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Abstract

Background: Sexual dimorphism in human brain structure is well recognised, but less is known about gender differences in
white matter microstructure. We used diffusion tensor imaging to explore gender differences in fractional anisotropy (FA),
an index of microstructural integrity. We previously found increased FA in the corpus callosum in women, and increased FA
in the cerebellum and left superior longitudinal fasciculus (SLF) in men, using a whole-brain voxel-based analysis.

Methods: A whole-brain tract-based spatial statistics analysis of 120 matched subjects from the previous analysis, and 134
new subjects (147 men and 107 women in total) using a 1.5T scanner, with division into tract-based regions of interest.

Results: Men had higher FA in the superior cerebellar peduncles and women had higher FA in corpus callosum in both the
first and second samples. The higher SLF FA in men was not found in either sample.

Discussion: We confirmed our previous, controversial finding of increased FA in the corpus callosum in women, and
increased cerebellar FA in men. The corpus callosum FA difference offers some explanation for the otherwise puzzling
advantage in inter-callosal transfer time shown in women; the cerebellar FA difference may be associated with the
developmental motor advantage shown in men.
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Introduction

It has long been recognised that the structure of the human

brain differs between the sexes. Men have larger brains overall and

in most regions, though women have a higher proportion of grey

matter [1,2]. There is some evidence that it is the white matter

fraction that varies with sex, independently of brain size [3], but it

is little studied in comparison with grey matter. Recent studies

have begun to address this using diffusion-tensor magnetic

resonance imaging (DTI).

DTI uses a magnetic resonance imaging (MRI) sequence

sensitised to the diffusion of water, and by acquiring a measure

of the diffusion in all directions inferences about the microstruc-

ture of white matter can be drawn [4]. The extent to which the

diffusion follows the principal diffusion direction (the fractional

anisotropy (FA)) can be informative about the cellular organization

and myelination of white matter [5], changes that may be

undetectable by volumetric MRI.

A number of studies [6–21] have used DTI to compare white

matter microstructure between genders but these have tended to

focus on particular regions of interest (ROIs), or have been limited

by small samples, and have yielded conflicting results.

We recently published a paper [14] that set out to address some

of these limitations, looking at white matter microstructure in 135

subjects using a whole-brain voxel-based analysis. We found

women had higher FA in the corpus callosum (confirmed by ROI),

whereas men had higher FA in the cerebellum and left anterior

superior longitudinal fasciculus (SLF). These results were them-

selves open to question, however, as the direction of the corpus

callosum difference we found conflicted with much of the rest of

field, and the method we used poorly localised clusters of

difference (in the cerebellum and SLF) and was inherently

vulnerable to partial volume effect (especially in the SLF cluster),

so that we were concerned that the SLF difference in particular

may have been spurious. We therefore proposed to confirm the

results using a method (tract-based spatial statistics, or TBSS [22])

that suffers reduced partial volume effect as it uses the maximal

value for each tract at each location, and which we adapted to give

more specific localisation, hypothesizing that all of our results

would be confirmed except that from the SLF. We then proposed

to replicate these results in a second, independent sample, using

the same method.
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Methods

Ethics Statement
All subjects gave written, informed consent after the study was

explained to them, and the study was approved by the Institute of

Psychiatry, King’s College London, Research Ethics Committee.

Subjects
We took the scans of healthy volunteers from our previous VBA

(voxel-based analysis) [14] and added scans from a larger set of

healthy volunteers. We excluded all who were not right handed,

and closely matched the remaining gender groups on key

demographics. After excluding two male subjects whose scans

did not successfully undergo the image processing procedure, there

remained 254 subjects (147 men, 107 women), 120 from the

original study and 134 new subjects. The demographics of the

original and new samples were significantly different (by t-test or

Chi-squared) - see table 1. The gender groups were matched for

handedness (all dextral), age (men 32.4+/212.6, women 32.7+/2
13.5; range 18–63; Mann Whitney p= 0.90) and IQ (men

110.1+/211.0, women 110.7+/212.2; t-test p = 0.74). The

gender groups also matched on ethnicity (p = 0.32) and parental

social class (p = 0.73), though there were extensive missing values

for these measures (119 men/56 women were missing class data,

and 84 men/47 women were missing ethnicity data).

Image Acquisition and Pre-processing
Diffusion-weighted imaging data were acquired using a GE

Signa 1.5 Tesla LX MRI system (General Electric, Milwaukee,

Wisconsin, USA) with a standard birdcage quadrature head coil,

using an echo planar imaging sequence peripherally gated to the

cardiac cycle and optimised for the acquisition of white matter

diffusion tensor MRI. Seven non-diffusion-weighted images (b=0)

were acquired, along with 64 images with diffusion gradients

(b=1300 s/mm2) uniformly distributed in space [23] at each of 60

slices. The TR was 15 cardiac R-R intervals with a TE of 107 ms.

Whole-head acquisition gave isotropic (2.5 mm3) voxels, recon-

structed to a 1.87561.875 mm in-plane pixel size. Following a

mutual-information image correction (see [24]), in-house software

was used to remove non-brain tissue, determine the diffusion

tensor and calculate the fractional anisotropy (FA) in each

remaining voxel [25].

Tract-based Spatial Statistics
Between-group FA comparisons were conducted using TBSS

version 1.2 [22]. FA images from all participants were aligned to

the Johns Hopkins University – International Consortium of Brain

Mapping DTI-81 white matter atlas (JHU DTI atlas) [26] using

FMRIB’s non-linear image registration tool (FNIRT) in FSL

(http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/). The mean of the voxel-

wise FA images was ‘skeletonised’ (to generate a study-specific

mean FA ‘skeleton’ representing the centres of tracts common to

all participants) and thresholded for white matter (FA .0.3). The

aligned maps were then projected onto the mean white matter

skeleton, and then subdivided according to the 48 regions of the

JHU DTI atlas, with FA averaged per region per-subject, and

these regional means compared between groups using IBM SPSS

v20 (www.ibm.com/software/analytics/spss). The regions com-

pared were the three main divisions of the corpus callosum, the

three cerebellar tracts and the superior longitudinal fasciculus,

corresponding to the areas of difference reported in our previous

study. The first comparison was between the male and female

subjects from our previous study, followed by the new subjects,

and finally by the combined sample. As FA data is not normally

distributed (and was not in our study - p,0.05, Shapiro-Wilk) the

principal comparisons used were Mann-Whitney U tests. Effect

sizes were calculated using the Glass rank biserial correlation

coefficient.

Results

Comparing the projected skeletons by tract-ROI-averages from

the original sample gave the results in table 2. This confirmed and

localised the results of our previous analysis for the corpus

callosum and cerebellum: more specifically, we found higher FA in

women in the genu of the corpus callosum; we found higher FA in

men in the bilateral superior cerebellar peduncles, but not the rest

of the cerebellum. The superior longitudinal fasciculus did not

differ between sexes, as hypothesized. Though our previous

analysis reported higher female FA in the genu and body of the

corpus callosum, the body and splenium were, on this analysis, not

significant, though a trend was detected in the splenium.

Comparing the 134 new subjects gave the results in table 3,

which closely, but not precisely match those in table 2: FA was

again higher in the corpus callosum (but this time genu and

splenium); FA was again higher in the superior cerebellar

peduncles in men. While FA in the left SLF was significantly

different, as in the prior VBA analysis, this does not represent a

confirmation as the direction of difference was reversed, with FA

now higher in women.

Combining the samples gave the results in table 4, which

unsurprisingly again found FA higher in the corpus callosum (genu

and splenium); FA was again higher in the superior cerebellar

peduncles in men. The left SLF was significantly higher in women.

Though our scans were of adults, and were closely matched for

age, given the theoretical effects of differential white matter

maturation between the sexes an interaction with age remains

Table 1. Demographics of the original and new samples.

Original Sample (n=120) New Sample (n =134)

Mean Age (SD) 24.7 (6.5) 39.6 (13.2) p,0.001

Gender (male/female) 81/39 66/68 p= 0.003

Mean IQ (SD) 108.9 (10.7) 111.9 (12.2) p = 0.06

Mean Years of Education (SD) 15.1 (2.6) 15.2 (2.7) p = 0.9

Ethnicity (C/AC/A/O) 24/2/1/6 83/4/1/2 p = 0.01

Social Class of Parents (I/II/III/IV/V) 1/2/3/1/0 15/24/32/3/5 p = 0.7

SD: standard deviation; C: Caucasian; AC: African-Caribbean; A: Asian; O: Other.
doi:10.1371/journal.pone.0091109.t001
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possible. We therefore individually power-transformed the vari-

ables of interest from the combined sample to normal distribu-

tions, and then entered them in an analysis of variance with age

and gender as independent variables: in no case was there a

significant age 6 gender interaction.

Though the hypotheses under investigation were in respect of

the tracts identified by the previous VBA analysis, the analysis

method we employed here also generated results for the other

tracts, and we have included these in table 5 for interest. The

significance of these differences, which involve a large number (48)

of comparisons, depends critically on which multiple-comparison

correction method is used. Using stringent Bonferroni correction,

or Hochberg’s improved Bonferroni [27], only the genu, bilateral

posterior thalamic radiations and the right ILF differences remain

significant. Correcting using the more powerful [28] but more

lenient False Discovery Rate [29], yielded significant differences

in, additionally, the splenium, left cingulum/hippocampus, the

right corticospinal tract, the bilateral retrolenticular internal

capsule, bilateral superior cerebellar peduncles, left ILF and right

superior fronto-occipital fasciculus (FOF). Following Cohen’s

guidelines for a correlation coefficient, all the significant effect

sizes were small (,0.3) but non-trivial (.0.1), except for the genu

in the first analysis, which was of medium size (,0.5).

Discussion

We confirmed, as hypothesized, higher FA in the corpus

callosum; we confirmed higher FA in the superior cerebellar

peduncles but not in the left anterior SLF in men. These

confirmations in our first sample using a different method, as well

Table 2. Tract-averaged voxel-wise FA compared between genders, original sample.

Tract Name Median FA Male (IQR) Median FA Female (IQR) Effect Size p-value

Corpus Callosum

Genu 0.710 (.04) 0.734 (.03) 0.41 .000**

Body 0.688 (.04) 0.697 (.03) 0.18 .102

Splenium 0.769 (.03) 0.774 (.03) 0.20 .074

Superior Longitudinal Fasciculus

Left 0.523 (.03) 0.526 (.02) 0.11 .323

Right 0.521 (.03) 0.526 (.03) 0.07 .521

Cerebellar Peduncles

Superior Left 0.617 (.06) 0.599 (.04) 20.29 .011*

Superior Right 0.615 (.05) 0.602 (.04) 20.25 .024*

Middle 0.560 (.03) 0.551 (.02) 20.20 .079

Inferior Left 0.534 (.04) 0.538 (.03) 0.03 .807

Inferior Right 0.549 (.04) 0.547 (.02) 0.09 .405

*p,0.05;
**p,0.005. IQR: interquartile range.
doi:10.1371/journal.pone.0091109.t002

Table 3. Tract-averaged voxel-wise FA compared between genders, new sample.

Tract Name Median FA Male (IQR) Median FA Female (IQR) Effect Size p-value

Corpus Callosum

Genu 0.709 (.05) 0.719 (.04) 0.20 .044*

Body 0.687 (.05) 0.690 (.05) 0.15 .138

Splenium 0.765 (.03) 0.772 (.02) 0.24 .019*

Superior Longitudinal Fasciculus

Left 0.513 (.04) 0.524 (.04) 0.23 .019*

Right 0.514 (.03) 0.521 (.04) 0.16 .101

Cerebellar Peduncles

Superior Left 0.641 (.05) 0.619 (.05) 20.29 .003**

Superior Right 0.633 (.05) 0.617 (.04) 20.26 .010*

Middle 0.552 (.03) 0.556 (.02) 0.02 .873

Inferior Left 0.528 (.05) 0.530 (.03) 20.01 .915

Inferior Right 0.535 (.05) 0.542 (.03) 0.03 .762

*p,0.05;
**p,0.005. IQR: interquartile range.
doi:10.1371/journal.pone.0091109.t003
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as in a second, independent sample of equal size, give us greater

confidence that the results may prove true, at least for samples like

ours. Though our two samples markedly differed (table 1) both

were largely Caucasian, relatively well-educated, right-handed

samples, and interactions with handedness in particular cannot be

excluded. And more generally, in a study such as this where the

effect sizes are small, there are any number of unmeasured

variables (such as oral contraception [30]) that might potentially

confound the results.

The meaning of these FA differences in healthy subjects is not

straightforward. FA is one of many diffusion indices, and has a

number of determinants in white matter, including tissue

architecture, myelination, fiber diameter and density, such that

it is not normally possible to anatomically interpret an FA

difference without at least an additional myelin measurement such

as T2-relaxometry [31]. However, when FA is found to be

influenced by disease, this is almost always to reduce FA [32], and

in the healthy, higher FA has been associated with advantage, such

as a correlation with increased conduction speed [33,34] or

reduced reaction time [35]. So, it is plausible to consider higher

FA in these study as reflecting a gender-differentiated functional

adaptation or specialization.

One important potential confound in this is structure size, as

smaller structures predispose to partial volume artefacts [31], and

female brains are typically smaller, with smaller white matter, as

noted in the introduction. In our results, however, most of the

differences were in favour of higher FA in women, such that this

would tend to be conservative, and we chose a method of analysis

that should minimize the partial volume effect, though it cannot

exclude it entirely (as you might, for example, with a concurrent

volumetric analysis). Another possible confounder is age, even in a

matched sample, as the differential developmental trajectory of

white matter by gender is clearly described, with girls’ white

matter generally maturing earlier in adolescence than boys,

particularly in frontal areas [36]. Ours was an adult sample so

that both groups should be fully mature, but any lingering

maturational delay in men might be expected to result in higher

FA in female brains, particularly frontally. However, there was no

evidence of an interaction between age and gender in this sample

when this was examined.

Our finding of higher FA in the corpus callosum in females is a

potentially important contribution to the rich literature on gender

differences in this tract. There have been a number of previous,

typically small, studies of FA, but the results of these stand in stark

conflict with each other, with some reporting higher FA in men

[7,8,10,15,37], some finding no difference [12,16,38] and some

finding increases in women [6,39]. Our previous study sided with

the minority finding of increased FA in women [14], a finding that

we felt made sense of the enhanced callosal connectivity in women

shown using graph theory [40,41] and interhemispheric transfer

time [42]. As interhemispheric transfer time generally decreases with

area [43,44], females should be expected to have greater (i.e.

slower) transfer times. The finding of higher FA in women in the

corpus callosum, with the possible exception of the splenium, offers

a clue to a greater efficiency that might explain why this is not the

case.

The cerebellum is less studied than the corpus callosum in

regard to sexual dimorphism. Most studies report larger cerebellar

volumes in men [1,45–47], though some have found this to be a

function of brain volume [48,49], with one study finding women to

have a larger cerebellar volume relative to total brain volume [50].

We are aware of only three smaller studies that have considered

gender differences in cerebellar microstructure, none reporting

differences [19,20,37]. Notably, the differences we found were

specific to the superior cerebellar peduncles, a relatively small tract

(by volume) when compared with the rest of cerebellar white

matter, which may partially explain this discrepancy. Gender

differences in motor function are among the more robust [51], and

associate with gender volume differences in children [52]. It is

tempting to see an association between these and the FA

differences, though unlike the corpus callosum this would not be

a reciprocal relationship.

The ‘loss’ of the previously reported superior longitudinal

fasciculus FA increase in men was hypothesized, as we suspected a

partial volume effect in the earlier study. The finding had not been

noted in any previous research, and we could not, in that study,

find a convincing explanation for its presence [14]. Though not

under hypothesis, we also found higher FA in the bilateral

posterior thalamic radiations and retrolenticular internal capsules

in women. The posterior thalamic radiations are formed by fibers

Table 4. Tract-averaged voxel-wise FA compared between genders, combined sample.

Tract Name Median FA Male (IQR) Median FA Female (IQR) Effect Size p-value

Corpus Callosum

Genu 0.710 (.04) 0.726 (.04) 0.27 .000**

Body 0.688 (.04) 0.693 (.04) 0.13 .082

Splenium 0.768 (.03) 0.773 (.03) 0.21 .005*

Superior Longitudinal Fasciculus

Left 0.520 (.04) 0.525 (.03) 0.15 .042*

Right 0.518 (.03) 0.523 (.04) 0.10 .186

Cerebellar Peduncles

Superior Left 0.631 (.05) 0.612 (.04) 20.22 .002**

Superior Right 0.620 (.05) 0.611 (.05) 20.20 .007*

Middle 0.558 (.03) 0.554 (.02) 20.09 .239

Inferior Left 0.533 (.04) 0.533 (.03) 20.03 .677

Inferior Right 0.543 (.04) 0.545 (.03) 0.02 .767

*p,0.05;
**p,0.005. IQR: interquartile range.
doi:10.1371/journal.pone.0091109.t004
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passing through the retrolenticular internal capsule (part of the

posterior limb), including thalamic pathways, optic radiations,

long corticofugal pathways and cortico-cortical association tracts

such as the inferior longitudinal fasciculus. Given that the sagittal

stratum/inferior longitudinal fasciculus was also bilaterally elevat-

ed in females, we would be inclined to interpret these as parts of a

single tract difference, but this would await confirmation from a

targeted study.

Author Contributions

Conceived and designed the experiments: RK CC MA MP ED SS PM.

Performed the experiments: MA MP ED SS. Analyzed the data: RK CC.

Wrote the paper: RK CC MA MP ED SS PM.

Table 5. Tract-averaged voxel-wise FA compared between genders, combined sample, other regions of interest.

Tract Name Median FA Male (IQR) Median FA Female (IQR) Effect Size p-value

Anterior Corona Radiata L 0.484 (.04) 0.481 (.04) 20.01 .839

Anterior Corona Radiata R 0.489 (.04) 0.490 (.04) 20.04 .600

Anterior Limb Internal Capsule L 0.570 (.03) 0.574 (.03) 0.09 .224

Anterior Limb Internal Capsule R 0.590 (.03) 0.592 (.03) 0.02 .790

Cerebral Peduncle L 0.685 (.03) 0.683 (.03) 20.01 .891

Cerebral Peduncle R 0.699 (.03) 0.696 (.04) 20.09 .247

Cingulum/Hippocampus L 0.533 (.05) 0.518 (.05) 20.21 .005*

Cingulum/Hippocampus R 0.533 (.06) 0.526 (.05) 20.09 .202

Cingulum L 0.615 (.05) 0.615 (.05) 20.06 .396

Cingulum R 0.581 (.05) 0.583 (.04) 0.01 .844

Corticospinal tract L 0.568 (.04) 0.559 (.04) 20.12 .090

Corticospinal tract R 0.557 (.04) 0.547 (.04) 20.21 .004**

External Capsule L 0.466 (.03) 0.467 (.02) 0.00 .991

External Capsule R 0.464 (.03) 0.464 (.03) 0.00 .961

Fornix 0.479 (.07) 0.490 (.09) 0.08 .307

Fornix/stria terminalis L 0.550 (.05) 0.558 (.04) 0.15 .044*

Fornix/stria terminalis R 0.552 (.04) 0.550 (.04) 0.03 .672

Medial Lemniscus L 0.570 (.04) 0.569 (.04) 20.10 .160

Medial Lemniscus R 0.587 (.04) 0.577 (.04) 20.18 .016*

Pontine crossing tracts 0.495 (.03) 0.494 (.04) 20.03 .665

Posterior Corona Radiata L 0.496 (.03) 0.501 (.03) 0.10 .193

Posterior Corona Radiata R 0.509 (.03) 0.514 (.04) 0.10 .154

Posterior Limb Internal Capsule L 0.670 (.03) 0.671 (.03) 0.04 .588

Posterior Limb Internal Capsule R 0.664 (.03) 0.669 (.03) 0.06 .427

Posterior Thalamic Radiations L 0.608 (.04) 0.622 (.04) 0.26 .000**

Posterior Thalamic Radiations R 0.605 (.04) 0.621 (.03) 0.32 .000**

Retrolenticular Internal Capsule L 0.598 (.03) 0.610 (.04) 0.22 .003**

Retrolenticular Internal Capsule R 0.583 (.03) 0.591 (.03) 0.20 .007*

Sagittal Stratum/ILF L 0.540 (.03) 0.555 (.04) 0.23 .002**

Sagittal Stratum/ILF R 0.546 (.04) 0.561 (.04) 0.25 .001**

Superior Corona Radiata L 0.500 (.03) 0.504 (.03) 0.07 .334

Superior Corona Radiata R 0.491 (.03) 0.497 (.03) 0.03 .645

Superior FOF L 0.479 (.04) 0.483 (.04) 0.05 .465

Superior FOF R 0.480 (.04) 0.495 (.03) 0.20 .006*

Tapetum L 0.593 (.07) 0.602 (.09) 0.11 .141

Tapetum R 0.549 (.09) 0.560 (.08) 0.16 .030*

Uncinate L 0.483 (.07) 0.481 (.05) 0.01 .874

Uncinate R 0.527 (.06) 0.515 (.06) 20.13 .070

*p,0.05;
**p,0.005. IQR: interquartile range; L = left; R = right; ILF = Inferior Longitudinal Fasciculus; FOF = Fronto-Occipital Fasciculus.
doi:10.1371/journal.pone.0091109.t005
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