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Abstract: Congenital heart disease (CHD) is a heart disorder associated with the devastating
indications that result in increased mortality, increased morbidity, increased healthcare expenditure,
and decreased quality of life. Ventricular Septal Defects (VSDs) and Arterial Septal Defects (ASDs) are
the most common types of CHD. CHDs can be controlled before reaching a serious phase with an early
diagnosis. The phonocardiogram (PCG) or heart sound auscultation is a simple and non-invasive
technique that may reveal obvious variations of different CHDs. Diagnosis based on heart sounds is
difficult and requires a high level of medical training and skills due to human hearing limitations and
the non-stationary nature of PCGs. An automated computer-aided system may boost the diagnostic
objectivity and consistency of PCG signals in the detection of CHDs. The objective of this research was
to assess the effects of various pattern recognition modalities for the design of an automated system
that effectively differentiates normal, ASD, and VSD categories using short term PCG time series.
The proposed model in this study adopts three-stage processing: pre-processing, feature extraction,
and classification. Empirical mode decomposition (EMD) was used to denoise the raw PCG signals
acquired from subjects. One-dimensional local ternary patterns (1D-LTPs) and Mel-frequency cepstral
coefficients (MFCCs) were extracted from the denoised PCG signal for precise representation of data
from different classes. In the final stage, the fused feature vector of 1D-LTPs and MFCCs was fed to
the support vector machine (SVM) classifier using 10-fold cross-validation. The PCG signals were
acquired from the subjects admitted to local hospitals and classified by applying various experiments.
The proposed methodology achieves a mean accuracy of 95.24% in classifying ASD, VSD, and normal
subjects. The proposed model can be put into practice and serve as a second opinion for cardiologists
by providing more objective and faster interpretations of PCG signals.

Keywords: phonocardiogram; machine learning; empirical mode decomposition; feature extraction;
mel-frequency cepstral coefficients; support vector machines; computer aided diagnosis; congenital
heart disease; statistical analysis

1. Introduction

Congenital heart disease (CHD) is one the most common birth defects which affect the overall
structure of the heart and vessels, found in not more than 1% of newborns [1]. CHD manifests itself at
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birth and symptoms may vary from mild asymptomatic cases to severe, life-threatening indications.
With advances in treatment, there is an increasing population of adults surviving with congenital heart
malformations. Globally, cardiovascular diseases (CVD) are the main cause of mortality. Many adult
CHD survivors presenting an increased risk of CVD [2] may have long term health problems, which
affect their quality of life. In Pakistan, CHD remains to be an important medical issue and the
number of patients is increasing every day [3]. Among newborn children and youngsters, cardiac
disorders are responsible for a large extent (30% to 50%) of mortality brought about by birth surrenders.
The most common cardiac defects which represent about 85% of all congenital heart diseases are
ventricular septal defects (VSDs; 34%), and atrial septal defects (ASDs), which contribute up to 13% [4].
Like any other medical issue, robust diagnosis methods are required for the timely diagnosis of
the CHDs. Different non-obtrusive procedures are utilized in identifying heart defects. Using the
electrocardiogram (ECG) is one of the most common paths for identifying heart issues; it is based on
the electrical signals generated during the heart muscle contraction/relaxation. The ECG reveals the
electrical activity of the heart and is mostly recorded by the placement of three electrodes for early
diagnosis. It comprises five waves; i.e., P, Q, R, S, and T. These waves are prepared to make sense of
different pathologies [5].

Another commonly used mechanism for diagnosis of heart disorder is through the analysis of the
heart sound [6]. Easy access to digital stethoscopes allows medical staff to record and analyze heart
sounds for diagnostic purposes. The phonocardiogram (PCG) records heart sounds and murmurs in the
form of a plot and the machine by which these sounds are recorded is known as the phonocardiograph.
It is one of the non-obtrusive systems, which records heart condition in audible form. Heart sounds
are generated by the opening or closing of the heart valves. Blood flow through the valves’ orifices or
into the ventricular chambers also produces heart sounds. Recording of the PCG signal consists of
four important heart sound constituents; namely, S1, S2, S3, and S4.

An atrial septal defect (ASD) [7] is a birth deformity of the heart in which there is a hole in the wall
(septum) that isolates the upper chambers (atria) of the heart. A gap can fluctuate in size and requires a
medical procedure. The reasons for CHD amongst most infants are obscure, but genetic factors are also
important, as a few infants have heart defects as a result of changes in their genes or chromosomes [8].
A ventricular septal defect (VSD) is an opening in the heart, a typical heart imperfection that is present
during childbirth (congenital).

Extensive research has been carried out for the detection and classification of congenital heart
disorders using the PCG signal. The PCG signal classification approach was suggested using the
nested set of classifiers; namely, random forest, cost-sensitive classifier, and LogitBoost (LB) [9].
A combination of time domain, statistical, and frequency domain features was used for effective
classification. Cepstrum-analysis-based feature extraction was performed to classify normal and
abnormal PCG signals through a support vector machine (SVM) classifier [10].

PCG signal classification was achieved through linear SVM and a combination of dynamic
time wrapping (DTW) and Mel-frequency cepstral coefficient (MFCC) features in [11] to achieve
82.4% accuracy. The screening method of PCG signals using a modified Arash-band method and an
SVM classifier has been used [12]. In [13], the PCG signal was first segmented into S1, systole, S2,
and diastole through the hidden Markov model (HMM). Gammatone frequency cepstral coefficient
(GFCC) features were extracted to perform classification using weighted SVM without segmentation
and with segmented signals. The sensitivity of 90.3% and specificity of 89% were achieved through
10-fold cross-validation. Rubin et al. [14] proposed a method for classification of normal and abnormal
PCG signals based on Mel-frequency cepstral coefficients (MFCCs) and a two-layer convolutional
neural network (CNN). This method achieved an overall score of 83.99% with the PHY16 challenge
database. Spectrogram features from PCG were used to train CNN and Adaboost classifiers [15].
A simple decision rule was implemented on outputs of both classifiers to generate final classification
results with an overall reported accuracy of 89%. In another study [16], the authors used a Hamming
filter for noise reduction in PCG signals. A four-layer 1D CNN for PCG signal classification was
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employed and the overall accuracy of this method was 79%. In a recent study [17], the CNN architecture
was presented for heart sound classification. CNN was tested on different feature sets, such as
Mel-Spectrogram, MFCC, and sub-band envelopes.

Zhihai Tu et al. performed filtration of heart sound signals using wavelet transform. Heart sound
segmentation was performed using Hilbert transform [18,19], and cubic polynomial interpolation [20].
Samuel E Schmidt et al. presented an easy and cheap system for the identification of coronary artery
disease (CAD) using acoustic features. A quadratic discriminant function was used to combine the
different features. The accuracy to diagnose the CAD disease is 73% [21]. In another study [22], tunable
Q-wavelet transformation [23–25] and signal second difference with the median filter were used
for the detection of artifact in heart sound. In [26], the classification of heart sound was achieved
through power MFCC features fused with fractal features. The nearest neighbor classifier was
employed to perform classification. The overall accuracies achieved on three publicly available
datasets were 92%, 81%, and 98%. In [27] heart sounds classification was performed through MFCC
and linear predictive coding (LPC) features in conjunction with the Adaboost ensemble classifier.
In [28], the authors used the least square support vector machine (LSSVM) with wavelet features
for the detection of heart pathologies. VSD was diagnosed from the time-frequency feature matrix
acquired from heart sounds [29]. The ellipse-based model achieved max accuracy of 97.6% on large
VSD sounds. The authors used the auscultation jacket to detect heart abnormalities [30]. The system
with a feed-forward neural network as the classifier achieved sensitivity and specificity of 84% and
86% respectively. In [31], normal and abnormal cardiac sounds were classified using ensemble EMD,
auto-regressive models, and a neural network. The method showed sensitivity and specificity of 82%
and 88% respectively. An efficient method for the detection of abnormal PCG signals was proposed [32]
using MFCCs and SVM with a classification accuracy of 92.6%. Classification of CAD and non-CAD
subjects from PCG and ECG [33] using a dual input neural network (DINN) achieved specificity,
accuracy, and G-mean of 89.17%, 95.62%, and 93.69%, respectively. A combination of machine learning
and a deep learning model [34] for identification of congestive heart failure (CHF) from audio PCG
obtained an accuracy of 93.2%.

Classification of ASD and normal PCG signals collected from newborn subjects was performed
using a combination of short-time Fourier transform (STFT) and MFCC and its derivatives features [35].
Accuracy of 93.2% was achieved through the KNN classifier. An approach based on discrete wavelet
transform (DWT) and multilayer perceptron (MLP) for estimation of VSD were presented in [36].
Features such as power, standard deviation, skewness, kurtosis, and Shannon entropy were extracted
from eight levels of detailed coefficients of DWT. In another similar study [37], a combination of
wavelet and MFCC features was proposed to achieve 97% accuracy on normal and four abnormal
classes of heart sounds. In [38], a comparative analysis of four features reduction methods for PCG
signals is presented. Experiments were performed on normal patients, and those with three different
classes of heart disorders; namely, ASD, VSD and AS. Double discriminant embedding (DDE), feature
space discriminant analysis (FSDA), clustering-based feature extraction (CBEF), and feature extracting
using attraction points (FEUAP) were used with a KNN classifier. Table 1 presents a comparative
summary of existing literature in terms of feature extraction and classification methods and the number
of classes used in the experimentation.

In the present research, a novel method for PCG signal analysis for the detection and classification
of congenital heart diseases is presented. Classification of ASD and VSD based on PCG signals is
targeted using empirical mode decomposition (EMD) and a fusion of MFCC and temporal features.
Specifically, a new feature fusion-based approach for the classification of ASD and VSD using PCG
signal analysis is proposed. The classification performances of MFCCs and temporal features 1D
local texture patterns (1D-LTPs) were individually evaluated and followed by the evaluation over
the proposed fused feature representation. The proposed method was shown to be accurate, reliable,
and robust due to comprehensive PCG signal representation with reduced features.
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Table 1. Comparison with existing literature.

Ref Year Dataset Classes Features Classifier Results

[9] 2016 Physionet Challenge 2016 [39] Normal(2488), Abnormal(665)
Time-frequency,
Wavelet and statistical LogitBoost, Random Forest Acc: 84.48%

[11] 2016 Physionet Challenge 2016 [39] Normal(2575), Abnormal(665) Dynamic time warping SVM Acc: 82.4%

[15] 2016 Physionet Challenge 2016 Normal(2575), Abnormal(665) 124 Time-frequency features Adaboost, CNN Acc: 89%

[12] 2016 Self-collected
Normal(132), Abnormal
seven classes(131) Arash-Band SVM Acc: 87.45%

[36] 2017 Self-collected Small VSD(60), Large VSD(60) Statistical, DWT features Multilayer Perceptron (MLP) Acc: 96.6%

[35] 2017 Self-collected Normal, VSD (STFT), MFCC KNN Acc: 93.2%

[13] 2018
PhysioNet Computing in
Cardiology Challenge Normal(2575), Abnormal(665) GFCC Weighted SVM Sen: 90.3% Spec: 89%

[17] 2018
UoC-murmur database,
PhysioNet-2016

Normal(336), CHD(130),
Normal/Abnormal(2435)

Mel-Spectrogram, MFFC
and sub-band envelopes CNN Acc: 81.5% Sen: 84.5%

[10] 2018
PhysioNet Computing in
Cardiology Challenge-2016 Normal(50), Abnormal(50) Cepstrum Analysis SVM Acc: 95%

[38] 2018 Self-collected Normal(40), Abnormal(58) CBFE, FEUAP, FSDA, DDE KNN Acc: 84.39%

[32] 2019 Self-collected Normal(175), Abnormal(108)
MFCC, normalized
average Shannon energy SVM Acc: 92.6%

This work 2020 Self-collected Normal(140), Abnormal(140) MFCC + 1D-LTPs SVM Acc: 95.63%

This work 2020 Self-collected Normal(140), ASD(85), VSD(55) MFCC + 1D-LTPs SVM Acc: 95.24%
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The rest of this article is organized as follows. Section 2 describes details about the data acquisition
and the proposed methodology. Section 3 presents results of detection and multiclass experiments.
A comparative analysis of this work with previous studies is presented in Section 4. In Section 5,
conclusions of this research and future directions are described.

2. Materials and Methods

2.1. Overview

A PCG signal acquired using a stethoscope was digitized through an analog-to-digital converter.
Signal preprocessing was performed on the acquired signal to remove possible noise and distortions.
A data-driven approach known as empirical mode decomposition (EMD) was applied to denoise
the signal. After preprocessing, feature extraction was performed to capture the most significant
and decisive information from different classes of PCG signals. MFCC and temporal features were
extracted and fused to better represent the signal. Finally, the support vector machine classifier was
employed to distinguish different classes of PCG data. A sketch of the proposed system is presented
in Figure 1.

Figure 1. Sketch of the proposed cardiac disorder classification system.

2.2. Materials

One of the main challenges in studies related to the CHDs is the availability of respective PCG
signals. There are several PCG signal datasets available [40,41], but they have following shortcomings.

1. The number of observations (signals) is limited.
2. Not recorded in a hospital environment.
3. Limited to two classes of data; namely, normal and abnormal.

Therefore, a new dataset of PCG signals was acquired that contains ASD, VSD, and normal
data classes.

A self-built and low-cost data acquisition system (a microphone fitted in simple stethoscope)
was utilized and connected with a computer for the acquisition of PCG signals in .wav format with
16-bit resolution and a sampling frequency of 44.1 kHz. PCG signal data were acquired by placing
a stethoscope between the third and fourth left intercostal space. This site is best known for the
detection of CHDs through auscultation.

PCG data were acquired from different patients admitted at Rawalpindi Institute of Cardiology,
Rawalpindi, Pakistan; 85, 55, and 140 samples were collected from ASD, VSD, and normal subjects
respectively. All recordings, each of five seconds, were taken in the hospital environment and under the
supervision of an expert physician from the pulmonic, aortic, mitral, and tricuspid areas of the human
heart. Labeling of the samples was done by an expert cardiologist who further validated through
various tests of each participating subject. Table 2 provides a summary of the dataset according to each
class, and examples of signals collected from normal, ASD, and VSD subjects are shown in Figure 2.

The reader may also be interested in the MATLAB codes of the newly developed feature extraction
process [42]. However, it only provides experimental results on the PCG dataset comprised of the
normal, ASD, and VSD classes.
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Table 2. Description of PCG dataset.

Status No. of Signals No. of Subjects Male Female

Normal 140 28 17 11
ASD 85 17 12 5
VSD 55 11 7 4

Figure 2. PCG signals collected from normal, arterial septal defect (ASD), and ventricular septal defect
(VSD) subjects.

2.3. Preprocessing-Empirical Mode Decomposition

Acquired PCG signal gets corrupted due to embedded electronics, environmental noise, and
other body organ artifacts. These noise elements suppress useful discriminative data associated
with different classes of cardiac health and thus make the classification process more challenging.
Signal denoising is a crucial preprocessing phase to obtain the unique region of interest for each data
class, i.e., ASD, VSD, and normal. Empirical mode decomposition (EMD) [43–45] is a widely employed
method in the domain of medical signal processing for denoising [46,47] and feature extraction [48,49].
EMD reduces the given data into a collection of subcomponents called intrinsic mode functions (IMFs).
The process of IMF extraction is known as sifting. The original signal q(t) can be expressed in terms of
IMFs and residual signal r(t) as follows:

q(t) =
N

∑
k=1

hk(t) + r(t) (1)

where the number of extracted IMFs is represented by N and IMFs hk(t) are obtained from raw PCG
signal q(t) through an iterative process known as sifting. Major computing steps of the sifting process
are listed below [50].

1. Calculate local minima and maxima from PCG signal q(t).
2. Cubic spline interpolation is performed on local minima and maxima to form lower envelope

emin(t) and upper envelope emax(t).
3. Calculate the mean of upper and lower envelopes as described by Equation (2).

a(t) =
1
2
(emin(t) + emax(t)) (2)
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4. Subtract a(t) from the original signal q(t) as:

y(t) = q(t)− a(t) (3)

5. Repeat the steps (1)–(4) until the above mentioned two conditions of IMF are fulfilled.

Here, first, IMF is represented as h1(t) = y(t). Remaining IMFs from the residual signal are
extracted as defined by Equation (4).

r1(t) = q(t)− h1(t) (4)

To extract the remaining IMFs, r1(t) is now treated as a new signal and the sifting procedure
is iteratively applied until a residual signal becomes monotonic functions. Figures 3–5 show IMFs
extracted from PCG signals of normal, ASD, and VSD subjects. It was experimentally observed that
the first and last two IMFs contain high-frequency noise and DC offset respectively. Therefore, they
were subtracted from the remaining signal to acquire a good quality denoised signal represented by
x(t) as follows:

x(t) =
N−2

∑
k=2

hk(t) (5)

Figure 6 illustrates the preprocessed signal x(t) for normal, ASD, and VSD subjects.

Figure 3. Intrinsic mode functions (IMFs) extracted from the PCG signal of a normal subject.
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Figure 4. IMFs extracted from the PCG signal of an ASD subject.

Figure 5. IMFs extracted from the PCG signal of a VSD subject.

Figure 6. Preprocessed PCG signal of normal, ASD, and VSD subjects.
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2.4. Feature Extraction

In this step, feature extraction was performed on the preprocessed PCG signal x(t).
Frequency-based features such as Mel-frequency cepstral coefficients (MFCCs) and temporal features
1D local texture patterns (1D-LTPs) were extracted. The final feature vector was constructed by fusion
of these two feature sets to best represent the PCG signal data of different classes with minimum
possible values.

2.4.1. 1D Local Ternary Patterns (1D-LTPs)

Local ternary patterns are an extended form of widely used temporal features known as local
binary patterns [51] used extensively in the domain of computer vision [52–54]. One-dimensional
local ternary patterns (1D-LTPs) are modified feature descriptors applied for signal processing
applications [55–58]. Steps for extraction of 1D-LTP features are delineated in Figure 7.

Figure 7. One-dimensional local ternary pattern (1D-LTP) feature extraction steps.

To extract 1D-LTP features from preprocessed signal x(t), it is first divided into windows of size
W + 1. The center sample of each window is θ, the upper bound is θ + φ and the lower bound is θ − φ.
Each window of size W + 1 is divided into left and right equal-sized frames around center sample x[i].

F(xi, θ, φ)) =


+1, xi − (θ + φ) ≥ 0

0, (θ + φ) < xi < (θ − φ)

−1 xi − (θ − φ) ≤ 0

(6)

The F(.) is the three-valued vector output having values +1, 0 and −1. F(.) is split into upper and
lower patterns using Equations (7) and (9).

LTPupper =
8

∑
p=1

Su (F(p)) .2p (7)
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Su =

{
1, if F(p) = 1

0, otherwise.
(8)

LTPlower =
8

∑
p=1

Sl (F(p)) .2p (9)

Sl =

{
1, if F(p) = −1

0, otherwise.
(10)

LTPupper is calculated by using Equation (8) and LTPlower is computed from Equation (10).
LTPupper and LTPlower were the resultant LTP feature vectors extracted from the PCG signal.

2.4.2. Mel Frequency Cepstral Coefficients (MFCC)

Mel-frequency cepstral coefficients (MFCCs), a well-known group of features for speech/speaker
recognition systems, have recently gained importance as features for classifying heart
sounds [26,32,59,60]. Mel frequencies are grounded in the nonlinear physiognomies of the human ear’s
sensitivity to different frequencies [61]. MEL frequency is related to linear frequency in Equation (11).

Mel( f ) = 2595log10

(
1 +

f
700

)
(11)

The process of MFCCs’ calculation is shown in Figure 8. The preprocessed PCG signal is
pre-weighted to improve the signal to noise ratio. In a frame blocking stage, the segmented PCG
signals are blocked into frames using a window length of 30 ms with a 20 ms window overlapping.
For a sampling frequency of 44.1 kHz, a hamming window of length 1323 samples was chosen to avoid
the parasitic spectral leakage. Fast Fourier transform (FFT) is applied to segmented PCG signals to
transform each frame to its frequency domain version. The frequency-domain segmented PCG array is
filtered by a group of band-pass Mel triangular filters and transformed into the Mel inverse spectrum
domain. The logarithm of Mel spectrum coefficients from each Mel filter is used to compress the higher
band of the PCG signal. In the final stage, the logarithmic Mel spectrum coefficients are transformed
using the discrete cosine transform (DCT) illustrated in Equation (12).

Figure 8. The process of mel-frequency cepstral coefficient (MFCC) feature extraction.

c[n] =
N−1

∑
m=0

S[m] cos
(

πn
M

(
m− 1

2

))
, n = 0, 1, 2..., M (12)

where M is the total number of filter banks. For this study, 13 MFCCs were extracted from denoised
heart sound.

2.5. Feature Fusion

MFCC and 1D-LTP features extracted in previous steps were fused to construct a joint feature
vector having dimensions of 1 × 33. A combination of temporal and frequency features helps
in extracting more discriminant information embedded in the PCG signal about heart disorders.
Feature fusion is realized through a simple serial concatenation of MFCC and 1D-LTP features.
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2.6. Classification—Support Vector Machines

The final feature vector from the PCG signal consists of a total of 33 features (20 LTPs + 13 MFCC).
Features are extracted from each class (normal, ASD, VSD). The SVM classifier is a widely applied
method of classification for biomedical signals [62–65] due to its excellent generalization capability.
It obtains the optimal separating hyperplane for class separation by converting input features to higher
dimensions through some nonlinear mapping [66]. The distance between patterns and the hyperplane
is maximized using a maximum margin principle to get the best separation. Kernel functions, such as
quadratic, cubic, and Gaussian ones, are used for mapping the data into higher dimensional space.
Table 3 presents the parameters of classifiers used during training/testing. In this study, SVM was
used in two different settings: (1) Binary SVM where input PCG features were labeled as “normal”
and “abnormal.” (2) Multiclass experiments where input PCG features were labeled as "normal" or
according to the disease type; i.e., ASD or VSD.

Table 3. Parameters of selected classifiers.

Classifier Kernel
Function Kernel Scale Box Constraint

Level
Multiclass
Method

Standardize
Data

SVM-L Linear Automatic 1 One-vs-one True
SVM-Q Quadratic Automatic 1 One-vs-one True
SVM-C Cubic Automatic 1 One-vs-one True
SVM-G Gaussian 44 1 One-vs-one True

3. Results

In this study, an automated heart disease classification system using the PCG signal is proposed.
Raw PCG signal was first preprocessed through EMD, followed by feature extraction through the
fusion of MFCC and 1D-LTP features. 1D-LTPs extract the most discriminative information embedded
in the PCG signal. Distribution of 1D-LTP features of different classes (normal/ASD/VSD) can be
visualized from scatter plots shown (Figure 9). It can be observed that the intra-class difference between
features is minimal, while the inter-class difference is maximal. This shows that the extracted features
contain generous decisive information about different classes of PCG signals.

The performance of the proposed method was evaluated using standard statistical indices
of accuracy, sensitivity (sen), and specificity (spec), which were calculated from the following
four parameters

• True positive (TP): abnormal PCG signal correctly detected as abnormal.
• False negative (FN): PCG signal of an abnormal subject detected as normal.
• True negative (TN): normal PCG signal correctly detected as normal.
• False positive (FP): PCG signal of a normal subject detected as abnormal.

Accuracy =
TP + TN

(TP + TN + FP + FN)
× 100 (13)

Sen =
TP

(TP + FN)
× 100 (14)

Spec =
TN

(TN + FP)
× 100 (15)

In this study, the experiments were performed for two different problems.

1. Detection experiment (normal vs. abnormal): All feature vectors belonging to abnormal subjects
(ASD, VSD) were labeled as abnormal.
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2. Multiclass evaluation (normal vs. ASD vs. VSD): Feature data were labeled according to the
disease type in the experiment.

Training and testing of classifiers were pursued through a 10-fold cross-validation method with
each subset of features; i.e., MFFC, 1D-LTPs, and fusion of MFCC+1D-LTP. All simulations were
performed in MATLAB 2018a on the core i5 computer. All results presented in this paper were
averaged over 100 experiments.
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The experiments for the detection of normal and abnormal subjects were performed on the
self-collected dataset using a low-cost data acquisition setup. In detection experiments, the dataset
was split into two classes; namely, normal and abnormal. All features vectors belonging to ASD
and VSD patients were labeled as abnormal. An SVM classifier with different kernel functions,
such as SVM-linear (SVM-L), SVM-quadratic (SVM-Q), SVM-cubic (SVM-C), and SVM-Gaussian
(SVM-G), was employed to perform classification. Results of these experiments in terms of accuracy,
sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and error rate
are illustrated in Table 3. Results of applying individual feature sets (MFCC and 1D-LTP) on PCG
signal data are also presented (Table 3). The highest results using only MFCC features were achieved
through SVM-C (94.05%); 1D-LTP-only feature extraction achieved the highest accuracy of 94.05% with
the SVM-Q classifier. The best results of 95.8% accuracy with SVM-C classifiers were acquired upon
feature fusion of MFCCs and 1D-LTPs. Table 4 illustrates the confusion matrix showing individual
class accuracy with SVM-C and a combination of MFCC and 1D-LTP features. It was evident from
experimentation that the fusion of MFCC and 1D-LTP features provides a significant improvement in
classification performance.

Figure 9. Scatter plots of 1D-LTP features.

3.1. Detection Experiment

The experiments for the detection of normal and abnormal subjects were performed on the
self-collected dataset using a low-cost data acquisition setup. In detection experiments, the dataset
was split into two classes; namely, normal and abnormal. All features vectors belonging to ASD
and VSD patients were labeled as abnormal. An SVM classifier with different kernel functions,
such as SVM-linear (SVM-L), SVM-quadratic (SVM-Q), SVM-cubic (SVM-C), and SVM-Gaussian
(SVM-G), was employed to perform classification. The results of these experiments in terms of
accuracy, sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and
error rate are illustrated in Table 4. Results of applying individual feature sets (MFCC and 1D-LTP)
on PCG signal data are also presented (Table 4). The highest results using only MFCC features were
achieved through SVM-C (94.05%); 1D-LTP-only feature extraction achieved the highest accuracy of
94.05% with the SVM-Q classifier. The best results of 95.8% accuracy with SVM-C classifiers were
acquired upon feature fusion of MFCCs and 1D-LTPs. Table 5 illustrates the confusion matrix showing
individual class accuracy with SVM-C and a combination of MFCC and 1D-LTP features. It was
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evident from experimentation that the fusion of MFCC and 1D-LTP features provide a significant
improvement in classification performance.

Table 4. Performance comparison of SVM on different feature sets for binary experiments. Bold font
indicates the best result obtained against each feature set.

Feature Set Classifier Accuracy (%) Sensitivity (%) Specificity (%) PPV (%) NPV (%) Error (%)

MFCC

SVM-L 89.88 76.19 94.44 82.05 92.25 10.12
SVM-Q 89.29 80.95 92.06 77.27 93.55 10.71
SVM-C 92.26 88.1 93.65 82.22 95.93 7.74
SVM-G 75.6 7.14 98.41 60 76.07 24.4

1D-LTP

SVM-L 94.05 88.1 96.03 88.1 96.03 5.95
SVM-Q 94.05 83.33 97.62 92.11 94.62 5.95
SVM-C 91.07 76.19 96.03 86.49 92.37 8.93
SVM-G 86.31 47.62 99.21 95.24 85.03 13.69

MFCC+1D-LTP

SVM-L 94.05 90.48 95.24 86.36 96.77 5.95
SVM-Q 94.05 88.1 96.03 88.1 96.03 5.95
SVM-C 95.83 92.86 96.83 90.7 97.6 4.17
SVM-G 93.45 88.1 95.24 86.05 96 6.55

Table 5. Confusion matrix for detection (normal vs. abnormal) experiments.

Predicted Class

Actual Class Normal Abnormal

Normal 90% 10%

Abnormal 2% 98%

3.2. Multiclass Evaluation (Normal vs. ASD vs. VSD)

Multiclass experiments were performed to precisely identify the type of heart disorder. Features
were labeled according to the disorder type; i.e., ASD, VSD, or normal. A multiclass SVM with
different kernels was trained and tested using 10-fold cross-validation. The results of applying
different multiclass SVM classifiers on individual feature sets (MFCC, 1D-LTP) and the fusions of both
are illustrated in Table 6. The obtained results revealed that the SVM-C classifier achieved a peak
accuracy of 88.69% with only MFCC features, while the same classifier provided 94.64% accuracy with
1D-LTP features. Performance results were further improved by the fusion of MFCC and 1D-LTP
features with the SVM-C classifier; i.e., 95.24% accuracy. In Table 7, class-wise information of accuracy
for ASD, VSD, and normal classes in the form of a confusion matrix with the SVM-C classifier are
shown. The proposed feature fusion methodology effectively extracted the characteristic information
from multiclass PCG signals.

Table 6. Performance comparison of SVM using different feature sets for multiclass experiments. Bold
font indicates the best result obtained against each feature set.

Feature Set Classifier Accuracy(%) Sensitivity(%) Specificity(%) PPV(%) NPV(%) Error(%)

MFCC

SVM-L 83.93 92.86 85.71 68.42 97.3 16.07
SVM-Q 86.9 90.48 90.48 76 96.61 13.1
SVM-C 88.69 90.48 94.44 84.44 96.75 11.31
SVM-G 83.33 97.62 81.75 64.06 99.04 16.67

1D-LTP

SVM-L 94.64 97.62 93.65 83.67 99.16 5.36
SVM-Q 94.05 90.48 95.24 86.36 96.77 5.95
SVM-C 94.64 90.48 96.03 88.37 96.8 5.36
SVM-G 93.45 92.86 93.65 82.98 97.52 6.55

MFCC+1D-LTP

SVM-L 93.45 97.62 92.06 80.39 99.15 6.55
SVM-Q 94.43 95.05 94.41 85.06 98.28 5.57
SVM-C 95.24 95.24 95.24 86.96 98.36 4.76
SVM-G 93.45 100 91.27 79.25 100 6.55
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Table 7. Confusion matrix for multiclass experiments.

Predicted Class

Actual Class Normal ASD VSD

Normal 90% 10% 0%
ASD 6% 94% 0%
VSD 0% 0% 100%

3.3. Statistical Significance

The primary objective behind performing this statistical analysis was to achieve a certain
level of confidence in the proposed scheme. Analysis of variance (ANOVA) [67] was utilized to
testify whether the results were statistically significant or not—simply by comparing the means of
multiple distributions.

In this work, a proposed scenario (MFCC + 1D-LTP) was considered for two different classifiers
(SVM-C, SVM-Q)—selected based on the improved performance compared to the rest. In using
ANOVA, a series of tests were performed for the assumptions of normality and homogeneity of
variance. A Shapiro–Wilk test [68] was performed for the former, and the Bartletts test [68] for the latter
one—with the significance level α selected to be 0.01. The means of our approach were x̄1,x̄2, calculated
from the overall accuracy of both classifiers. The null hypothesis H0, given that x̄1 = x̄2, while the
alternative hypothesis Ha given that x̄1 6= x̄2. The p-value was computed and the null hypothesis was
tested, H0; if it was rejected, p < α, then the Bonferroni posthoc test was applied.

For the proposed method (MFCC + 1D-LTP), and with selected classifiers (SVM-C and SVM-Q),
the Shapiro–Wilk test generated p-value, pc = 0.6987, and pq = 0.9352. By following the Bartletts test,
the associated chi-squared probabilities were: pc = 0.712 and pq = 0.312. The p-values of two different
classifiers are significantly greater than α. Therefore, from the test results (normality and equality of
variances), we failed to repudiate the null hypothesis H0, and we are confident in claiming that the
test data were normally distributed, and the variances were also homogeneous. The ANOVA test,
including five different parameters (degrees of freedom (dfs), a sum of squared deviation (SS), mean
squared error (MSE), F-statistics, and p-value) is shown in Table 8. The performance ranges of two
selected classifiers based on the proposed method are shown in Figure 10.

Table 8. ANOVA test on two selected classifiers based on the proposed method.

Variance Source SS df MSE F-Statistics p-Value

Between 1.8482 1 1.84815 0.63 0.4721
Within 11.7503 4 2.93758 - -
Total 13.5985 5 - - -

The results were validated based on the Bonferroni post hoc test, Figure 11, which is the most
common approach to be applied whenever there exists a chance of a significant difference between the
means of multiple distributions. It was certified that the proposed method performed much better
than conventional methods.



Sensors 2020, 20, 3790 15 of 20

Figure 10. Box-plot of accuracy values for selected classifiers (1:SVM-C, 2:SVM-Q).

Figure 11. The means of both classifiers belong to a single group and are not significantly different.

4. Discussion

The proposed method of feature fusion with EMD-based signal denoising effectively extracted
embedded information from PCG signals using the self-collected dataset of ASD and VSD cardiac
disorders. The MFCC extracted frequency-domain features, while 1D-LTP features extracted temporal
and texture information from the signal. Feature fusion of these two different types provided
a powerful signal representation for different classes (normal, ASD, VSD) with a high degree of
accuracy. Moreover, the proposed method classified normal and abnormal PCG data through SVM-C
classifier with 95.83% accuracy, while 95.34% average accuracy was achieved on multiclass PCG data
with the same classifier.

The numbers of classes, feature extraction techniques and classification methods of the proposed
method were compared with the previously developed platforms (Table 1), which showed that several
existing works [9–11,13,15,17] utilized the Physionet Challenge 2016 dataset [69] comprised of only
two classes (healthy and unhealthy) while others used self-collected PCG signal data. MFCCs were
widely employed by several studies [9,11,17,35], and acted as baseline features of choice. The SVM
classifier is also widely adopted by existing works [10–13].

DWT and statistical features were used with a multilayer perceptron to achieve 96.6% accuracy
on normal and ASD classes of PCG data [36]. In another work [38], a comparison of feature reduction
methods was demonstrated. Experimental results are shown between normal and three different
classes of heart diseases; i.e., ASD, VSD, and aortic stenosis. Feature reduction methods (DDE,
FSDA, CBEF, EFUAP) were applied with K-nearest neighbor (KNN) classifier and 84.3% accuracy
was achieved.
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In contrast to the existing work, our research targeted the classification of multiple heart disorders
(ASD, VSD) with the feature fusion approach of MFCC and new temporal feature descriptor 1D-LTP.
The proposed method outperforms the existing approaches, as is evident from the presented results.
To confirm the validity and robustness of our proposed method, confidence intervals against binary and
multiclass experiments are also provided for the two best classifiers; i.e., SVM-C and SVM-Q. Figure 12a
illustrates the confidence interval showing maximum, minimum, and average classification results
of individual MFCC and 1D-LTP features and the feature fusion approach for binary experiments.
Figure 12b presents a confidence interval of minimum, maximum, and average classification accuracy
for multiclass experiments. From this comprehensive statistical analysis, it is quite straightforward to
choose SVM-C as a standard classifier for this application.
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5. Conclusion

Preprocessing and classification of heart sounds is a challenging problem due to the addition of
environmental noise. The addition of noise may hide the actual class information in the PCG signal. In
this study, an effective classification framework was developed for the diagnosis of ASD, VSD, and
normal subjects through PCG signal analysis. A feature fusion approach using novel 1D-LTP features
along with strong MFCC features has shown to be an effective strategy exhibiting good discriminative
properties of representing PCG signals. The proposed method was validated through different SVM
kernels, and the best performance was achieved with SVM-C. The main findings of this research are
the following:

• The proposed framework is non-invasive and reliable.
• The proposed scheme is independent of the morphological characteristics of acquired PCG signal.
• This research introduces a new feature descriptor, i.e., 1D-LTP, that significantly improves the

classification performance upon fusion with classical MFCCs.
• The proposed method is fully automated and works with all kinds of noisy PCG signals due to

the adoption of a data-driven preprocessing approach; i.e., EMD.

This research has the following shortcomings:

• The dataset used is small in size.
• The selection of proper IMFs in EMD is not automated.

The proposed method for cardiac disorders can be enhanced by adding more data samples of
PCG. In the future, we aim to apply feature reduction and fusion algorithms to further reduce the
feature vector dimensions and increase system accuracy.
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5. Conclusions

Preprocessing and classification of heart sounds is a challenging problem due to the addition of
environmental noise. The addition of noise may hide the actual class information in the PCG signal.
In this study, an effective classification framework was developed for the diagnosis of ASD, VSD, and
normal subjects through PCG signal analysis. A feature fusion approach using novel 1D-LTP features
along with strong MFCC features has shown to be an effective strategy exhibiting good discriminative
properties of representing PCG signals. The proposed method was validated through different SVM
kernels, and the best performance was achieved with SVM-C. The main findings of this research are
the following:

• The proposed framework is non-invasive and reliable.
• The proposed scheme is independent of the morphological characteristics of the acquired

PCG signal.
• This research introduces a new feature descriptor, i.e., 1D-LTP, that significantly improves the

classification performance upon fusion with classical MFCCs.
• The proposed method is fully automated and works with all kinds of noisy PCG signals due to

the adoption of a data-driven preprocessing approach; i.e., EMD.

This research has the following shortcomings:

• The dataset used is small in size.
• The selection of proper IMFs in EMD is not automated.

The proposed method for cardiac disorders can be enhanced by adding more data samples of
PCG. In the future, we aim to apply feature reduction and fusion algorithms to further reduce the
feature vector dimensions and increase system accuracy.
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