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Abstract The precise coordination of body parts is essential for survival and behavior of higher

organisms. While progress has been made towards the identification of central mechanisms

coordinating limb movement, only limited knowledge exists regarding the generation and

execution of sequential motor action patterns at the level of individual motoneurons. Here we use

Drosophila proboscis extension as a model system for a reaching-like behavior. We first provide a

neuroanatomical description of the motoneurons and muscles contributing to proboscis motion.

Using genetic targeting in combination with artificial activation and silencing assays we identify the

individual motoneurons controlling the five major sequential steps of proboscis extension and

retraction. Activity-manipulations during naturally evoked proboscis extension show that

orchestration of serial motoneuron activation does not rely on feed-forward mechanisms. Our data

support a model in which central command circuits recruit individual motoneurons to generate

task-specific proboscis extension sequences.

DOI: 10.7554/eLife.19892.001

Introduction
Locomotion and behavioral motor sequences are generated by a precise movement of selected

body parts. These movements include both the coordination of individual elements of an appendage

or limb to generate stereotyped serial motor patterns and bilateral interlimb coordination. In the last

years, significant progress has been made towards the identification of central neuronal circuitries

mediating and controlling the alternation of limb movement necessary for walking or swimming in

both invertebrate and vertebrate model systems (Berkowitz et al., 2010; Guertin, 2009;

Marder et al., 2005; Talpalar et al., 2013). These studies demonstrated that in many cases local

central pattern generators (CPGs) and reciprocal inhibitory interneuron networks coordinate the

alternating activation of limb motor units (Berkowitz et al., 2010; Borgmann and Büschges, 2015;

Büschges et al., 2011; Crone et al., 2008; Guertin, 2009; Lanuza et al., 2004; Marder et al.,

2005; Talpalar et al., 2013). Similarly, CPGs are involved in the generation and coordination of ste-

reotyped motion patterns of limb or appendage segments depending on alternating extensor-flexor

muscle activation (Grillner, 2003; Talpalar et al., 2011; Tripodi et al., 2011; Zhang et al., 2014).

Intra-limb coordination of body parts has been mainly explored using vertebrate limb movement,

turtle scratch behavior and directed locomotion of locust legs (Berkowitz and Laurent, 1996;

Calas-List et al., 2014; Durr and Matheson, 2003; Guzulaitis et al., 2014; Machado et al., 2015;

Snyder and Rubin, 2015; Stein, 2010). In addition, analysis of Drosophila larval locomotion recently

provided insights into the generation of temporally delayed but overlapping muscle activation pat-

terns (Zwart et al., 2016). This study demonstrated similar segregation of premotor excitatory input
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as observed in vertebrates (Bikoff et al., 2016; Goetz et al., 2015; Tripodi et al., 2011) and

showed that inhibitory interneuron input mediates phase delay of intrasegmental motoneuron (MN)

activation (Zwart et al., 2016).

Despite these advances, for complex reaching-like behaviors we currently have only a limited

understanding regarding the circuit architecture that controls individual MN activation to elicit and

coordinate these precise temporal and spatial motion patterns.

Here, we use the stereotypic motor response of Drosophila melanogaster proboscis extension to

address in vivo the cellular and circuit mechanisms underlying the serial activation pattern of muscle

groups necessary to coordinate a reaching-like behavior. The proboscis extension response (PER) is

part of the sensory-motor taste circuitry of adult Drosophila (McKellar, 2016). The proboscis is the

feeding organ of flies and is used for both taste cue detection and food ingestion (Dethier, 1976;

Masek and Scott, 2010; Shiraiwa and Carlson, 2007; Wang et al., 2004). Comparable to mam-

mals, gustation in flies is based on a limited number of modalities which are perceived by gustatory

receptor neurons (GRNs) present in taste sensilla on the proboscis, legs, wings, and ovipositor. Stim-

ulation with an attractive stimulus (sweet) will trigger the extension of the proboscis towards the

food source while aversive stimuli (bitter) will prevent the PER (Clyne et al., 2000; Dunipace et al.,

2001; Falk et al., 1976; Hiroi et al., 2004; Montell, 2009; Scott et al., 2001; Singh, 1997;

Stocker, 1994; Thorne et al., 2004; Yarmolinsky et al., 2009).

For a number of reasons Drosophila proboscis extension represents an ideal model system to

unravel the structural and functional basis of a serial motor action. First, the PER represents an

innate, sequential behavior that can be subdivided into a discrete number of movement steps

(Flood et al., 2013). This motor sequence likely requires activation of different muscle groups at dis-

tinct time points within the PER sequence, implying a precise temporal orchestration of upstream

MN activity. Second, the PER can reliably and noninvasively be elicited in living flies simply by apply-

ing a positive gustatory stimulus to GRNs (Shiraiwa and Carlson, 2007). Third, the MNs innervating

the proboscis reside in a specific, highly regionalized brain region, the subesophageal zone (SEZ,

nomenclature according to Ito et al., 2014) (Hampel et al., 2011; Rajashekhar and Singh, 1994). It

is thought that the relay of gustatory sensory information from GRNs to MNs occurs mainly within

the SEZ (Altman and Kien, 1987; Dunipace et al., 2001; Stocker, 1994; Thorne et al., 2004;

Wang et al., 2004).

Importantly, stereotypic proboscis extension is also part of additional innate behavioral programs.

The proboscis is partially extended both during fly grooming to enable cleaning of the proboscis

(Hampel et al., 2015; Seeds et al., 2014) and during the male courtship to enable contact to the

female fly (courtship licking) (Hall, 1994; Nichols et al., 2012). As these movements differ signifi-

cantly from each other at least three independent motor programs controlling proboscis extension

must exist.

The current description of the Drosophila proboscis motor system largely relies on comparative

anatomical studies of the proboscis musculature based on cross-sections of the adult head in differ-

ent fly species (Graham-Smith, 1930; Miller, 1950). First insights regarding the anatomy of MNs

were obtained using backfilling studies (Rajashekhar and Singh, 1994) and by selective expression

of marker genes in MNs innervating the musculature of the pharyngeal pump (Tissot et al., 1998).

More recently, by gaining genetic access to individual MNs a functional analysis enabled the charac-

terization of the role of a single MN during feeding induced proboscis extension (Gordon and Scott,

2009) and of MNs contributing to food intake by controlling pharyngeal contractions (Manzo et al.,

2012; Tissot et al., 1998). However, to gain insights into the principles underlying the motor pro-

gram controlling proboscis movement a comprehensive neuroanatomical and functional characteri-

zation of proboscis muscles and MNs is essential.

Here, we first analyze the sequential features of the motion pattern underlying the PER and pro-

vide a comprehensive morphological description of proboscis MNs and muscles. Using a MARCM

(Mosaic Analysis with a Repressible Cell Marker) approach (Lee and Luo, 1999) we identify and char-

acterize cell body position, dendritic arborization, nerve projections, and muscle innervation patterns

of all proboscis MNs at the single cell level. Using a functional behavioral screen, we then identify

essential MNs controlling the serial motor sequence of the PER. Light and temperature-mediated

activation and silencing of genetically identified MNs in vivo enables us to assign individual MNs to

all major steps of the motor sequence controlling proboscis extension and retraction. Finally, by

using targeted neuronal activity manipulations during natural, stimulus-evoked PER we demonstrate
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that the motor sequence units act independently from each other. Our study indicates that the serial

PER action sequence is centrally programmed and does not represent a chain reflex sequence.

Figure 1. The motor sequence of the proboscis extension response. (A–E) In response to sucrose stimulation to

the leg the proboscis is extended in a stereotypic motion pattern: (A) fly before stimulus, (B) sucrose stimulation,

(C) rostrum lifting, (D) haustellum extension, (E) labella extension, (F) labella spreading. (G) Temporal quantification

of proboscis extensions. The initiation time point of each step was determined in the video sequence and plotted

with rostrum lifting set to zero. Data are shown for: single fly (magenta), multiple stimulations of three individual

flies (A n = 13, B n = 10, C n = 13 stimulations), fed flies (red, n = 4 animals, 7 stimulations), mean ± SEM of the

second stimulation of 12 individual flies (black). The following data points are not displayed on the graph: FlyA,

stimulus (�28), labella spreading (+35); flyB, stimulus (�31, –54); flyC: labella spreading (32, 46). Statistical

comparison of flies A–C (Mann-Whitney U test) revealed small significant differences for the following data points:

A vs C, labella extension – labella spreading, p=0.0006; B vs C, stimulus – rostrum lifting, p=0.0304). No significant

differences were detected when comparing fed flies to individual flies or to the 12 control flies. However, these

flies failed to spread the labella in response to leg stimulation but not when stimulated at the labella. See also

Video 1.

DOI: 10.7554/eLife.19892.002
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Results

Characterization of the PER motor sequence
First, we aimed to determine the precise motion pattern underlying the PER motor program. There-

fore, we monitored and quantified proboscis movements in 14 starved and immobilized wild type

(w1118) flies in response to sucrose stimulations of the anterior legs. Our analysis revealed that the

PER program consists of four major extension steps prior to food ingestion. Upon sucrose stimula-

tion flies (1) lift the rostrum, (2) extend the haustellum, (3) extend the labella and (4) spread the

labella to prepare for food intake (Figure 1A–F, Video 1 – see slow motion). This sequence is consis-

tent with the reported sequences both during natural feeding and sucrose stimulation (Deth-

ier, 1976; Flood et al., 2013; Gordon and Scott, 2009) with the exception of the labella extension

step that has not been described before. Importantly, this sequence was highly stereotypic both

within individual flies and across multiple flies (Figure 1G). We observed a deviation from this

sequence only in 4 out of 93 stimulations (n = 14 flies) in which labella extensions preceded haustel-

lum extensions. Between individual flies small alterations in the temporal profiles of individual move-

ment steps could be observed (Figure 1G). These alterations are likely not a consequence of the

feeding status of the flies as we did not observe significant deviations of the temporal sequence in

fed flies compared to starved flies (Figure 1G).

Identification of proboscis musculature
We next aimed to unambiguously identify all muscle groups potentially contributing to proboscis

movement and food ingestion. We used a muscle specific reporter (MHC-GFP; Chen and Olson,

2001) to visualize the position and organization of all muscles within an intact head capsule and pro-

boscis (Figure 2A,B). Our whole-head preparation allowed us to visualize all muscles in their natural

position and enabled identification of muscle groups that were not recognized as distinct groups in

prior studies (Miller, 1950; Rajashekhar and Singh, 1994). For nomenclature, we follow the num-

bered system introduced by Miller (1950). The analysis of muscle organization at different focal

positions within the head capsule resulted in a number of novel findings. Muscle 1 represents the

largest muscle group extending through the entire head capsule (Figure 2A,B). Analysis of the flank-

ing muscles revealed that muscle 2 is comprised of two independent muscles with unique attach-

ment sites and different expression levels of the MHC-GFP reporter (Figure 2B). Similarly, the in situ

visualization of muscle groups surrounding the pharynx revealed novel aspects of muscle group

organization (Figure 2b’, displayed at higher exposure levels). As previously described, muscle

group 12 is composed of two different muscles, 12–1 and 12–2 (Flood et al., 2013; Figure 2b’). In

addition, our data shows that the large muscle group 11 can be subdivided into three distinct muscle

sets (11–1, 11–2, and 11–3) that attach to the upper sclerotized plate of the pharyngeal pump at

unique angles (Figure 2b’). Within the haustellum muscles 6 and 7 share posterior attachment posi-

tions but connect to the dorsal and ventral part at the anterior end of the haustellum, respectively

(Figure 2b’’). Muscle 8 forms a connection

between the dorsal and ventral parts of the

labella, orthogonal to muscles 6 and 7

(Figure 2b’’). Based on these data, the proboscis

musculature consists of 17 individual muscles

forming 13 major muscle groups.

Proboscis motoneurons are located
in the subesophageal zone
To characterize the MNs innervating these muscle

groups we first visualized MN cell bodies by

backfilling the proboscis nerves (labial and pha-

ryngeal nerve) with rhodamine-labeled dextran

dye. These experiments, recapturing an original

analysis of Rajashekhar and Singh (1994),

revealed 20 pairs of bilaterally symmetric MNs,

with MN somata arranged in two bilaterally

Video 1. Proboscis extension sequence in wild type

flies (related to Figure 1). This video shows a side view

sequence of a sucrose-evoked proboscis extension of a

wildtype (w1118) fly first in real time followed by slow

motion (0.1 x speed).

DOI: 10.7554/eLife.19892.003
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symmetric clusters in the SEZ (Figure 2D). Consistent with prior reports we observe that all dendritic

MN arborizations are confined to the SEZ. Thus, at least 20 distinct MNs in each brain hemisphere

control the activation of the 13 muscle groups contributing to either proboscis movement or phar-

ynx-mediated food uptake.

Developmental origin and neuroanatomy of proboscis MNs
To characterize the neuroanatomical features of all MNs in detail and to gain insights into their

developmental origin we used the MARCM technique that allows genetic labeling of individual MNs

at the time of their birth (Lee and Luo, 1999). Proboscis MNs can be visualized using the Gal4 driver

line OK371 that labels all glutamatergic neurons (Daniels et al., 2008). Interestingly, we only recov-

ered MN clones when heat-shock mediated flippase activation was induced during early embryogen-

esis (0–12 hr after egg-laying (AEL)) but not when the activation was performed during late

A

b’

b’’

B

9

2-1

1

4
6

7

8

esophagus

pharynx

proboscis muscles

C
motoneuron dendrites

motoneuron NMJ

D E

b’ b’’

haustellum

7

8

6

4

1

9
10

11-1

3
4

7

12-1

6
8

7

side view

a

d

brain-SEZ

I

II

I II

muscle 1-MN (mGFP)

MN - MARCMMNs - backfilled

brain-SEZ

NMJ

motoneurons (Dextran)

MHC-GFP

Dlg

*

muscle 1-MN (mGFP)

Dlg

II

2-2

12-2

2-1

4

5
6

7

8

9
10

12-1
12-2

SEZ

1 brain

11-2

3

2-2

11-1

11-3

13

13

11-2

11-3

13

Labella

Haustellum

Rostrum

ventral view

Figure 2. Muscles and motoneurons of the Drosophila proboscis. (A) Whole mount preparation of a Drosophila

head. Muscle-specific expression of GFP (MHC-GFP) reveals the position of all proboscis muscles (red) in the head

(bright field image). (B) Same head as in (A) with muscles displayed in black (inverted). Pharynx and haustellum

muscles are shown with adjusted settings and individually in b’ and b’’. Blue numbers indicate individual muscle

groups. Scale bars, 50 mm. (C) Schematic drawing of head muscles. (D) Proboscis MNs. Upper panel, backfilling of

all MN axons innervating the proboscis musculature reveals MN cell bodies within the SEZ. Two clusters of MN

cell bodies (DMA, dorsal medial anterior; VLP, ventral lateral posterior) are present on both sides of the midline.

Lower panel, enlargements of the DMA (I) and VLP (II) clusters. Scale bars, 20 mm. (E) Single cell MARCM clone of

a proboscis MN innervating muscle 1. Left, overview showing MN cell body and dendritic arborization in the brain

that is connected by a single axon (arrow) to the NMJ on muscle 1. The asterisk indicates the pharyngeal plate.

Right, enlargements of the SEZ (top) and NMJ (bottom). In all panels, the MN is marked by the expression of

mCD8-GFP (green) and postsynaptic sites are labeled using anti-Discs large (Dlg, red). Scale bars, 20 mm.

DOI: 10.7554/eLife.19892.004

Schwarz et al. eLife 2017;6:e19892. DOI: 10.7554/eLife.19892 5 of 32

Research article Neuroscience

http://dx.doi.org/10.7554/eLife.19892.004
http://dx.doi.org/10.7554/eLife.19892


embryogenesis or during larval stages. Furthermore, we never recovered multiple MNs within a brain

hemisphere (Figures 3 and 4). This is in contrast to the development of leg MNs that occurs

throughout larval development and is coupled to the development of the adult leg with individual
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Figure 3. Morphology of MNs contributing to proboscis motion. Single cell MARCM clones of MNs innervating

muscle 3 (A), muscle 4 (B), muscle 9 (C), muscle 6 (D), muscle 7 (E), and muscle 8 (F) are shown. For each MN type,

brain localization (middle panels) and muscle innervation (lower panels) are shown. In all panels, MNs are marked

by the expression of mCD8-GFP (green), the neuropil is visualized using an anti-Neurotactin antibody (Nrt, red,

middle panels), and muscles are labeled using rhodamine-conjugated phalloidin (red, bottom row). A digital

reconstruction of each MN is shown (top panel, dotted line indicates midline). Cell bodies are artificially colored in

green and neurites in magenta. Scale bars, 20 mm.

DOI: 10.7554/eLife.19892.005
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Figure 4. Morphology of MNs contributing to food ingestion. (A) Schematic drawing of the muscles in the fly

head. Muscles implicated in food ingestion are marked in blue. Single cell MARCM clones of MNs innervating

muscle 5 (B), muscle 10 (C), muscle 11 (D), muscle 12 (E), and muscle 12–2 (F) are shown. For each MN type (B–F),

brain localization (middle panels) and muscle innervation (bottom panels) are shown. In all panels, MNs are

marked by the expression of mCD8-GFP (green), the neuropil is visualized using Nrt (red, middle row), and

Figure 4 continued on next page
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neuroblasts giving rise to a large number of MNs (Baek and Mann, 2009; Brierley et al., 2012). We

analyzed the dendritic arborization, axon projection and muscle innervation pattern of 96 proboscis

MN clones (Figures 2E, 3 and 4) and defined MN types as MNs innervating the same muscle group.

A minimum of two independent single cell clones was obtained for each MN type (Figures 3 and

4 and data not shown) with the exception of MNs innervating muscle 13 (no clones recovered).

Based on their innervation patterns, the twelve analyzed MN types can be subdivided into two major

groups. Eight MN types innervate target muscles only on the ipsilateral side of the proboscis (with

respect to the soma); these MNs innervate muscles that are involved in the extension, retraction,

and positioning of the proboscis and mouthparts (this paper; Figures 2E and 3, and below). Strik-

ingly, the axons of the remaining four MN types bifurcate and simultaneously innervate bilateral sym-

metric target muscles associated with the pharyngeal pump (Figure 4). These muscle groups are

thought to mainly control food ingestion and pumping (Manzo et al., 2012; Tissot et al., 1998).

MNs innervating muscles controlling proboscis movement
The eight muscle groups innervated by ipsilateral MN types have been previously categorized based

on anatomical criteria in Drosophila by Miller (1950) and in the blowfly by Graham-Smith (1930).

Functional data thus far only exists for muscle 9 that has been demonstrated to control rostrum lift-

ing (Gordon and Scott, 2009). Representative single cell clones of MN types that innervate seven of

these muscles are shown in Figure 2E and Figure 3. As the precise role of these muscles for probos-

cis movement has not yet been established through functional analysis we utilize the target muscle

number and not the anatomically based role for MN classification throughout this manuscript. The

MN innervating muscle 1 (= MN1) has both ipsilateral and contralateral dendritic arborizations and

innervates the ipsilateral muscle through the labial nerve (Figure 2E). Based on the co-staining with

the postsynaptic muscle marker Discslarge (Dlg) it is evident that at least one additional MN inner-

vates muscle 1. In general, MNs controlling proboscis movement differ significantly in the localiza-

tion and complexity of dendritic arborization. MNs 3 and 4 display almost exclusively ipsilateral

dendritic arborization (Figure 3A,B), while MNs 9 and 8 have predominantly ipsilateral arborization

with minor extensions to the contralateral side (Figure 3C,F). In contrast, MN7 has similar dendritic

arborizations on both sides (Figure 3E) while MN6 displays predominant contralateral arborization

with only minor extensions to the ipsilateral side (Figure 3D). Thus, while all these MNs strictly inner-

vate ipsilateral located muscles they receive presynaptic input either predominantly ipsilateral, equal

from both sides or predominantly from the contralateral side.

Proboscis motoneurons innervating pharyngeal muscles
Some of the muscle groups innervated by the bifurcating MNs (5, 10, 11, and 12, Figure 4A) have

been previously associated with food ingestion and pumping (Flood et al., 2013; Graham-

Smith, 1930; Manzo et al., 2012; Miller, 1950; Tissot et al., 1998). The general anatomy of these

four MN types is highly stereotypic. All MN axons project through the pharyngeal nerve, bifurcate

into two bilateral axon branches and innervate homologous muscles on both sides of the midline.

These MNs display similar dendritic arborizations in both brain hemispheres and the innervation pat-

tern on the two homologous bilateral muscles is almost identical (Figure 4B–F). Interestingly, prior

analysis of the MNs innervating muscle groups 11 and 12 using specific Gal4 lines demonstrated

that they have contralateral homologs (Manzo et al., 2012; Tissot et al., 1998). Indeed, in our

MARCM analysis we identified single MNs innervating muscle group 11 bilaterally with the cell body

present in either the left or right brain hemisphere (data not shown). Thus, pharyngeal muscles on

both sides are innervated by two bilateral homologous MNs with highly overlapping dendritic

arborizations.

Figure 4 continued

muscles are labeled using rhodamine-conjugated phalloidin (red, bottom row). A digital reconstruction of each

MN is shown (top panel, dotted line indicates midline). Cell bodies are artificially colored in green and neurites in

magenta. Scale bars, 20 mm.

DOI: 10.7554/eLife.19892.006
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Gal4-mediated genetic control of proboscis MNs
Next we aimed to assign functional roles to the MNs innervating proboscis musculature. Thus far,

only the role of the MN innervating muscle 9 has been adequately studied by selective activation

and silencing using a specific Gal4-driver line (Gordon and Scott, 2009). To identify the functional

role of the MNs and their target muscles and to investigate the circuit mechanisms controlling pro-

boscis extension and retraction we aimed to genetically control individual MNs. We performed a

functional screen using the Gal4-UAS binary expression system (Brand and Perrimon, 1993) to iden-

tify Gal4-driver lines selectively expressing in different proboscis MNs. We used two publically avail-

able enhancer-Gal4 line collections (GMR-Gal4 lines, Bloomington Drosophila Stock Center,

Jenett et al., 2012; VT-Gal4 lines, Vienna Drosophila RNAi Center, Kvon et al., 2014) which express

the yeast transcription activator protein Gal4 in a random but fixed subset of neurons

(Pfeiffer et al., 2008, 2010). Gal4-lines were prescreened for expression within the SEZ and then

crossed to UAS-effector lines enabling either neuronal activation or silencing (Hamada et al., 2008;

Kitamoto, 2001; Klapoetke et al., 2014). Artificial activation of Gr5a-Gal4 sweet sensory neurons

by expressing either the heat-activatable Na+-channel TrpA1 (Hamada et al., 2008) or the red-

shifted Channelrhodopsin2 Chrimson (Klapoetke et al., 2014) resulted in repetitive complete exten-

sions of the proboscis mimicking natural activation by sucrose (Video 2). In contrast, it has been

reported that constant activation of MN9 caused a constant displacement of the proboscis

Video 2. Activation of Gr5a-expressing sweet sensory

neurons using Chrimson. This video shows a

continuous sequence of a Gr5a-Gal4>Chrimson fly at

the control wavelength (475 nm), at the activation

wavelength (633 nm), and at the control wavelength.

First in real time followed by slow motion (0.4 x speed).

DOI: 10.7554/eLife.19892.007

Video 3. Activation of GMR18B07, repoGal80 neurons

using TrpA1 (related to Figure 5). This video shows a

GMR18B07, repoGal80 > TrpA1 fly at control and

activation temperatures. Order of sequence: Side view

at 22˚C, side view at 29˚C, top view at 29˚C, and side

view at 22˚C.
DOI: 10.7554/eLife.19892.010

Video 4. Activation of GMR18B07, repoGal80 neurons

using Chrimson (related to Figure 5). This video shows

a GMR18B07, repoGal80 > Chrimson fly at the control

wavelength (475 nm), then at the activation wavelength

(633 nm), and at the control wavelength.

DOI: 10.7554/eLife.19892.011

Video 5. Silencing of GMR18B07, repoGal80 neurons

using shits (related to Figure 5). This video shows

sucrose stimulations of a GMR18B07, repoGal80 > shits

fly at 22˚C, at 29˚C, and at 22˚C, displayed at a 0.5 x

speed.

DOI: 10.7554/eLife.19892.012
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Figure 5. GMR18B07 neurons control rostrum lifting and labella spreading. (A) Artificial activation of GMR18B07,

repoGal80 neurons using TrpA1. Heat induced activation elicits rostrum lifting (middle panel, arrow) and labella

spreading (double arrow). The inset shows a top view of the spread labella. At the control temperature before (left

panel) and after (right panel) activation the proboscis is retracted. (B) Artificial activation of GMR18B07, repoGal80

Figure 5 continued on next page
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consistent with the contraction of muscle 9 (Gordon and Scott, 2009). Based on these results, we

hypothesized that constant activation of MNs should elicit a constant change of proboscis posture at

the activation temperature (TrpA1) or upon red light stimulation (Chrimson).

MNs controlling rostrum lifting and labella spreading
Artificial activation of flies expressing TrpA1 using GMR18B07-Gal4 resulted in a constant lifting of

the rostrum identical to the behavioral pattern previously described for MN9 activation (E49-Gal4;

Gordon and Scott, 2009) (Figure 5A,H and Video 3). In addition to rostrum lifting the flies also

spread their labella at the activation temperature (29˚C) (Figure 5A, inset) but not at control temper-

ature (22˚C). To confirm these results, we next used Chrimson as an alternative activation method.

Upon red light stimulation, the rostrum was lifted and the labella were spread. Importantly, Chrim-

son-mediated activation allowed precise temporal control of the behavior as rostrum lifting corre-

lated perfectly with red light exposure (Figure 5B,H and Video 4). To investigate whether the

neurons expressing Gal4 are not only sufficient but also necessary for rostrum lifting and labella

spreading we next silenced these neurons using the temperature-sensitive version of Dynamin, shi-

birets (Kitamoto, 2001). At the permissive temperature (22˚C) the flies were able to fully extend the

proboscis towards a positive stimulus (tissue soaked in 200 mM sucrose solution). In contrast, at the

restrictive temperature (29˚C, please see Materials and methods for details) the flies were no longer

able to lift the rostrum upon sucrose stimulation (Figure 5C middle panel, 5 hr and Video 5;

GMR18B07, repo-Gal80 > shits animals, see below). Importantly, this behavior was completely

reversible as shifting to the permissive temperature restored full proboscis extension upon sucrose

stimulation (Figure 5C right panel and Video 5). Thus, the failure to lift the rostrum was indeed due

to the acute inhibition of GMR18B07 neurons and not due to habituation or proboscis damage. In

contrast to the efficient inhibition of rostrum lifting we did not observe a significant failure to spread

the labella in these flies. Together, these results demonstrate that GMR18B07 neurons are both suffi-

cient and required for rostrum lifting and at least partially involved in the control of labella

spreading.

We next analyzed the expression pattern of the GMR18B07-Gal4 line using membrane-tagged

GFP (UAS-mCD8-GFP) as a reporter. This analysis revealed a broad expression in glia cells through-

out the brain preventing characterization of SEZ neurons (Figure 5D). To restrict Gal4-expression to

neurons we co-expressed the Gal4 inhibitor Gal80 in all glial cells (repo-Gal80; Awasaki et al.,

2008). Absence of glial expression revealed 4 pairs of bilaterally symmetric neurons within the SEZ

(Figure 5E). To identify potential MNs we used the whole head preparation method that enables

simultaneous analysis of the SEZ and all proboscis muscles (Figure 5F, see Materials and methods).

Figure 5 continued

neurons using Chrimson. Red light induced activation (middle panel) elicits rostrum lifting (arrow) and labella

spreading. At blue light before (left panel) and after (right panel) activation the proboscis is retracted. (C) Heat

induced silencing of GMR18B07, repoGal80 neurons using shibirets. Flies at the permissive temperature show full

PER upon 200 mM sucrose stimulation (left and right panel). At the restrictive temperature, these flies fail to lift the

rostrum (middle panel, arrow) upon 200 mM sucrose stimulation (asterisk) but still extend the haustellum. (D)

Expression pattern of GMR18B07 in the adult central brain. Cells are marked by the expression of mCD8-GFP

(green) and the neuropil is visualized using the presynaptic active zone marker Bruchpilot (Brp, magenta). (E)

Suppression of glia cell expression using repo-Gal80 reveals four pairs of bilateral neurons in the SEZ. (F) Whole

head preparation of GMR18B07, repoGal80 > mCD8-GFP animals (left panel) reveals expression in two bilateral

pairs of MNs (green) with one pair innervating muscle 9 (axon marked by arrowhead) and one muscle 8 (axon

marked by arrow). Side view of the proboscis (right panels) shows innervation of muscle 8 (asterisks). Muscles are

marked by phalloidin (blue). (G) Schematic drawing of the head muscles with innervated muscles highlighted in

blue. Scale bars, 50 mm. (H) Quantification of the behavioral phenotypes in control and experimental animals.

Numbers and significances are listed in Supplementary file 1. See also Figure 5—figure supplement 1 and

Videos 3, 4 and 5.

DOI: 10.7554/eLife.19892.008

The following figure supplement is available for figure 5:

Figure supplement 1. Analysis of the PER sequence during MN silencing.

DOI: 10.7554/eLife.19892.009
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Figure 6. GMR26A01 neurons are sufficient and required for haustellum extension. (A) Artificial activation of

GMR26A01 neurons using TrpA1. Heat induced activation elicits haustellum extension (middle panel, arrow). At

the control temperature before (left panel) and after (right panel) activation the proboscis is retracted. (B) Heat

induced silencing of GMR26A01 neurons using shibirets. Flies at the permissive temperature show full PER upon

Figure 6 continued on next page
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Analysis of GMR18B07, repoGal80>mCD8-GFP flies revealed one MN pair innervating muscle 9, and

another MN pair innervating muscle 8 (Figure 5F,G). To validate our behavior results we repeated

all behavior experiments in the presence of repo-Gal80. We observed identical results in these ani-

mals (Figure 5A–C,H and Videos 3–5). These results confirm the previously described role of MN9

and muscle 9 for rostrum lifting (Gordon and Scott, 2009) and identify MN8 and muscle 8 as poten-

tial regulators of labella spreading.

MNs controlling haustellum extension
During sucrose-mediated activation of proboscis extension the lifting of the rostrum is followed by

haustellum extension (folding down of the haustellum). In our functional screen using TrpA1 medi-

ated activation we identified the line GMR26A01 as sufficient to induce a constant extension of the

haustellum (Figure 6A,G and Video 6). Light-induced activation using Chrimson confirmed these

results with the extension of the haustellum precisely correlating with the on and off-times of the red

light stimulus (Figure 6G and Video 7). Consistent with these neurons controlling haustellum exten-

sion acute inhibition (GMR26A01>shibirets) prevented extension of the haustellum at the restrictive

temperature in response to sucrose stimulation (Figure 6B middle panel,G and Video 8). However,

these flies were still able to lift their rostrum and to extend and spread their labella (Figure 6B). The

failure to extend the haustellum was fully reversible as flies completely extended their proboscis

after reversal to the permissive temperature (Figure 6B and Video 8). Analysis of the expression pat-

tern of GMR26A01-Gal4 revealed expression in 8–10 SEZ neurons (Figure 6C). While MNs in Dro-

sophila are mainly glutamatergic the majority of excitatory neurons in the brain are cholinergic. To

restrict expression to MNs we performed an intersectional genetic approach and co-expressed

Gal80 selectively in all cholinergic neurons (cha-

Gal80; Kitamoto, 2002) (GMR26A01, cha-

Gal80>mCD8-GFP). These experiments restricted

mCD8-GFP expression to a single pair of bilateral

MNs with axons extending to the proboscis mus-

culature (Figure 6D,E). The whole head prepara-

tion revealed that the MNs innervate muscle 2–1

(Figure 6E,F). Likely due to leakiness of the cha-

Gal80 line, expression levels in MN 2–1 were

strongly reduced (data not shown); however, in a

small number of cases artificial activation using

Chrimson (GMR26A01, chaGal80>Chrimson) was

still sufficient to induce haustellum extension

(Figure 6G and Video 9). Interestingly, in two

flies we observed extension of the haustellum to

either the left or the right side (Figure 6—figure

supplement 1A,B and Video 10). Analysis of the

Figure 6 continued

200 mM sucrose stimulation (left and right panel). At the restrictive temperature, these flies fail to extend the

haustellum (middle panel, arrow). (C) Expression pattern of GMR26A01 (mCD8-GFP, green) in the adult central

brain (Brp, magenta). (D) Suppression of cholinergic expression using cha-Gal80. This intersectional strategy

restricts expression to a single bilateral pair of MNs (arrow points to the axon). (E) Whole head preparation of

GMR26A01, chaGal80 > mCD8-GFP demonstrates innervation of muscle 2 (asterisk). The boxed region is

magnified in the right panels. Muscles are visualized by the F-actin marker phalloidin (blue). (F) Schematic drawing

of the head muscles with innervated muscles highlighted in blue. Scale bars, 50 mm. (G) Quantification of the

behavioral phenotypes in control and experimental animals. Numbers and significances are listed in

Supplementary file 1. See also Figure 5—figure supplement 1, Figure 6—figure supplement 1 and Videos 6,

7, 8, 9 and 10.

DOI: 10.7554/eLife.19892.013

The following figure supplement is available for figure 6:

Figure supplement 1. Unilateral proboscis MN activation induces asymmetric proboscis movement.

DOI: 10.7554/eLife.19892.014

Video 6. Activation of GMR26A01 neurons using TrpA1

(related to Figure 6). This video shows side view

sequences of a GMR26A01 > TrpA1 fly at 22˚C, at 29˚C,
and at 22˚C.
DOI: 10.7554/eLife.19892.015
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Chrimson expression pattern revealed a unilateral expression in the ipsilateral MN2 correlating with

the direction of the haustellum extension (Figure 6—figure supplement 1C). Together these data

indicate that MN2 controls the extension of the haustellum via activation of muscle 2–1.

MNs controlling labella extension
Prior analysis of the proboscis extension sequence indicated that rostrum lifting and haustellum

extension is followed by the spreading of the labella to enable food ingestion. Here, we identify

extension of the labella as an additional step in the motor sequence that precedes labella spreading.

Artificial activation of GMR81B12 expressing neurons (GMR81B12>TrpA1) resulted in a constant

extension of the labella at the activation but not at the control temperature (Figure 7A,G and

Video 11). Forward movement of the labella was particularly evident when using light-induced acti-

vation (GMR81B12>Chrimson; Video 12; Figure 7G). Acute silencing of GMR81B12 neurons

(GMR81B12>shibirets) during sucrose-mediated activation of the PER demonstrated that these neu-

rons are not only sufficient but also required for labella extension (Figure 7B,G and Video 13). Anal-

ysis of the expression pattern revealed that GMR81B12-Gal4 is expressed within a single neuron in

each brain-hemisphere (Figure 7C). This neuron innervates muscle 6 that is attached to the base of

the labella (Figure 7E,F). The Gal4-expression within a single MN pair enabled us to determine the

extent of dendritic versus axonal neurite arborization within the SEZ. To mark the dendritic compart-

ment, we co-expressed the mCherry-tagged dendritic marker DenMark (Nicolaı̈ et al., 2010) with

Video 7. Activation of GMR26A01 neurons using

Chrimson (related to Figure 6). This video shows a side

view sequence of a GMR26A01 > Chrimson fly at

control, activation and control wavelength.

DOI: 10.7554/eLife.19892.016

Video 8. Silencing of GMR26A01 neurons using shits

(related to Figure 6). This video shows sucrose

stimulations of a GMR26A01 > shits fly first at 22˚C, at
29˚C, and at 22˚C, displayed at 0.5 x speed.

DOI: 10.7554/eLife.19892.017

Video 9. Activation of GMR26A01, chaGal80 neurons

using Chrimson (related to Figure 6). This video shows

a side view sequence of a GMR26A01, chaGal80 >

Chrimson fly at the control wavelength (475 nm), then

at the activation wavelength (633 nm), and at the

control wavelength.

DOI: 10.7554/eLife.19892.018

Video 10. Activation of a unilateral GMR26A01,

chaGal80 neuron using Chrimson (related to

Figure 6—figure supplement 1). This video shows a

side view and front view sequence of a GMR26A01,

chaGal80 > Chrimson fly at control, activation and

control wavelength.

DOI: 10.7554/eLife.19892.019
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Figure 7. GMR81B12 neurons are sufficient and required for labella extension. (A) Artificial activation of GMR81B12 neurons using TrpA1. Heat induced

activation elicits labella extension (middle panel, arrow). At the control temperature before (left panel) and after (right panel) activation the proboscis is

retracted. (B) Heat induced silencing of GMR81B12 neurons using shibirets. Flies at the permissive temperature show full PER upon 200 mM sucrose

stimulation (left and right panel). At the restrictive temperature, these flies fail to extend the labella (middle panel, arrow). Insets show magnifications of

Figure 7 continued on next page
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the general membrane marker mCD8-GFP. Within the SEZ DenMark completely co-localized with

mCD8-GFP indicating that the entire SEZ arborization is of dendritic nature (Figure 7D). The MN

axons projecting through the labial nerve lacked any DenMark expression demonstrating the speci-

ficity of the marker. These results demonstrate that MN6 controls extension of the labella via activa-

tion of muscle 6.

MNs controlling labella spreading
The analysis of GMR18B07-Gal4 revealed that artificial activation of muscle 8 via MN8 is sufficient to

induce spreading of the labella (Figure 5). We identified two additional lines, GMR58H01 and

VT020958, that induced spreading of the labella upon artificial activation with either TrpA1 or Chrim-

son (Figure 8A,C,G and Videos 14 and 15; Figure 8—figure supplement 1A,F). While both lines

are expressed in multiple MNs (Figure 8D–F, Figure 8—figure supplement 1C–E) the only common

MN between the three lines is MN8 suggesting that activation of muscle 8 controls labella spread-

ing. However, silencing of these neurons was not sufficient to prevent labella spreading upon

sucrose stimulation (Supplementary file 1). This failure to impair labella spreading is likely due to

insufficient inhibition of the MN. Together, these results suggest that MN8 controls labella spreading

but we cannot formally rule out the contribution of additional MNs. Consistent with the expression

of line VT020958 in labella muscles 6 and 8 artificial activation induced not only labella spreading

but also labella extension verifying the role of MN6 (Figure 8—figure supplement 1B–E). Artificial

activation did not reveal a role for MN7 that is also targeted by line GMR58H01 (Figure 8, Fig-

ure 8—figure supplement 1).

MNs controlling proboscis retraction
Artificial activation of neurons of line GMR58H01 did not only resulted in labella spreading but at

the same time caused a retraction of the proboscis into the head capsule (Figure 8B,C, Videos 14

and 16). To directly test a potential contribution of GMR58H01 MNs to proboscis retraction we com-

bined Chrimson-mediated activation with sucrose induced proboscis extension. Under control condi-

Figure 7 continued

the labella. (C) Expression of GMR81B12 (mCD8-GFP, green) in the adult central brain reveals a single MN in each brain hemisphere. (D) Analysis of

dendritic versus axonal arborization. The mCherry-tagged dendritic marker DenMark (red, left panel; white, right panel) co-localizes with the general

membrane marker mCD8-GFP (green) in the SEZ but not in the MN-axons projecting out of the brain (arrow). The neuropil is marked by Dlg (blue). (E)

Whole head and proboscis preparation of GMR81B12 > mCD8-GFP flies reveals that the MNs (green, arrow indicates MN cell body) innervate muscle

6. Muscles are visualized by the F-actin marker phalloidin (blue) and NMJs are labeled using the presynaptic vesicle marker Synapsin (red). (F)

Schematic drawing of the head muscles with innervated muscles highlighted in blue. Scale bars, 50 mm. (G) Quantification of the behavioral phenotypes

in control and experimental animals. Numbers and significances are listed in Supplementary file 1. See also Figure 5—figure supplement 1 and

Videos 11 , 12 and 13.

DOI: 10.7554/eLife.19892.020

Video 11. Activation of GMR81B12 neurons using

TrpA1 (related to Figure 7). This video shows side view

sequences of a GMR81B12 > TrpA1 fly at 22˚C, at 29˚C,
and at 22˚C.
DOI: 10.7554/eLife.19892.021

Video 12. Activation of GMR81B12 neurons using

Chrimson (related to Figure 7). This video shows a side

view sequence of a GMR81B12 > Chrimson fly at

control, activation and control wavelength.

DOI: 10.7554/eLife.19892.022
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tions (blue light) sucrose stimulation of fly legs

induced complete proboscis extension

(Figure 8C, Video 16). In contrast, under activa-

tion conditions (red light) these flies failed to

extend their proboscis in response to sucrose

stimulation (Figure 8C, Video 16; note also MN8

dependent labella spreading). Analysis of the

expression pattern of GMR58H01 revealed selec-

tive expression in 4 MNs, MN1, MN4, MN7 and

MN8 (Figure 8D–F). Based on morphology and

cross-comparison to the other MN lines we can

exclude MN4, 7 and 8 indicating that MN1 likely

mediates active retraction of the proboscis into

the head capsule. Indeed, such a function has

been previously suggested for MN1 in blowflies

(van der Starre and Ruigrok, 1980). Silencing of

GMR58H01 neurons including MN1 did not sig-

nificantly impair retraction of the proboscis after

sucrose stimulation. In contrast to muscle 8 that is innervated by a single MN our MARCM data

revealed that muscle 1 is innervated by multiple MNs (Figure 2E) and inhibition of a single MN is

likely not sufficient to prevent muscle contraction. Alternatively, additional muscles may participate

in proboscis retraction.

Step-wise control of proboscis extension and retraction
The identification and genetic control of the MNs controlling five major steps of proboscis extension

and retraction, lifting of the rostrum (MN9), extension of the haustellum (MN2), extension of the

labella (MN6), spreading of the labella (MN8) and proboscis retraction (MN1) enabled us to next

address the neuronal circuit architecture controlling the motor pattern. In general, two alternative

principles could generate the observed fixed sequence of events. In a first model, the PER is based

on a chain reflex sequence in which the initiation of each step depends on the successful execution

of the preceding step of the motor sequence. Alternatively, all steps are independently initiated and

coordinated at the level of pre-motor interneurons. To address these alternative hypotheses, we first

analyzed the proboscis extension sequence of flies in which single MNs were silenced while applying

positive taste stimuli. In a second step, we performed corresponding experiments in which we artifi-

cially activated MNs while applying positive taste stimuli. Single image analysis of the recorded

sequences of our silencing experiments demonstrated that subsequent steps of the motor sequence

could be efficiently executed despite the failure to perform a central step of the serial sequence (Fig-

ures 5, 6, 7 and 8, Figure 5—figure supplement 1 and Figure 8—figure supplement 1). For exam-

ple, despite complete inhibition of rostrum lifting (MN9 silencing) flies were still able to extend the

haustellum and labella (Figure 5B and Video 5). Similarly, blocking haustellum extension did not

prevent extension or spreading of labella (Figure 6B and Video 8). The only exception from this rule

was observed in flies where we blocked labella extension. Here, sucrose stimulation of legs was no

longer sufficient to induce labella spreading (Video 13 and Figure 5—figure supplement 1). How-

ever, direct sucrose stimulation of gustatory sensory sensilla present on the labella reliably elicited

labella spreading in these flies. Thus, despite inappropriate positioning of individual proboscis ele-

ments the consecutive steps of the motor sequence were efficiently executed. In contrast, analysis of

the temporal profiles of individual sequence steps revealed significant alterations in these flies. In

control flies sucrose stimulation induces a rapid progression through the PER sequence (Figure 1G,

Figure 5—figure supplement 1A). Inhibition of rostrum lifting significantly prolonged the time from

stimulus to haustellum extension but accelerated progression from labella extension to labella

spreading (Figure 5—figure supplement 1B). Inhibition of haustellum extension significantly

reduced the time from rostrum lifting to labella extension and from labella extension to labella

spreading (Figure 5—figure supplement 1C). Inhibition of labella extension not only perturbed pro-

gression to labella spreading but also increased the time duration from stimulus to rostrum lifting.

These data indicate that serial execution of the individual movements is necessary to achieve the

temporal precision observed in wild type flies. A potential explanation for the majority of the

Video 13. Silencing of GMR81B12 neurons using shits

(related to Figure 8). This video shows sucrose

stimulations of a GMR81B12 > shits fly at 22˚C, at 29˚C,
and at 22˚C, displayed at 0.5 x or 0.125 x speed.

DOI: 10.7554/eLife.19892.023
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Figure 8. GMR58H01 neurons elicit labella spreading and proboscis retraction. (A,B) Artificial activation of

GMR58H01 neurons using TrpA1. Heat induced activation elicits labella spreading (middle panel (A)) and leads to

the retraction of the proboscis (middle panel (B), arrow). At the control temperature before (left panels) and after

(right panels) activation the proboscis is retracted. Insets in (A) show magnifications of the labella and the double

Figure 8 continued on next page
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observed alterations may be anatomical constrains of the movement, however we cannot rule out

that sensory feedback mechanisms contribute to the robustness of the motion sequence.

We next analyzed whether artificial activation of individual MNs would impair the normal exten-

sion response elicited by positive (sweet) stimulation of the gustatory sensory neurons on the fore-

legs. As a readout, we measured the maximum proboscis extension distance in response to sucrose

stimulation in control flies and in flies with artificially activated MNs (Figure 9, see

Materials and methods). We first applied this method to line GMR58H01 (MN1, 4, 7, 8) to quantify

the consequences of activation of the retractor MN1. Artificial activation (via TrpA1 or Chrimson) of

MN1 almost completely prevented proboscis extension in response to the sweet sensory stimulus

despite normal displacement at the permissive temperature and under blue light exposure

(Figure 9A). Indeed, just activation of line GMR58H01 induced a retraction of the proboscis into the

head capsule resulting in a small but significant negative extension value (Figure 9A). In contrast,

activation of MN6 (line GMR81B12, labella extension) did not significantly alter sucrose evoked pro-

boscis extension distance (Figure 9B,F). However, artificial activation of both line VT020958 (MN2,

6, 7, 8; labella extension and spreading) and of line GMR18B07 (MN9, 8; activation of rostrum lifting

and labella spreading) significantly reduced the maximum proboscis extension distance (Figure 9C,

D,F). These experiments demonstrate that full extension of the proboscis is not achieved by additive

complete contractions of participating muscle groups but requires a precise temporal coordination

of activation intensities.

MN based control of the proboscis extension response
Based on these results we propose that 5 MNs

control the major steps of proboscis extension

and retraction (Figure 10). Upon a positive gusta-

tory stimulus flies first lift the rostrum (MN9),

extend the haustellum (MN2), extend the labella

(MN6), spread the labella for food ingestion

(MN8) and finally retract the proboscis (MN1)

(Figure 10). Analysis of the dendritic arboriza-

tions of these MNs revealed a stereotypic organi-

zation within the SEZ with all MN dendrites

sharing a common space that mainly occupies

the anteroventral regions of the SEZ with two

spared ‘ball like-structures’ on both sides of the

midline (Figure 10B–F, right panels; Figure 10—

figure supplement 1A–C). It has been previously

reported that MN9 is not directly connected to

gustatory sensory neurons (Gordon and Scott,

Figure 8 continued

arrow indicates the spreading of the labella. (C) Artificially activation of GMR58H01 neurons using Chrimson while

evoking sucrose induced proboscis extension. At blue light (control), flies show full PER upon 200 mM sucrose

stimulation (left panel). Red light activation results in labella spreading and proboscis extension (middle panel).

Red light activation during 200 mM sucrose stimulation prevents proboscis extension (right panel). (D) Expression

pattern of GMR58H01 in the adult central brain. Arrow points to the axons that are leaving the brain. (E) Whole

head preparation of GMR58H01>mCD8-GFP flies (left panel) reveals that the identified MNs (green) innervate

muscle 1, 4, and haustellum muscles (asterisk). The side view of the proboscis (right panels) shows innervation of

muscles 7 and 8 in the haustellum. Muscles are visualized by the F-actin marker phalloidin (blue). (F) Schematic

drawing of the head muscles with innervated muscles highlighted in blue. Scale bars, 50 mm. (G) Quantification of

the behavioral phenotypes in control and experimental animals. Numbers and significances are listed in

Supplementary file 1. See also Figure 8—figure supplement 1, Videos 14, 15 and 16.

DOI: 10.7554/eLife.19892.024

The following figure supplement is available for figure 8:

Figure supplement 1. VT020958 neurons elicit labella spreading.

DOI: 10.7554/eLife.19892.025

Video 14. Activation of GMR58H01 neurons using

TrpA1 (related to Figure 8). This video shows front

view sequences of a GMR58H01 > TrpA1 fly at 22˚C, at
29˚C, and at 22˚C.
DOI: 10.7554/eLife.19892.026
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2009) that innervate posterior-dorsal regions of the SEZ (Figure 10—figure supplement 1D). To

determine whether this observation holds true for all MNs we investigated potential connectivity of

our MN lines to Gr5a-expressing sweet gustatory sensory neurons using the same GRASP approach

(Feinberg et al., 2008). In these experiments, we did not observe significant GRASP signals (Fig-

ure 10—figure supplement 2). As a positive control, we observed strong GRASP signals between

Gr5a-positive sensory neurons and inhibitory interneurons (gad1-Gal4; Sakai et al., 2009). Thus, con-

trol of the proboscis motor sequence is likely mediated via a dedicated set of interneurons down-

stream of gustatory sensory neurons.

Finally, we performed MN co-labelling experiments to investigate the spatial relationship of MN

dendrites within the SEZ. We utilized a LexA-version of our MN6-Gal4 line (GMR81B12-LexA =

MN6-LexA) that shows co-labelling of the soma and dendrites with the MN6-Gal4 line (Figure 11A).

Simultaneous labelling of MN2 (GMR26A01-Gal4, cha-Gal80) and MN6 revealed largely overlapping

dendritic arborization patterns with more extensive arborization of MN6 at the midline region

(Figure 11B). The high regional overlap of dendrites of distinct identity was particularly evident

when the dendritic arborization of MN6 was analyzed together with MNs 1,4,7 and 8 (GMR58H01-

Gal4) (Figure 11C). In single sections a close but non-overlapping association of MN dendrites can

be observed (Figure 11B,C lower panels).

Discussion
In this study, we provide a comprehensive developmental, neuroanatomical and functional character-

ization of the MNs controlling proboscis extension and retraction. We demonstrate that four MN

types control the four major steps of proboscis extension while one MN likely contributes to the

active retraction of the proboscis. These temporally ordered steps are independently controlled in a

one-to-one manner with the majority of MNs both sufficient and required for the execution of one

individual step of the forward reaching behavior. Our data demonstrate that MN-based feed-for-

ward activation does not contribute to the precise temporal control of proboscis motion. Coupling

of individual motor steps likely occurs at the level of premotor interneurons that provide the basis

for selective execution of different motor subprograms of proboscis motion required during innate

behaviors including courtship and gustatory behavior.

Organization and origin of proboscis motoneurons
Our MARCM-based single cell clonal analysis shows that the different types of proboscis MNs can

be divided into two major groups that differ in terms of cell body position, dendritic arborization,

axonal projection and muscle innervation pattern. The first group comprises seven MN types inner-

vating muscles 1, 2, 3, 4, 6, 7, and 8. These MNs are bilaterally symmetric and their entire dendritic

Video 15. Activation of VT020958 Neurons using TrpA1

(related to Figure 8—figure supplement 1). This video

shows sequences of a VT020958 > TrpA1 at control and

activation temperatures. Order of video sequences:

Front view at 22˚C, front view at the transition to 29˚C,
front view at 22˚C, side view at 22˚C, side view at 29˚C,
and side view at 22˚C.
DOI: 10.7554/eLife.19892.027

Video 16. Activation of GMR58H01 neurons using

Chrimson (related to Figure 8). This video shows

sucrose stimulations of a GMR58H01 > Chrimson fly at

the control wavelength (475) and then at the activation

wavelength (633 nm).

DOI: 10.7554/eLife.19892.028
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Figure 9. The PER motor program relies on the precise coordination of motoneuron activity. (A–D) MN-Gal4>TrpA1 and MN-Gal4>Chrimson animals

were used to display (TrpA1) and quantify (Chrimson) the effects of constant MN activation during sucrose evoked proboscis extension. Animals were

stimulated with 200 mM sucrose and snapshots of the maximum proboscis displacement at control (panel 1) and activation temperature (panel 3) are

shown. Proboscis displacement in response to heat induced activation is shown in panel 2. Graphs: Maximum proboscis displacement was measured at

blue light (control) upon 200 mM sucrose stimulation (grey bar), at red light (activation) without sucrose stimulation (green bar), and at red light upon

200 mM sucrose stimulation (green + blue bar). The zero point is defined by the position of the proboscis at blue light without sucrose stimulation and

100% proboscis extension represents the maximum proboscis displacement at blue light upon 200 mM sucrose stimulation. Data are presented as

mean ± SEM. (E) Same quantification as in (A–D) for control (w1118>Chrimson) animals. (F) Quantification of percentage of expected proboscis distance.

The zero point is defined by the proboscis displacement at red light without sucrose stimulation while 100% proboscis extension represents maximum

proboscis displacement at blue light upon 200 mM sucrose stimulation. Data are presented as mean ± SEM. Statistical analysis: see Materials and

methods.

DOI: 10.7554/eLife.19892.029
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arborization is restricted to the anteroventral SEZ. Within each hemi-ganglion the MN cell bodies

are clustered together, axons project through the labial nerve and they innervate ipsilateral muscle

groups with respect to their cell body position. The second group comprises four MN types innervat-

ing muscle groups 5, 10, 11 and 12 via the pharyngeal nerve. Strikingly, in contrast to the first group
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Figure 10. Motoneurons and muscles controlling the major steps of the PER motor program. The extension of the proboscis in response to an

attractive stimulus (200 mM sucrose, A–E) follows a stereotypic pattern that can be subdivided into a sequence of events. Snapshots of the motion

pattern of a control fly (w1118) executing a continuous proboscis extension (left panels) and in the schematic drawings illustrating the direction of the

movements (blue arrows) are shown. Muscles and MNs controlling the individual steps are indicated in the schematics (blue numbers) and in brains

(right panels, inverted fluorescence images from Figures 5–8). MNs display a striking overlap in dendritic organization. Scale bar, 20 mm.

DOI: 10.7554/eLife.19892.030

The following figure supplements are available for figure 10:

Figure supplement 1. Spatial organization of MN dendrites in the SEZ.

DOI: 10.7554/eLife.19892.031

Figure supplement 2. Gr5a sensory neurons do not form synaptic connections with proboscis MNs.

DOI: 10.7554/eLife.19892.032
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Figure 11. Analysis of dendritic arborizations of proboscis MNs. (A–C) Coexpression of mCD8-GFP and
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intensity projections (upper panel) and single z-stack sections (lower panel) are displayed. Spatial relationship

Figure 11 continued on next page
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the axons of these MNs bifurcate and simultaneously innervate homologous muscles on both the

ipsi- and contralateral side. The only exception to these rules is MN9 that based on its ipsilateral

innervation of muscle 9 belongs to group 1, however its cell body clusters with group 2 MNs and it

projects via the pharyngeal nerve to the proboscis.

The neuroanatomical features of the two MN groups directly reflect their unique and different

functional roles. Group 2 MNs control muscle groups (5, 10, 11, and 12) that elicit the rhythmic and

bilaterally symmetric activity of the pharyngeal pump required for food ingestion (Dethier, 1976;

Miller, 1950). Our data now demonstrate that the axons of these MNs bifurcate and provide equal

input to target muscles on the ipsi- and contralateral site. As, in addition, the dendritic arborizations

are equally distributed within both hemispheres any stimulatory input (frontal, left or right) will be

translated into a symmetric activation of pharyngeal pump muscles to ensure appropriate food

uptake.

In contrast, group 1 MNs control muscle groups that mediate the extension, retraction and posi-

tioning of the proboscis (muscle groups 1, 2, 3, 4, 6, 7, 8 and 9). Our analysis demonstrates that all

these MNs innervate ipsilateral located muscles but differ in their dendritic arborization patterns

within the SEZ. Some MNs have predominantly ipsilateral while others have predominantly contralat-

eral dendritic arborizations. All group 1 MN dendrites are restricted to the anteroventral SEZ region

with dendrites of different MNs often present in close proximity to each other (Figure 11). This

highly elaborate dendritic organization likely enables a direct translation of side-specific stimulation

into directed movement. Indeed, similar to prior observations in the blowfly (Yetman and Pollack,

1987) sucrose stimulations of one leg induce proboscis extension towards the stimulus direction

(Video 17). Furthermore, selective activation of an individual MN2 induced the extension of the

haustellum towards the activation side (Figure 6—figure supplement 1). Together, our analysis

revealed a remarkable level of hard-wired organization to accommodate the specific tasks of direc-

tion-selective and direction-independent MNs.

The fly proboscis is an appendage of the head composed of highly reduced and bilaterally fused

mouthparts that represents a serial homolog of other segmental appendages such as the thoracic

legs. It is thus interesting to consider possible homologies between proboscis and thoracic leg MNs.

The MNs innervating the prothoracic leg have been well characterized and comprise 53 MNs that

derive from 11 independent neuroblasts, with two lineages giving rise to 35 of the 53 MNs

(Baek and Mann, 2009; Brierley et al., 2012).

Most of these MNs are generated postembryoni-

cally during larval development and match the

development of the leg (Estella and Mann,

2008; Estella et al., 2008; McKay et al., 2009;

Morata, 2001; Soler et al., 2004). In contrast, a

hemi-proboscis is only innervated by approxi-

mately 20 MNs, and our MARCM labeling dem-

onstrated that all MNs are born during

embryogenesis (0–12 hr AEL). In contrast to the

leg MNs, individual labeled clones never included

more than one type of proboscis MN suggesting

that each of the thirteen different MN types are

generated by different neuroblasts. The fact that

proboscis MNs are generated during embryogen-

esis indicates that these MNs also have potential

roles during larval stages. Indeed, it has been

reported that MNs innervating the adult muscle

Figure 11 continued

between GMR81B12-LexA targeted MN6 (green) and one of the following MN-lines are shown: GMR81B12-Gal4

targeted MN6 (A, magenta), GMR26A01-Gal4, cha-Gal80 targeted MN2 (B, magenta), and GMR81B12-Gal4

targeted MNs1, 4, 7, 8 (C, magenta). Single sections in B, C show close, but non-overlapping association of MN

dendrites of different MN populations. Scale bar, 20 mm (overview), 10 mm (single sections).

DOI: 10.7554/eLife.19892.033

Video 17. Proboscis extension response after unilateral

leg stimulation. This video shows a top view sequence

of a unilateral sucrose stimulation to the right front leg

first in real time followed by slow motion (0.32 x

speed).

DOI: 10.7554/eLife.19892.034
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11 are also required for feeding in larvae (Tissot et al., 1998). Thus, proboscis MNs may provide

analogous functions during larval food ingestion despite different functional requirements and body

organization. It will be of great interest to determine the precise use of these MNs during larval

development and to address the potential developmental mechanism underlying the morphological

and functional reorganizations necessary to accommodate the different functional requirements.

Motor control of the serial proboscis extension response
The detailed anatomical analysis of proboscis muscles and MNs together with the genetic manipula-

tion of individual MNs enabled us to demonstrate that five MNs are sufficient to control the major

steps of proboscis extension behavior. We show that gustatory stimulation elicits five consecutive,

partially overlapping movements: rostrum lifting, haustellum extension, labella extension, labella

spreading and proboscis retraction. Each of the steps is controlled by one bilateral pair of muscles

that are innervated by one or multiple pairs of MNs. In all cases, artificial MN activation was sufficient

to elicit a single step of the serial proboscis motion. In contrast, inhibition of MN activity did not

always prevent execution of the specific movement. Three reasons can account for this observation:

First, some muscles are innervated by multiple MNs and inhibition of a single MN is not sufficient to

prevent muscle contraction as observed for muscle1. Second, the expression levels of the inhibitory

construct may not always be sufficient to shut down MN activity. And third, we cannot exclude the

possibility that additional muscles contribute to individual steps of the PER that would act at least

partially redundant. Despite these limitations regarding the requirements of individual muscle

groups our combined data clearly demonstrate that all steps of the motor sequence are individually

controlled. Importantly not only proboscis extension but also proboscis retraction is potentially con-

trolled by active mechanisms. Active termination of the PER likely contributes both to the repetitive

PER behavior observed in vivo (Itskov et al., 2014, see below) and to aversive responses to bitter

substances (active retraction of the proboscis, data not shown).

In addition, we provide evidence that initiation of individual movements does not depend on the

execution of earlier steps of the motor sequence. However, a serial execution of the individual move-

ments is necessary to achieve temporal precision of the PER sequence as inihibition of individual

MNs led to perturbations of the stereotypic temporal profile of the PER motion. Three reasons may

account for these alterations: First, the central control of serial activation of individual MNs may be

perturbed by the artificial silencing of one of the target MNs. Second, the failure to move parts of

the proboscis may affect sequence execution due to anatomical constraints. Third, altered sequence

execution may affect sensory feedback systems as observed in the leg motor system of Drosophila

(Mendes et al., 2013).

Using activation experiments we demonstrated that the execution of one movement does not

automatically trigger the initiation of the subsequent movement. In contrast to a reflex chain as

observed for crayfish escape behavior (Reichert et al., 1981) the movement of the proboscis ele-

ments is likely controlled in a one-to-one manner by individual MNs. Thus, our data indicates that

the generation of the temporal proboscis motion sequence is programmed upstream of the MNs in

the central brain. This central coordination of MN activity is consistent with the observation that dif-

ferent stereotypic proboscis movements are part of at least two additional innate behavior pro-

grams. During male courtship behavior the proboscis displays an upward motion that includes

rostrum lifting, labella extension and labella spreading (courtship licking) (Hall, 1994; Nichols et al.,

2012) while the proboscis is placed outwards of the head capsule during proboscis cleaning

(Hampel et al., 2015; Seeds et al., 2014). It is thus likely, that these three innate proboscis motions,

feeding, licking and grooming, are independently controlled by central circuits inducing context-spe-

cific motor unit recruitment profiles. This is supported by the observation that activation of an indi-

vidual command interneuron is sufficient to induce the entire proboscis feeding motion

(Flood et al., 2013). As this command neuron is not directly connected to MNs (Flood et al., 2013)

the selective and sequential activation of the individual MNs requires at least an additional layer of

interneurons. For peristaltic larval locomotion it has recently been demonstrated that the sequential

and partially overlapping activation of intrasegmental MNs is controlled by both excitatory and

inhibitory interneurons (Zwart et al., 2016). The MNs controlling distinct muscle groups are inner-

vated by largely non-overlapping excitatory interneurons similar to observations in vertebrates

(Bikoff et al., 2016; Goetz et al., 2015; Tripodi et al., 2011). Interestingly, however, the phasic

motoneuron activation delay is mainly generated by selective inhibitory MN innervation
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(Zwart et al., 2016). While we currently lack any information regarding the upstream interneurons

controlling proboscis motion our data is consistent with either selective inhibition or excitation gen-

erating unique proboscis extension motions. For example, in contrast to the feeding motion the pro-

boscis extension sequence during courtship licking lacks the haustellum extension step and consists

only of rostrum lifting, labella extension and labella spreading. Finally, analysis of natural feeding

behavior demonstrated that flies display rhythmic patterns of proboscis extension and retraction

when feeding on gelatinous food but not when drinking liquids. Thus, depending on the food quality

a CPG contributes to the control of repetitive proboscis extension (Itskov et al., 2014). The genetic

control and simplicity of the underlying motor system will greatly facilitate the identification and

characterization of cellular and circuit principles controlling this reaching-like motor sequence.

Materials and methods

Fly stocks
Fly stocks were maintained on standard fly food at 25˚C. Crosses for immunohistochemistry were

kept at 25˚C, while crosses for neuronal activation and silencing experiments were kept at 22˚C.
Enhancer-Gal4 and -LexA lines were obtained from the Bloomington Drosophila Stock Center

(Jenett et al., 2012) and the Vienna Drosophila RNAi Center (Kvon et al., 2014). The following fly

strains were used in this study: w1118, GMR18B07-Gal4 (RRID:BDSC_47476), GMR26A01-Gal4 (RRID:

BDSC_49148), GMR81B12-Gal4 (RRID:BDSC_40107), GMR58H01-Gal4 (RRID:BDSC_39197),

VT020958-Gal4 (RRID:FlyBase_FBst0485173), GMR81B12-LexA (RRID:BDSC_54389) OK371-Gal4

(RRID:BDSC_26160), FRT19A/FM7c, FRT19A,hsFLP,Tubulin-Gal80; OK371-Gal4,UAS-mCD8-GFP/

CyO, Gr5a-LexA;UAS-tdTomato::LexAop2-CD4-spGFP11;UAS-CD4-spGFP1–10 (Feinberg et al.,

2008; Gordon and Scott, 2009), Gad1-Gal4 (RRID:BDSC_51630; Sakai et al., 2009), MHC-GFP

(RRID:BDSC_38462; Chen and Olson, 2001), 5xUAS-mCD8-GFP (RRID:BDSC_32192), 10xUAS-

mCD8-GFP (RRID:BDSC_32186), UAS-CD4-tdTomato (RRID:BDSC_35841), 13xLexAop2-mCD8-GFP

(RRID:BDSC_32203), UAS-DenMark (RRID:BDSC_33061; Nicolaı̈ et al., 2010), UAS-TrpA1 (RRID:

BDSC_26263; Hamada et al., 2008), UAS-Chrimson (RRID:BDSC_55135; Klapoetke et al., 2014),

UAS-shibirets (Kitamoto, 2001), cha-Gal80 (Kitamoto, 2002), repo-Gal80 (Awasaki et al., 2008).

Backfilling of motoneuron nerves
To label all the MNs innervating the proboscis, flies with the genotype OK371-Gal4,UAS-mCD8GFP

were used. The proboscis was cut from the tip of the head and a crystal of rhodamine-labelled dex-

tran dye was placed on cut nerves. The dye was left to diffuse for 4 hr at 4˚C. The brain was then dis-

sected, fixed, washed and mounted as described below.

MARCM analysis
To label individual MNs, single cell MARCM clones were induced during embryonic or post embry-

onic neurogenesis. For these experiments, females of the genotype FRT19A/FM7c were crossed

with males of the genotype FRT19A,hsFLP,Tubulin-Gal80; OK371-Gal4,UAS-mCD8-GFP/CyO. For

clone induction during embryogenesis, embryos were collected for 4 hr at 25˚C and heat shocks

were applied for 1 hr at 37˚C at different time points. Similarly, for post embryonic clone induction

larvae were collected at different time intervals from 24 hr after larval hatching (ALH) to 96 hr ALH

and heat shocks were applied after different time points.

Immunohistochemistry of MARCM samples
Dissections of adult brains with the proboscis were carried out in 1x phosphate-buffered saline (PBS)

and fixed in 4% freshly prepared PFA (in 1x PBS) for 30 min at RT. After removal of the fixative the

preparations were washed for 6 � 15 min with 0.3% PTX (0.3% Triton X-100 in 1� PBS) at RT. Block-

ing of samples was performed for 15 min at RT in 0.1% PBTX (0.1% BSA in 0.3% PTX). Primary anti-

body was diluted in 0.1% PBTX and samples were incubated at 4˚C for 12 hr on a shaker. The

following primary antibodies were used: chicken anti-GFP (1:500; Abcam, Cambridge, UK) and

mouse anti-neurotactin (Nrt, BP106, 1:10; DSHB; RRID:AB_528404). Samples were washed in 0.3%

PTX for 1 hr and Alexa-488, 568, and 647 conjugated secondary antibodies were applied in 0.1%

PBTX for 2 hr. Rhodamine-conjugated phalloidin (1:200 Sigma) was used to visualize muscles.
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Preparations were mounted in Vectashield mounting media (Vector Laboratories) and imaged on an

Olympus FV 1000 confocal point scanning microscope. ImageJ, Adobe Photoshop and Amira 5.4.3

software (Visage Imaging, Berlin, Germany) was used for image processing and 3D reconstructions.

Immunohistochemistry of enhancer-Gal4 lines
2–10 days old male and female flies were incubated in fixative (4% PFA in PBS, 0.2% Triton-X 100)

for 3 hr at 4˚C and washed with PBST (0.2% Triton-X 100) 3 � 30 min. Brain, proboscis, and head dis-

sections were performed in PBST. Brains were dissected and transferred to a tube with ice cold

PBST. Primary antibodies were incubated for 3 days at 4˚C and secondary antibodies for 2 days at

4˚C.
For proboscis and head dissections flies were decapitated with a razor blade. For the proboscis

dissection the part of interest was isolated. For complete head dissection only a few holes were

pierced into the cuticle on the ventral side of the proboscis (26-gauge needle) to allow antibody

penetration. Primary antibodies were incubated for 5 days at RT and secondary antibodies for 3

days at RT.

Antibodies were diluted in PBST and used at the following concentrations: mouse anti-Bruchpilot

(nc82; RRID:AB_2314868) 1:200, mouse anti-Synapsin (3c11; RRID:AB_528479) 1:100 (both obtained

from Developmental Studies Hybridoma Bank, IA), rabbit anti-Discs-large (Pielage et al., 2011)

1:1000, rabbit anti-GFP (A6455, Life technologies, ThermoFisher, Waltham MA) 1:1000, mouse anti-

mCherry (632543, Clontech, Takara, Mountain View CA) 1:1000, phalloidin Alexa 647 (Life technolo-

gies) 1:1,000. Alexa 488, 555, and 647-coupled secondary antibodies (Life technologies) were used

at 1:1000.

Brains, proboscises, and heads were mounted in Vectashield and images were acquired with a

Zeiss LSM 700/710 laser scanning confocal microscope with a 10x (NA 0.3) objective, a 20x (NA 0.7)

oil immersion objective, or a 40x (NA 1.25–0.75) oil immersion objective. Images were processed

using Imaris (Bitplane) and Adobe Photoshop software.

GFP reconstitution across synaptic partners (GRASP)
Enhancer-Gal4 lines were crossed to Gr5a-LexA; UAS-tdTomato::LexAop2-CD4-spGFP11; UAS-CD4-

spGFP1–10 and offspring with the genotype Gr5a-Lexa/+; UAS-tdTomato::LexAop-CD4-spGFP11/+;

UAS-CD4-spGFP1–10/enhancer-Gal4 was dissected in ice cold PBST. Brains were incubated in fixa-

tive for 20 min at 4˚C and washed with PBST 3 � 30 min. Primary and secondary antibodies were

incubated overnight at 4˚C.

Analysis of fly behavior
For all behavior experiments 2–10 days old male and female flies were used. Fed or starved (24 hr)

flies were mounted on a glass coverslip 30 min prior to testing. The PER was analyzed using a cus-

tom-made, temperature-controlled chamber and recorded with a Canon EOS 60D camera at 25 or

50 frames/s.

Analysis of the PER motion pattern
PER was elicited by application of 200 mM sucrose to the anterior legs. Videos were analyzed using

Adobe Premiere Pro CC and the initiation time point of each movement (i.e. rostrum lifting, haustel-

lum extension, labella extension, and labella spreading) as well as the time point of sucrose stimula-

tion was measured.

Artificial activation using TrpA1
Enhancer-Gal4 lines were crossed to UAS-TrpA1 at 22˚C. The behavior was analyzed in a custom-

made heating chamber and monitored at control (22˚C) and activation (28–32˚C) temperature. Num-

bers of analyzed animals are indicated in Supplementary file 1 as responding animals/total animals.

Artificial activation using Chrimson
Enhancer-Gal4 lines were crossed to UAS-Chrimson at 25˚C and kept in the dark. Crosses were

raised on standard food mixed with 200 uM all-trans retinal. The behavior, with and without
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gustatory stimulation, was analyzed and monitored under control (475 nm) and activation wave-

length (633 nm) in a dark room.

Artificial silencing using shibirets

Enhancer-Gal4 lines were crossed to UAS-shibirets at 22˚C. To elicit PER a positive stimulus (200 mM

Sucrose) was applied to the anterior legs. First, PER was observed at 22˚C. Flies that showed no or

only incomplete PER were excluded. Second, after the chamber was heated to 29˚C flies were

repeatedly stimulated to deplete the synaptic vesicle pool and PER was analyzed at the restrictive

temperature. Third, after the chamber was cooled to 22˚C responsiveness was tested again. All flies

that showed no or only incomplete PER at this stage were excluded from the analysis.

Quantification of proboscis displacement
Enhancer-Gal4 lines were crossed to UAS-Chrimson at 25˚C and kept in the dark. Crosses were

raised on standard food mixed with 200 uM all-trans retinal. The behavior was analyzed and moni-

tored in a dark room. The maximum proboscis extension (MPE) is defined as the distance between

the most anterior part of the eye and the tip of the labella when the proboscis is maximally

extended. One dataset consists of four MPE data points: Two at blue light with (blue+) and without

(blue-) sucrose stimulation and two at red light with (red+) and without stimulation (red-). The data

points at blue light and red light for one dataset are from two consecutive stimulations. In all quanti-

fications for Figure 9A–E values are normalized to (blue+-blue-) which represents 100% proboscis

extension distance. The values for Figure 9A–E are calculated the following: blueþ �ð Þblue�
blueþ �ð Þblue� �100% for

grey bars, red� �ð Þblue�
blueþ �ð Þblue� �100% for green bars and redþ �ð Þblue�

blueþ �ð Þblue� �100% for green+blue bars. Data are pre-

sented as mean ± SEM. For Figure 9F the values are normalized to [(blue+-blue-) – (red--blue-)] to

neglect the distance that is reached due to red light alone thereby focusing on the distance that is

added upon sucrose stimulation. These values are calculated the following:
redþ �ð Þblue�ð Þ � red� �ð Þblue�ð Þ
blueþ �ð Þblue�ð Þ � red� �ð Þblue�ð Þ �100%.

Ten stimulations on >5 different flies were used for quantifications (except for control flies: 8 stim-

ulations on 3 different flies). Data are presented as mean ± SEM.

Statistical analysis
We used d’Agostino-Pearson omnibus normality test to test for Gaussian distributions.

Figure 1: Quantification of the initiation time points of individual steps during PER: Individual flies

(flies A, B, and C) were compared to each other using the Mann-Whitney U test.

Figure 5—figure supplement 1: Quantification of the initiation time points of individual steps

during PER: w1118 flies were compared to GMR-Gal4>shibirets flies using the Mann-Whitney U test.

Supplementary file 1 — for Figures 5, 6, 7, 8 and Figure 8—figure supplement 1: Quantifica-

tion of animals showing behavioral phenotypes: Experimental flies (Gal4/UAS) were compared to

control flies (w1118; Gal4/+; UAS/+) using the Wilcoxon signed-rank test.

Figure 9: Proboscis displacements of the same set of flies under different conditions were com-

pared using a paired, parametric t-test.

For all statistical tests asterisks indicate: *p<0.05; **p<0.01; ***p<0.001.
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