

J6
q (X, Y) = Lq(X) + Lq(Y)− Lq(X, Y), (94)

where the joint entropy is defined in

Lq(X, Y) =
1

q− 1

(
1

∑x,y PX,Y(x, y)q − 1

)
. (95)

However, in the case of a fully destructive channel, PY(y) = 1/m and PX,Y(x, y) =
PX(x)/m, so that

J6
q (X, Y) =

1
q− 1

(
1

∑x PX(x)q − 1
)
+

1
q− 1

(
mq−1 − 1

)
− 1

q− 1

(
mq−1 1

∑x PX(x)q − 1
)

, (96)

which can be simplified to

J6
q (X, Y) =

1−mq−1

q− 1

(
1

∑x PX(x)q − 1
)

. (97)

Similarly to the case of Daroczy’s capacity, this expression is zero for an input probability
distribution PX = (1, 0, . . . , 0) and its permutations but, in general, it is negative for q > 1,
positive for q < 1 and 0 only for q = 1, so the axiom (A2) is broken (see Figure 5). In
Figure 6 we illustrated the Yamano channel capacity as a function of the parameter q, in
the case of two input channels with PX = [a, 1− a], the channel capacity is zero for q > 1
(which is obtained for PX = [1, 0]), and

C6
q(BSC) =

1
q− 1

(
2q − 1− 22q−2

)
, (98)
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for q > 1 (which is obtained for PX = [1/2, 1/2]). In the same Figure, we plotted the graph
for the α-q channel capacities proposed in this paper, and, as before, all of them remain
zero in the case of a totally destructive BSC, as expected.

Further attempts were made in [33], where the mutual information is defined in an
analogous manner to (66) and (66), with the generalized divergence measure introduced
in [54]. Thus, the alternative measure for mutual information is defined in

J7
q (X, Y) =

1
(1− q) ln 2

1

∑x,y Pq
X,Y(x, y)

[
1−∑

x,y
PX,Y(x, y)

(
PX(x)PY(y)
PX,Y(x, y)

)1−q
]

. (99)

However, in the case of the simplest perfect communication channel for which X = Y, the
mutual information reduces to

J7
q (X, Y) =

1
(1− q) ln 2

1−∑x PX(x)2−q

∑x PX(x)q 6= Lq(X), (100)

which breaks the axiom (A3).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

a

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

J 6

q , q=0.8

J 5

q , q=0.8

J 6

q , J
5

q , q = 1

J 6

q , q=1.2

J 5

q , q=1.2

Figure 5. Daróczy’s (solid lines) and Yamano’s (dashed lines) mutual information in the case of
a totally destructive BSC as functions of the input distribution parameter a, PX = [a, 1− a]T for
different values of q, obtaining negative values for q < 1 and q > 1, respectively, breaking the axioms
(A1) and (A2). The α-q-mutual information is zero; for all q, and satisfies (A1) and (A2).
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Figure 6. Daróczy’s (solid lines) and Yamano’s (dashed lines) capacities in the case of totally de-
structive BSC as functions of the parameter q. In the regions of q < 1 and q > 1, respectively, the
corresponding negative mutual information is maximized for PX = [1, 0]T (zero capacity) having the
positive values outside the regions and breaking the axiom (A2). The α-q-capacity is zero; for all q,
and satisfies (A2).

7.3. Landsber–Vedral capacities

To avoid these problems, Landsberg and Vedral [4] proposed the mutual information
measure and related channel capacities for the Sharma–Mittal entropy class Hα,q, particu-
larly considering the choice of q = α, which corresponds to Tsallis entropy, q = 2− α, and
the case of q = 1, which corresponds to the Rényi entropy

J8
α,q(X, Y) = Hα,q(Y)− ˜Hα,q(Y|X), (101)

where the conditional entropy ˜Hα,q
LV
(Y|X) is defined as in

˜Hα,q(Y|X) = ∑
x

PX(x)Hα,q(Y|X = x) (102)

and

Hα,q(Y|X = x) =
1

1− q

(∑
y

PY|X(y|x)α

) 1−q
1−α

− 1

. (103)

Although this definition bears some similarities to the α-q mutual information pro-
posed in formula (69), several key differences can be observed. First of all, it character-
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izes the information transfer as the output uncertainty reduction after the input sym-
bols are known, instead of input uncertainty reduction, after the output symbols are
known (42). In addition, it uses the ordinary—operation instead of the 	q one. In addition,
note that the definition of conditional entropy (102) generally differs from the definition
proposed in (70).

The definition (101) resolves the issue of the axiom (A2) which appears in the case of
the Daroczy capacity, since in the case of a totally destructive channel (X ⊥⊥ Y), PY|X(y|x) =
PY(y) and Lq(Y|X = x) = Lq(Y) and Lq(Y|X) = Lq(Y), so that Ilv

α,q(X, Y) = 0. However,
the problems remain with the axiom (A5), which can be observed in the case of a noisy
channel with non-overlapping outputs if the number of channel inputs is lower than
the number of channel outputs n < m. Indeed, in the case of a noisy channel with
non-overlapping outputs given by the transition matrix (27), both of the row entropies
Lq(Y|X = x) have the same value, which is independent of x

Hα,q(Y|X = x) =
k1−q − 1

(q− 1) ln 2
= Logqk; for x = x1, x2, (104)

and the maximal value of Landsberg–Vedral mutual information (101) is obtained only
by maximizing Hα,q(Y) over PX , which is achieved if X is uniformly distributed, since in
this case Y is uniformly distributed, as well as (a = 1

2 in (28)), so the maximal value of the
output entropy is Hα,q(Y) = Logq(2k) and the mutual information is maximized for

C8
α,q(NOC) = Logq(2k)− Logq(k), (105)

which is greater than Logq(2) for k ≥ 2, i.e., for m ≥ 4 outputs, so the axiom (A5) is broken,
which is illustrated in Figure 7.

7.4. Chapeau-Blondeau–Delahaies–Rousseau Capacities

Following a similar approach to the one in Section 5.4, Chapeau-Blondeau, Delahaies
and Rousseau considered the definition of mutual information which corresponds to the
Tsallis entropy using Tsallis divergence,

Dq,q(P||Q) =
1

q− 1

(
∑
x

P(x)qQ(x)1−q − 1

)
, (106)

can be written in

J9
q (X, Y) = Dq,q(PX,Y‖PXPY) = ηq

(
Dq(PX,Y‖PXPY)

)
=

1
1− q

(
1−∑

x,y
PX,Y(x, y)qPX(x)1−qPY(y)1−q

)
. (107)

However, this definition is not directly applicable as a measure of information transfer to
the Tsallis entropy with index q, since in the case of X = Y it reduces to J9

q (X, Y) = T2−q(X),
and requires the reparametrization q↔ 2− q, similar to Section 5.4, while the satisfaction
of the axioms (A4) and (A5) is not self evident.
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Figure 7. Landsberg–Vedral capacities for the Tsallis (solid lines) and the Landsberg–Vedral (dashed
lines) entropies in the case of a (perfect) noisy channel with non-overlapping outputs with m outputs
as functions of q, for different values of m. The axiom (A4) is broken for all m > 2 and satisfied in the
case of corresponding α-q-capacities, Cq,q and Cq,2−q.

8. Conclusions and Future Work

A general treatment of the Sharma–Mittal entropy transfer was provided together with
the analyses of existing information transfer measures for the non-additive Sharma–Mittal
information transfer. It was shown that the existing definitions fail to satisfy at least one
of the axioms common to the Shannon case, by which the information transfer has to be
non-negative, less than the input and output uncertainty, equal to the input uncertainty
in the case of perfect transmission and equal to zero in the case of a totally destructive
channel. Thus, breaking some of these axioms implies unexpected and counterintuitive
conclusions about the channels, such as achieving super-capacitance or sub-capacitance [4],
which could be treated as nonphysical behavior. In this paper, alternative measures of
the α-q mutual information and the α-q channel capacity were proposed so that all of the
axioms which are broken in the case of the Sharma–Mittal information transfer measures
considered before are satisfied, which could qualify them as physically consistent measures
of information transfer.

Taking into account the previous research of non-extensive statistical mechanics [3],
where the linear growth of the physical quantities has been recognized as a critical property
in non-extensive [55] and non-exponentially growing systems [56], and taking into account
the previous research from the field of information theory, where the Sharma–Mittal
entropy has been considered an appropriate scaling measure which provides extensive
information rates [21], the α-q mutual information and the α-q channel capacity seem to be
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promising measures for the characterization of information transmission in the systems
where the Shannon entropy rate diverges or disappears in an infinite time limit. In addition,
as was shown in this paper, the proposed information transfer measures are compatible
with the maximum likelihood detection, which indicates their potential for operational
characterization of coding theory and hypothesis testing problems [26].
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