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Abstract: Colon cancer (CC) belongs to the three major malignancies with a high recurrence rate.
Therefore, a novel drug delivery system that can prevent CC recurrence while minimizing side
effects is needed. Tumor-necrosis-factor-related apoptosis-inducing ligand (TRAIL) has recently been
spotlighted as a protein drug that can induce apoptosis of cancer cells specifically. However, its
short in vivo half-life is still a challenge to overcome. Hence, in this study, a gel-like mPEGylated
coacervate (mPEG-Coa) delivery platform was developed through electrostatic interaction of mPEG-
poly(ethylene arginylaspartate diglyceride) (mPEG-PEAD) and heparin for effective protection of
cargo TRAIL, subsequently preserving its bioactivity. mPEG-Coa could protect cargo TRAIL against
protease. Sustained release was observed for a long-term (14 days). In addition, recurrence of
HCT-116 cells was suppressed when cells were treated with TRAIL-loaded mPEG-Coa for 7 days
through long-term continuous supply of active TRAIL, whereas re-proliferation occurred in the
bolus TRAIL-treated group. Taken together, these results suggest that our gel-like mPEG-Coa could
be utilized as a functional delivery platform to suppress CC recurrence by exogenously supplying
TRAIL for a long time with a single administration.

Keywords: TRAIL; coacervate; colon cancer; cancer recurrence; drug delivery system

1. Introduction

Colon cancer (CC) is caused by transformation of normal colonic epithelium into
adenomatous polyps. It is closely related to various factors such as lifestyle, diet, and
genetic mutations [1]. CC is one of the three major malignancies along with breast cancer
and lung cancer. It is ranked third in incidence and second in mortality [2]. Additionally,
according to GLOBOCAN 2020 estimates, there will be more than 1.9 million new cases
of CC worldwide and 935,000 deaths in 2020 [3]. Currently available treatments for CC
include surgery, radiation therapy, and chemotherapy [4]. However, surgery could remove
healthy colon tissues during tumor resection or cause pain. Radiation therapy could
induce infertility problems in patients. Moreover, non-specific delivery of chemodrugs
to off-target sites can ultimately cause unwanted side effects such as gastrointestinal
toxicity, liver toxicity, and hematologic disorders [5,6]. Notably, tumor recurrence occurs in
30–50% of CC patients after chemotherapy [7]. In addition, considering patient’s condition,
systemic chemotherapy and radiation therapy are performed at least 2–3 weeks after
surgery However, the golden hour to remove residual cancer cells is often missed during
this period [8]. Therefore, the importance of developing effective and safe treatment
techniques to overcome problems of tumor recurrence in CC has been emphasized.

Tumor-necrosis-factor-related apoptosis-inducing ligand (TRAIL) could be an alterna-
tive protein drug to treat CC. It binds to cell surface receptors TRAIL-R1 and TRAIL-R2 and
triggers an extrinsic apoptotic pathway [9,10]. Condidering selective apoptosis-inducing
properties of TRAIL for cancer cells and high expression profile of TRAIL receptors in
cancerous cells, TRAIL is considered a very attractive clinical therapeutic candidate [10,11].
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However, active clinical translation attempts by a simple injection of bolus TRAIL have
been limited due to its very short in vivo half-life and inefficient delivery with insufficient
therapeutic outcomes [12]. Maintaining high concentrations of TRAIL at the tumor site
usually requires repeated dosing, which may increase drug resistance and induce poten-
tial toxicity. Therefore, the development of a novel delivery system that enables higher
bioavailability and sustainability of TRAIL to continuously suppress CC with a single
administration is required.

Coacervate (Coa) is a self-assembled gel-like colloidal droplet formed by the as-
sociation between polycation and polyanion by Coulombic force [13,14]. In particular,
poly(ethylene arginylaspartate diglyceride) (PEAD) (i.e., polycation) can interact with
heparin (i.e., polyanionic counterpart) by electrostatic interaction in aqueous conditions,
forming a gel-like Coa structure. This Coa can be used as an exogenous growth factor
(GF) delivery carrier for various tissue engineering applications including osteochondral
tissue regeneration [15], bone regeneration [13,16], vascular regeneration [17], and repair of
damaged skin tissues [18,19]. However, random aggregation of Coa has put the brakes on
intravenous administration for clinical use. Thus, methoxy-poly(ethylene glycol) (mPEG)
was conjugated on the PEAD cation backbone to augment colloidal stability of Coa in our
previous studies [20,21]. The PEG moiety of mPEGylated PEAD (mPEG-PEAD) could
provide a shielding effect to Coa droplets by blocking access to unwanted surrounding
molecules. Therefore, mPEG-Coa formed with mPEG-PEAD and heparin had superior
colloidal stability than Coa without PEG modification, consequently exhibiting excellent
functionality as a GF delivery carrier [20,21].

In this study, we evaluated functionalities of mPEG-Coa as an exogenous TRAIL
delivery carrier for cargo TRAIL protection and long-term sustained supply to inhibit CC
cell recurrence. TRAIL was incorporated into gel-like mPEG-Coa droplets and HCT-116
cells (i.e., CC cells) were cultured for a long period (7 days) with TRAIL-loaded mPEG-
Coa. Specifically, the present study had the following objectives: (1) to investigate in vitro
cancer-killing efficacy of TRAIL on HCT-116 cells, (2) to determine the cargo protection
ability of mPEG-Coa and sustained cargo release kinetics, and (3) to determine the ability
of mPEG-Coa-mediated TRAIL delivery to inhibit tumor recurrence.

2. Results and Discussion
2.1. In Vitro Anticancer Efficacy of TRAIL

TRAIL is a well-known TNF family member that can induce apoptosis of cancer cells
without showing toxicity to normal cells [22]. Binding of TRAIL to death receptor (DR) 4 or
DR5 can activate caspase-8, which in turn stimulates caspase-3. Thus, a caspase-mediated
extrinsic apoptosis pathway is triggered, leading to cancer cell death. Furthermore, TRAIL
triggers another intrinsic apoptosis mechanism. Caspase-8 activated by TRAIL induces
cytochrome C release from mitochondria. Released cytochrome C then promotes the formation
of apoptosome, leading to caspase-9-mediated apoptosis [23,24]. Due to these characteristics,
TRAIL is considered as an alternative anticancer drug candidate. In this study, HCT-116
cells exhibited TRAIL-concentration-dependent cell death. Specifically, at a concentration
of 10 ng/mL or less, TRAIL had no significant effect on cell viability. Its IC50 value was
196.2 ng/mL (Figure 1). Additionally, a previous study has demonstrated that HCT-116
cells show higher expression levels of both DR4 and DR5 than A549, HT-29, and Jurkat
cells. Higher TRAIL-sensitive apoptosis was correspondingly observed [25]. This higher
sensitivity of HCT-116 cells to TRAIL compared to HT-29, SW480, and SW620 cells has also
been observed in other studies [26]. Consequently, in this study, HCT-116 was selected as a
target for TRAIL-mediated anticancer treatment and used in subsequent experiments.
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2.2. Characterization of mPEG-PEAD and mPEG-Coacervate

mPEG-PEAD was synthesized by grafting arginine onto mPEG- Fmoc-poly(ethylene
aspartate diglyceride) (mPEG-PED) as previously reported [20,21]. The primary amine of
mPEG-PED can be conjugated with various carboxylic acid derivatives, among which argi-
nine is a cationic and biocompatible amino acid (Figure 2A). Structure of synthesized mPEG-
PEAD was confirmed by 1H-NMR (Figure 2B): 3.4–3.9 ppm (protons of glyceride moiety),
4.3 ppm (protons of aspartate), 3.2 ppm (protons of mPEG), and 1.4–1.7 ppm (protons of
arginine). Although the development of drugs and gene delivery systems using cationic
polymers has been widely investigated, their toxicity is still a problem to be overcome [14].
Polycations could disrupt cell membranes through interactions with negatively charged
cell membranes, causing high cellular toxicity. Meanwhile, high in vitro and in vivo bio-
compatibility of our PEAD-based Coa has been demonstrated in a series of previous stud-
ies [15,16,20,21]. Next, mPEG-PEAD and heparin were prepared by being dissolved them
in PBS at a concentration of 1 mg/mL and then mixed at a 1:8 mass ratio. Both mPEG-PEAD
and heparin solutions were transparent before mixing. They immediately changed to turbid
solutions after mixing, indicating that coacervation (i.e., liquid–liquid phase separation)
was successfully induced by the electrostatic interaction between mPEG-PEAD and heparin
(Figure 2C). Moreover, mPEG-Coa revealed a stable spherical shape (Figure 2D). Particle
size of empty mPEG-Coa (i.e., without cargo TRAIL) was 491.4 nm. The size of TRAIL-
loaded mPEG-Coa was 773.0 nm (Figure 2E). The size of mPEG-Coa was slightly increased
by TRAIL encapsulation. Viscoelastic properties of mPEG-Coa were measured by rheometer
and mPEG-Coa exhibited a higher storage modulus than loss modulus (Figure 2F). Specifi-
cally, the storage modulus was 298.8 Pa and the loss modulus was 45.4 Pa, demonstrating
gel-like properties of mPEG-Coa. In addition, mPEG-Coa exhibited a zeta potential of
−0.2 mV before TRAIL loading and −0.1 mV after TRAIL loading. The near-neutral charge
of these mPEG-Coa complexes could prevent electrostatic-interaction-mediated nonspecific
adsorption with surrounding serum proteins, thereby avoiding unwanted interference,
especially in a physiological environment. Moreover, particles with negative or neutral
surface charge could avoid cellular uptake and achieve long blood circulation [27]. In addi-
tion, mPEGylation on PEAD provides excellent colloidal stability of the Coa structures. In
our previous study, hydrophilic mPEG moiety was incorporated into cationic PEAD back-
bone. Subsequently obtained mPEG-Coa exhibited improved structural stability, avoiding
random aggregation compared to Coa without mPEG modification, thereby increasing GF
delivery efficiency and promoting cell activation and downstream differentiation [20,21].
Therefore, our mPEG-Coa could be utilized as an effective anticancer drug delivery system.
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Figure 2. Characterization of mPEG-PEAD and mPEG-Coa. (A) Chemical structure of mPEG-PEAD
and (B) structural analysis using 1H-NMR. (C) Macroscopic observation of mPEG-PEAD, heparin, and
mPEG-Coa and (D) fluorescence image of mPEG-Coa. (E) Hydrodynamic size of empty mPEG-Coa
and TRAIL-loaded mPEG-Coa. (F) Viscoelastic properties of mPEG-PEAD.

2.3. Cargo TRAIL Release Phenomenon

The initial loading efficiency of cargo TRAIL in mPEG-Coa was 88.1%. Its release
profile was determined by ELISA. In particular, NaCl-concentration-dependent modulation
in the release kinetics of cargo TRAIL was observed (Figure 3). In PBS condition, a sustained
TRAIL release pattern was observed and 10.9% of cumulative release was recorded for
14 days. However, in the presence of additional salts (i.e., PBS with 50 mM NaCl), a
significantly burst release was observed. Specifically, 36.8% of TRAIL was released in this
condition on day 1, whereas 59.4% of TRAIL release was achieved at 14 days. Release
kinetics of cargo proteins from Coa predominantly depended on hydrolysis of polycation
backbones in the aqueous environment and the binding affinity level (i.e., dissociation
constant) between cargo and heparin [14]. Moreover, the structural stability of Coa is
closely related with dissociation of cargo protein and further release into the surroundings.
Adding electrolytes Na+ and Cl− into an aqueous environment where coacervation occurs
and subsequent changes in surrounding ionic strength could interfere with the stable
electrostatic interaction between mPEG-PEAD, heparin, and TRAIL, which could disrupt
the formation of colloidal Coa structure, sequentially accelerating the release of cargo TRAIL
from mPEG-Coa. Our previous studies [20,21] have shown dissociation and deformation of
Coa structure by manipulating ionic strength. In these studies, Coa without mPEGylation
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aggregated within 24 h, whereas significant colloidal stability (i.e., less aggregation and
retention of spherical structure) was observed in mPEG-Coa. A relatively higher sodium
concentration in the tumor microenvironment (TME) [28] could also imply the following
sequential processes in physiological conditions upon administration: (1) rapid structural
disruption of mPEG-Coa, (2) sufficient release of cargo TRAIL from mPEG-Coa, and
(3) preservation of optimal therapeutic efficacy of released TRAIL to suppress cancer cells.
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2.4. Cargo Protection Ability of mPEG-Coa

An ideal drug delivery system should also be able to protect the cargo molecule from
the stimuli in external environments. In particular, TRAIL has a very short in vivo half-life
(3–5 min in mice and 30–60 min in primates) [12,29]. Consequently, in most studies, TRAIL
administered directly into the blood vessel is degraded before functioning. High-dose
and/or multiple administrations of TRAIL are required to achieve the intended therapeutic
efficacy. Therefore, the development of a delivery carrier with sufficient protective capabil-
ity for incorporated cargo drugs until it reaches the target tumor is necessary. To evaluate
the cargo protection ability of mPEG-Coa, naked TRAIL and TRAIL-loaded mPEG-Coa
were incubated with trypsin for 10 h (Figure 4). As a result, after 10 h of incubation with
trypsin, 31.0% of naked TRAIL without any protection remained. On the other hand, in the
TRAIL-loaded mPEG-Coa group, 58.6% of cargo TRIAL was preserved by the protection of
mPEG-Coa carriers. These results demonstrat that our mPEG-Coa could efficiently protect
cargo TRAIL from the harsh external environment containing protease. Previous studies
have also demonstrated similar results for Coa-mediated protection of cargo fibroblast
growth factor-2 or interleukin-12 and preservation of their bioactivities in the presence
of trypsin [30,31]. Collectively, with a differentiated release profile (Figure 3), it could be
anticipated that the protective efficacy of mPEG-Coa (Figure 4) could improve therapeutic
outcomes of exogenous TRAIL delivery in TME with high levels of extracellular proteolytic
enzymes [32].
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2.5. Inhibition of Tumor Recurrence via mPEG-Coa-Mediated TRAIL Delivery

To verify the inhibition of CC cell recurrence by mPEG-Coa-mediated TRAIL delivery,
HCT-116 cells were cultured for 7 days with different TRAIL treatment conditions (Figure 5).
In the bolus-TRAIL-treated group, significant cancer cell death was observed on days
3 and 5 (Figure 5A). However, cancer recurred and the survival rate of HCT-116 cells was
higher at 7 days than that at 5 days. Since a small amount of TRAIL was released from
mPEG-Coa in the early stage (i.e., 9.7% cumulative release for 3 days in PBS, Figure 3),
suppression of cancer cell proliferation did not appear in the TRAIL-loaded mPEG-Coa
group at day 3. The amount of released TRAIL might not reach a sufficient therapeutic dose.
On the other hand, the proliferation of HCT-116 cells was no longer observed from day 5.
In addition, the viability of HCT-116 cells at day 7 was significantly lower in the mPEG-Coa
group than that in the bolus TRAIL treatment group. These results are closely related to
the therapeutic threshold and available dose of TRAIL in the surrounding microenviron-
ment. In the bolus TRAIL group, the initially available TRAIL dose was relatively high,
showing high anticancer efficacy (i.e., downregulated proliferation of CC cells) until day
5. However, due to the short half-life of bolus TRAIL, it was speculated that cancer could
recur at a later stage because the concentration of bioactive TRAIL remained below the
therapeutic threshold. Moreover, live/dead fluorescence images exhibited high cytotoxicity
in the TRAIL-loaded mPEG-Coa treatment group (Figure 5B). Fewer viable cells (i.e., green
cells) were observed in HCT-116 cells treated with TRAIL-loaded mPEG-Coa than in the
TRAIL-treated group. In addition, since the completely dead cells were removed during
the washing process, even red stained cells were observed to decrease in the TRAIL-loaded
mPEG-Coa group. A similar phenomenon was revealed in our previous study [33]. As
previously described, mPEG-Coa is capable of inducing a sustained release (Figure 3)
while protecting the cargo TRAIL against the external environment (Figure 4). Therefore, a
continuous supply of therapeutically available TRAIL could effectively suppress cancer
recurrence, although the initial release amount of TRAIL was low in mPEG-Coa mediated
TRAIL treatment and significant anticancer effects were not observed until day 3. Taken
together, the mPEG-Coa-mediated TRAIL delivery system could (1) protect cargo TRAIL in
the tumor microenvironment (TME) with high levels of extracellular protease, (2) continu-
ously supply TRAIL in TME with high levels of NaCl, and (3) subsequently induce cancer
cell death and prevent recurrence of cancer cells. Therefore, direct local administration of
TRAIL-loaded mPEG-Coa could effectively induce cancer cell death and inhibit recurrence
of remaining CC after cancer resection surgery with less systemic toxicity in normal tissues.
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Figure 5. Inhibition of colon cancer recurrence via mPEG-Coa-mediated TRAIL delivery. (A) Via-
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(*) indicates that the experimental group is statistically different to indicated experimental groups.

3. Conclusions

In this study, we investigated inhibition of CC recurrence through mPEG-Coa-mediated
exogenous TRAIL delivery. mPEG-Coa (a gel-like colloidal droplet) was self-assembled
through electrostatic interaction with mPEG-PEAD and heparin in aqueous environments.
During this fabrication process, TRAIL was effectively encapsulated into mPEG-Coa.
mPEG-Coa exhibited (1) high TRAIL-loading efficiency of over 88%, (2) protective efficacy
of cargo TRAIL in regards to the harsh external environment, and (3) sustained release
profile of entrapped TRAIL. Interestingly, in the presence of additional electrolytes such as
NaCl, an abrupt release pattern of TRAIL was observed due to changes in ionic strength in
the surrounding environment and subsequent interference in the mPEG-PEAD:heparin
complex. The treatment of bolus TRAIL in HCT-116 cells resulted in early cancer death
due to the highly available TRAIL amount, whereas cancer reproliferated after 7 days since
the bioactivity of bolus TRAIL decreased over time. When TRAIL-loaded mPEG-Coa was
administered to HCT-116 cells, cancer recurrence was inhibited from 5 days. On day 7, it
showed a more significant cancer inhibitory effect than bolus TRAIL. In conclusion, our
gel-like mPEG-Coa-based TRAIL delivery system could be utilized as a novel protein drug
delivery platform to suppress the recurrence of residual cancer after cancer resection or
chemotherapy by continuously supplying available TRAIL.

4. Materials and Methods
4.1. Materials

6× His-TRAIL was obtained from UBPBio. Mouse Anti-Human TRAIL-UNLB and
mouse Anti-Human TRAIL-BIOT (Dallas, TX, USA) were purchased from Southern-
Biotech (Birmingham, AL, USA) for ELISA. Dulbecco’s Modified Eagle Medium (DMEM),
penicillin–streptomycin, fetal bovine serum (FBS), trypsin, and phosphate-buffered saline
(PBS) were purchased from Corning (Corning, NY, USA). Heparin and Bacteroides Hep-
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arinase II were received from Selleckchem (Radnor, PA, USA) and New England Bio-
labs (Beverly, MA, USA), respectively. EZ-Cytox was purchased from DoGenBio (Seoul,
Korea). Fmoc-Asp and Fmoc-Arg were obtained from BOC Science (Shirley, NY, US).
Monomethoxy polyethylene glycol 750, 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide
(EDC), N-hydroxy succinimide (NHS), tetrabutylammonium bromide (TBAB), 4-dimethyl
amino pyridine (DMAP), dimethyl formamide (DMF) (anhydrous), 1,4-dioxane, piperidine,
3,3′,5,5′-Tetramethylbenzidine (TMB), and streptavidin-HRP conjugate were obtained from
Sigma-Aldrich (St. Louis, MO, USA). Ethylene glycol diglycidyl ether (EGDE) was obtained
from TCI (Tokyo, Japan). Protease inhibitor and Live and dead staining kit were obtained
from ThermoScientific (Waltham, MA, USA).

4.2. In Vitro Anticancer Efficacy of TRAIL

HCT-116 colon cancer cells were cultured in a growth media consisting of 89% (v/v)
DMEM, 10% (v/v) FBS, and 1% (v/v) penicillin-streptomycin and incubated at 37 ◦C with 5%
CO2 and 95% humidity. When cell confluency reached about 80%, cells were transferred to
96-well cell culture plates at a density of 10,000 cells/well and incubated for 24 h. After
24 h, old media were replaced with fresh media containing 0–5000 ng/mL of TRAIL and
incubated for 24 h. After 24 h of TRAIL treatment, old media were discarded and WST-1
reagent was prepared by mixing EZ-Cytox and growth media at a 1:10 (v/v) ratio was
added to each well. Treated cells were incubated at 37 ◦C for 3 h. Optical density was then
measured at 440 nm by microplate spectrophotometry. Cell viability was calculated with
the following equation: Cell viability (%) = (OD value of experimental group—OD value of
blank group)/(Average OD value of control group—OD value of blank group) × 100%.

4.3. Synthesis of mPEG-PEAD

Poly(ethylene Fmoc-aspartate diglyceride) (FPED) intermediate polymer was synthe-
sized by polymerization between Fmoc-Asp and EGDE, with the modified procedure
used in our previous study [21]. Briefly, Fmoc-Asp (5 mmol), EGDE (5 mmol), and
TBAB (5 mg) were mixed with 1,4-dioxane (2.5 mL) and reacted at 100 ◦C for 48 h. Af-
ter the reaction, synthesized FPED was precipitated by adding diethyl ether and dried
under vacuum conditions. After that, the FPED was dissolved in 5 mL of DMF and acti-
vated by reaction with EDC (1 mmol), NHS (1 mmol), and DMAP (5 mg) for 1 h. Then,
mPEG 750 (1 mmol) solution was prepared in DMF (1 mL) was prepared and added to
the mixture. mPEGylation was carried out for 48 h. Thereafter, piperidine (4 mL) was
added and stirred to remove Fmoc moiety. The deprotected mPEG-PED was precipitated
by adding diethyl ether. The Fmoc-Arg (5 mmol) was reacted with EDC (5 mmol) and NHS
(5 mmol) in DMF (10 mL) for 1 h. Activated Fmoc-Arg was added to dissolved mPEG-PED
in DMF (5 mL) and reacted for 48 h. Then, piperidine (4 mL) was added and stirred to
remove Fmoc moiety, precipitated by adding diethyl ether, and dried under vacuum. The
final product mPEG-PEAD was dissolved in 0.1 M HCl (50 mL) and dialyzed using a
dialysis tube (MWCO = 2000) against DW for 24 h. Dialyzed mPEG-PEAD was lyophilized
and stored at −80 ◦C. These synthesized polymers were characterized via 1H-NMR.

4.4. Fabrication of TRAIL-Loaded mPEG-Coacervate

mPEG-PEAD and heparin were each dissolved in PBS at a concentration of 1 mg/mL
and filtered through 0.2 µm syringe filters. Then, 1 µL of TRAIL solution (100 ng/µL)
was mixed with 10 µL of prepared heparin solution. Subsequently, 80 µL of mPEG-
PEAD solution was added to the heparin:TRAIL mixture (i.e., 1:100:800 mass ratios of
TRAIL:heparin:mPEG-PEAD). An increase in turbidity was immediately observed, indicat-
ing the formation of mPEG-Coa. To observe morphological characteristics of mPEG-Coa,
FITC-labeled BSA (FITC-BSA) instead of TRAIL was loaded in the mPEG-Coa, then TRAIL.
Then, prepared FITC-BSA-loaded mPEG-Coa was observed using fluorescent microscopy
(Nikon Ti-E, Tokyo, Japan).
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4.5. Rheological Measurements

Rheological properties of mPEG-Coa were measured via Discovery HR-1 (TA instru-
ment Inc., New Castle, DE, USA). mPEG-Coa was prepared as previously described and
200 µL of mPEG-Coa solution was loaded on the rheometer plate with a plate geometry of
20 mm radius. Frequency sweeps were conducted to 100 rad/s at a 0.01% of strain. Storage
modulus and loss modulus measurements were performed in triplicate.

4.6. Release Kinetics of Cargo TRAIL form mPEG-Coacervate

mPEG-Coa containing 100 ng of TRAIL was fabricated as previously described. The
prepared mPEG-Coa was then centrifuged at 12,000× g for 10 min to collect the supernatant.
This supernatant was used to calculate TRAIL-loading efficiency. Subsequently, 500 µL
of fresh PBS (135 mM of NaCl) or PBS additionally supplemented with 50 mM NaCl
(185 mM of NaCl) was added to the mPEG-Coa pellet and resuspended. Resuspended
samples were incubated at 37 ◦C for 14 days. At day 1, 3, 5, 7, and 14, supernatant was
collected after centrifuge and resuspended with each fresh solution. Amounts of unloaded
TRAIL (i.e., loading efficiency) and TRAIL released into the supernatant were measured
using ELISA according to the manufacturer’s procedures.

4.7. Cargo TRAIL Protection Ability against Protease

After 100 ng of bolus TRAIL or 100 ng of entrapped cargo TRAIL in mPEG-Coa was
incubated with 100 µL of 500 ng/mL trypsin at 37 ◦C for 10 h. 100 µL of 1× protease
inhibitor solution was added to each trypsin-treated samples solutions and incubated for
5 min to halt digestion. After that, in order to remove TRAIL from mPEG-Coa, 50 µL of
heparinase cocktail solution (1 µL of 4000 units/mL) was added and incubated at 37 ◦C for
1 h. The leftover TRAIL was quantified via ELISA.

4.8. Inhibition of Colon Cancer Recurrence Study

HCT-116 cells were seeded at a density of 2000 cells/well on a 96-well cell culture
plate and incubated for 24 h. The old media were discarded and changed to fresh growth
media containing 500 ng of bolus TRAIL or mPEG-Coa incorporated with 500 ng of cargo
TRAIL. After TRAIL treatment, HCT-116 cells were incubated for 7 days. At day 3, 5, and 7,
WST-1 assay was performed as previously described.

4.9. Statistical Analysis

Statistical analyses were conducted for quantitative data using GraphPad Prism 7.0
(GraphPad Software Inc., San Diego, CA, USA.). Quantitative experiments were performed
in triplicate. Results were analyzed using one-way analysis of variance (ANOVA) and
Tukey’s multiple-comparison test.
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