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Abstract: Osteoarthritis (OA) is a common chronic degenerative arthritis. Its treatment options are
very limited. At present, hypoxia is a prominent factor in OA. This study aimed to re-explore the
mechanism between hypoxia and OA, which provides new insights into the diagnosis and therapy
of OA. We acquired the OA-related expression profiles of GSE48556, GSE55235, and GSE55457 for
our analysis. Using gene set variation analysis (GSVA), we found significant differences in hypoxia.
These differences result from multiple pathways, such as the p53 signaling pathway, cell senescence,
the NF-kappa B signaling pathway, Ubiquitin-mediated proteolysis, and apoptosis. Meanwhile,
the single-sample gene set enrichment analysis (ssGSEA) showed that hypoxia was significantly
associated with the level of immune cell infiltration in the immune microenvironment. Thus, we
believe that hypoxia is useful for the diagnosis and treatment of OA. We successfully constructed
a novel hypoxia-related index (HRI) based on seven hypoxia-related genes (ADM, CDKN3, ENO1,
NDRG1, PGAM1, SLC2A1, VEGFA) by least absolute shrinkage and binary logistic regression of the
generalized linear regression. HRI showed potential for improving OA diagnosis through receiver
operation characteristic (ROC) analysis (AUC training cohort = 0.919, AUC testing cohort = 0.985).
Moreover, we found that celastrol, droxinostat, torin-2, and narciclasine may be potential therapeutic
compounds for OA based on the Connectivity Map (CMap). In conclusion, hypoxia is involved in
the development and progression of OA. HRI can improve diagnosis and show great potential in
clinical application. Celastrol, droxinostat, torin-2, and narciclasine may be potential compounds for
the treatment of OA patients.

Keywords: osteoarthritis; hypoxia; novel hypoxia-related index; immune microenvironment

1. Introduction

Osteoarthritis (OA) is one of the most common chronic degenerative arthritis in the
aged. One-third of people over the age of 65 suffer from OA [1]. The prevalence of
osteoarthritis is increasing as the global population ages and obesity increases [2]. Due to
the lack of effective treatment, the severe pain and irreversible cartilage damage associated
with osteoarthritis greatly reduce the patient’s quality of life [3]. Therefore, it is essential to
explore the pathogenesis of OA and predict some new drugs, to improve the treatment and
quality of life of OA patients.

In recent years, OA has mainly been characterized by articular cartilage degradation,
varying degrees of synovial inflammation, subchondral bone remodeling, and osteophyte
formation, leading to pain and a loss of joint function [4,5]. Studies have shown that it is
related to joint cavity factors such as age, weight, genetics, immune factors, biomechanical
changes, intestinal microbiota [6], cellular and matrix metabolic disorders, signaling path-
ways, and cytokines [7,8]. Recent studies have found that an anoxic environment plays
an important role in osteoarthritis, especially knee arthritis [9]. Under the condition of
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pathological hypoxia, the body produces a hypoxia-inducible factor that affects cartilage
synovial bone metabolism [10,11]. Zhou et al. found that hypoxia can induce the expression
of catabolic factors in fibrocystic-like synovial cells and enhance the role of inflammatory
factors, which are involved in the occurrence and development of OA [12]. Ryu et al.
confirmed that hypoxia could enhance Fas expression and activate downstream signaling
pathways, promote chondrocyte apoptosis and autophagy, and lead to cartilage destruction
in OA [13]. Thus, understanding and exploring the hypoxia environment is of great value
for revealing the pathogenesis and clinical diagnosis of OA.

In this study, we estimated the hypoxias status of the samples using gene set variation
analysis based on the levels of 15 gene expression signatures (ACOT7, ADM, ALDOA,
CDKN3, ENO1, LDHA, MIF, MRPS17, NDRG1, P4HA1, PGAM1, SLC2A1, TPI1, TUBB6,
and VEGFA). Studies have documented that these genes performed the best when clas-
sifying hypoxia status [14,15]. Next, we analyzed the hypoxia-related pathway and the
immune microenvironment to explore the possible mechanism of OA. We further estab-
lished a new maker composed of hypoxia genes to improve the diagnosis of OA. Finally,
we screened potential drugs related to hypoxia therapy of OA. Our results provided new
insights into the pathogenesis and treatment of OA.

2. Materials and Methods
2.1. Data Pre-Processing

We acquired the OA gene expression profile of GSE48556, GSE55235, and GSE55457
from Gene Expression Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/) (accessed on
25 March 2022) [16] using the GEOquery R package. The raw datasets of GSE55235 and
GSE55457 were further processed for background correction, normalized with the RMA
algorithm, and removed batch effects using the “affy” R package. The data of GSE48556
as a training cohort were normalized through the “limma” R package [17]. Next, the sva
algorithm was performed to merge the GSE55235 and GSE55457 datasets for the testing
cohort and remove the batch effect. Finally, the probe IDs were transformed into gene
symbols using corresponding R packages (Table 1). Gene symbols with multiple probe IDs
retained their mean expression.

Table 1. GEO datasets.

Geo Datasets Platform Annotation Sample Size

GSE48556 GPL6947 illuminaHumanv3.db 106 OA and 33 Normal
GSE55235 GPL96 hgu133a.db 10 OA and 10 Normal
GSE55457 GPL96 hgu133a.db 10 OA and 10 Normal

2.2. Assessment of Hypoxia Status by Gene Set Variation Analysis

The hypoxia score of each sample of GSE48556 was calculated by gene set variation
analysis (GSVA) based on 15 hypoxia gene expression signatures (ACOT7, ADM, ALDOA,
CDKN3, ENO1, LDHA, MIF, MRPS17, NDRG1, P4HA1, PGAM1, SLC2A1, TPI1, TUBB6,
and VEGFA) [18,19]. A t-test was used to determine the differential hypoxia status between
osteoarthritis and the normal samples. p < 0.05 were considered statistically significant.

2.3. Classification of Hypoxia Status in OA

Two different hypoxia status groups were classified among 106 OA samples using the
“ConsensusClusterPlus” package in R software (Version 4.0.4) [20]. Euclidean distance was
used to calculate the similarity among samples, while K-means was used for clustering. We
then performed 50 iterations with a resampling rate of 0.8. Using the cumulative distribution
function (CDF), we figured out the optimal number of clusters. Hypoxia subtypes were
verified through principal component analysis (PCA). The difference in the hypoxia genes
and the hypoxia score between the two clusters were identified by t-test analysis.

http://www.ncbi.nlm.nih.gov/geo/
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2.4. Functional Enrichment Analysis

To explore the potential mechanism of hypoxia in OA, we performed a Kyoto En-
cyclopedia of Genes and Genomes (KEGG) pathway analysis to identify key signaling
pathways [21,22]. Before analysis, an ordered gene list was generated using the edgeR
package, and genes with p < 0.05 and |r| > 0.6 were reserved for this analysis.

2.5. Immunity Analysis

With the deepening of the OA research, a large number of studies report that OA was
related to individual immunity [23,24]. In order to explore the mechanism of hypoxia, we
analyzed the relationship between hypoxia and the immune microenvironment. Firstly, we
assessed 29 immune cell levels by single-sample gene set enrichment analysis (ssGSEA)
based on 29 immune gene sets (Supplementary Table S1). Subsequently, we evaluated the
correlation between 29 immune cells and hypoxia score. The immune cells with p < 0.05
and |r| > 0.3 were identified as significantly correlated with hypoxia. Meanwhile, we used
a t-test to identify differential immune cells between the clusters.

2.6. Construction and Verification of Hypoxia-Related Diagnostic Marker in Blood Link

Previous studies have revealed that hypoxia was highly associated with OA [25,26]. We
also found that hypoxia played an essential role in OA in our above analysis. Therefore, we
tried to use hypoxia-related genes to construct hypoxia-related markers for improving the
diagnosis of OA. First of all, the least absolute shrinkage and selection operator (LASSO)
regression analysis was used to select important genes for hypoxia-related markers [27].
Further, a hypoxia-related index (HRI) was constructed as a novel marker using logistic re-
gression of generalized linear regression (GLM) algorithm. Finally, we used an independent
cohort to verify the potentiality and accuracy of HRI.

2.7. Connectivity Map Analysis

At present, there is still a lack of effective treatment that can prevent or delay OA
progression [28]. A new approach for solving this serious problem is by exploring drugs
aimed at hypoxia status for the treatment of OA. Thus, we used Connectivity Map (CMap,
http://www.broadinstitute.org/cmap/) (accessed on 25 March 2022) to detect new po-
tential drugs for OA treatment [29]. Then, we performed a Pearson correlation analysis
to calculate the relationship between each gene and hypoxia score. The genes with a top
150 positive correlation with the hypoxia score were up-regulated genes for input, while the
genes with a top 150 negative correlation with the hypoxia score were the down-regulated
genes for input. The compounds with an absolute value of connective score larger than
98.8 were identified as potential therapeutics.

2.8. Statistical Analysis

All of the statistical analyses were performed using the R software (version 4.0.4)
(http://www.r-project.org/) (accessed on 26 March 2022) and the corresponding R pack-
ages. p < 0.05 indicated statistically significant differences in this analysis. A T-test was used
to evaluate the statistical differences between the high and the low hypoxia score, as well as
the differences in the clinical features and the gene expression levels between the normal
and OA samples. The relationship between the hypoxia score and the gene expression level
was evaluated through a Pearson correlation analysis. The Area Under Curve (AUC) of the
receiver operating characteristic (ROC) curve was calculated using the ROCR R package.

3. Results
3.1. Hypoxia Status Played Crucial Role in OA

In this study, we found nine up-regulated genes and two down-regulated genes in
15 hypoxia gene expression signatures in the blood link of OA (Figure 1A,C). Further, we
observed that the hypoxia score exhibited an obvious statistical difference between the

http://www.broadinstitute.org/cmap/
http://www.r-project.org/
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normal and OA samples (Figure 1D, p < 0.05). These hypoxia-related genes and hypoxia
correlated with each other (Figure 1B).

Genes 2022, 13, x FOR PEER REVIEW 4 of 12 
 

 

Curve (AUC) of the receiver operating characteristic (ROC) curve was calculated using 

the ROCR R package. 

3. Results 

3.1. Hypoxia Status Played Crucial Role in OA 

In this study, we found nine up-regulated genes and two down-regulated genes in 

15 hypoxia gene expression signatures in the blood link of OA (Figure 1A,C). Further, 

we observed that the hypoxia score exhibited an obvious statistical difference between 

the normal and OA samples (Figure 1D, p < 0.05). These hypoxia-related genes and hy-

poxia correlated with each other (Figure 1B). 

 

Figure 1. Assessment of hypoxia status in GSE48556. (A) Heat map of the expression of 15 hypoxia 

gene expression signatures. Red represents high expression, and blue represents low expression. 

(B) The correlation between the 15 hypoxia gene expression signatures and hypoxia score. Blue 

represents positive correlation; red represents negative correlation. (C) Box plots show 15 differen-

tially expressed hypoxia gene expression signatures. * p < 0.05; ** p < 0.01; *** p < 0.001; p ≥ 0.05, not 

significant. (D) Violin graphs of hypoxia scores between osteoarthritis and normal samples. 

3.2. Classification of Hypoxia Status 

Our analysis found the flattest middle segment of the CDF curve when K = 2 in the 

CDF curve (Figure 2A). In addition, the interference between subtypes could be reduced 

to a minimum when K = 2 was selected for the consensus clustering analysis (Figure 2B–

D). Therefore, two hypoxia subtypes: cluster1 (C1) and cluster2 (C2), were identified. 

The result showed that the two clusters exhibited a statistically significant difference 

(Figure 2H, p < 0.05). Our clustering result was verified by PCA analysis (Figure 2F). 

Many hypoxia-related genes exhibited a significant distinction between the two sub-

types (Figure 2E).  

Figure 1. Assessment of hypoxia status in GSE48556. (A) Heat map of the expression of 15 hypoxia
gene expression signatures. Red represents high expression, and blue represents low expression. (B)
The correlation between the 15 hypoxia gene expression signatures and hypoxia score. Blue represents
positive correlation; red represents negative correlation. (C) Box plots show 15 differentially expressed
hypoxia gene expression signatures. * p < 0.05; ** p < 0.01; *** p < 0.001; p ≥ 0.05, not significant. (D)
Violin graphs of hypoxia scores between osteoarthritis and normal samples.

3.2. Classification of Hypoxia Status

Our analysis found the flattest middle segment of the CDF curve when K = 2 in the
CDF curve (Figure 2A). In addition, the interference between subtypes could be reduced to
a minimum when K = 2 was selected for the consensus clustering analysis (Figure 2B–D).
Therefore, two hypoxia subtypes: cluster1 (C1) and cluster2 (C2), were identified. The
result showed that the two clusters exhibited a statistically significant difference (Figure 2H,
p < 0.05). Our clustering result was verified by PCA analysis (Figure 2F). Many hypoxia-
related genes exhibited a significant distinction between the two subtypes (Figure 2E).
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Figure 2. Classification of hypoxia status. (A) CDF delta area curve of consensus clustering, indicating
the relative change in area under the cumulative distribution function. CDF curve for each category
number k compared with k − 1. The horizontal axis represents the category number k, and the
vertical axis represents the relative change in area under CDF curve. (B) CDF curve; different colors
reflect different cluster numbers, the horizontal axis represents the consensus index, the vertical
axis stands for CDF. (C,D) Heatmap of sample clustering at consensus K = 2. (E) Heat map of the
expression of 15 hypoxia gene expression signatures between cluster1 (C1) and cluster2 (C2). (F)
PCA analysis of two subtypes. PCA: principal component analysis. (G) Box plots show differentially
expressed 15 hypoxia gene expression signatures between C1 and C2. ** means p < 0.01, *** p < 0.001,
ns means not statistically significant. (H) Violin graphs of hypoxia scores between C1 and C2. CDF:
cumulative distribution function.

3.3. Functional Enrichment Analysis

Our correlation analysis revealed that 784 genes were related to the hypoxia score
based on |r|> 0.6 and p < 0.05 (Supplementary Table S2). These genes were enriched in a
large number of signaling pathways, such as the p53 signaling pathway, cell senescence, the
NF-kappa B signaling pathway, Ubiquitin-mediated proteolysis, and apoptosis (Figure 3).
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Figure 3. KEGG pathway analysis based on 784 genes with p < 0.05 and |r| > 0.6. KEGG: Kyoto
Encyclopedia of Genes and Genomes.

3.4. Immunity Analysis

Our results revealed that hypoxia was significantly correlated with the immune mi-
croenvironment (Figure 4A). The C2 cluster with a low hypoxia status had a higher level
of activated dendritic cells (aDCs), APC co-inhibition, B cells, Check-point cells, type-2 T
helper cells (Th2), and regulatory T cells (Treg). While the C1 cluster with a higher hypoxia
status had a higher level of cytokine receptor (CCR), dendritic cells (DCs), T helper cells, T
follicular helper cells (Tfh), and type-1 T helper cells (Th1) (Figure 4B). That implied that
the immune microenvironment difference might depend on the hypoxia status.
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Figure 4. Immune cell levels of two hypoxia subtypes in the training cohort. (A) ssGSEA analysis
based on 29 immune cellular components. (B) Box plots of immune cell infiltration in two subtypes.
** means p < 0.01; * means p < 0.05. ssGSEA: single-sample gene set enrichment analysis.

3.5. Construction and Verification of a Novel Hypoxia-Related Marker

In the above analysis, we could confirm that hypoxia is significantly correlated with
the pathogenies of OA. The exploration of novel hypoxia-related markers could improve
OA diagnosis in clinical settings. Therefore, we used LASSO regression analysis to se-
lect seven important hypoxia-related genes (ADM, CDKN3, ENO1, NDRG1, PGAM1,
SLC2A1, and VEGFA) for constructing a novel marker (Figure 5A,B). To facilitate a clinical
application, we transferred seven genes into the HRI using GLM: Our Pearson correlation
analysis revealed that HRI was closely positively correlated with hypoxia status (Figure 5C,
r = 0.639, p < 0.05). It implied that HRI could efficiently reflect the hypoxia level of OA.
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In the ROC curve analysis, we also found that HRI performed with high accuracy and
potentiality (Figure 5D, AUC training cohort = 0.919). It was verified in an independent
cohort (Figure 5E, AUC testing cohort = 0.985).
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Figure 5. Construction and verification of hypoxia−related diagnostic marker. (A,B) Hub hypoxia-
related genes were identified by LASSO regression analysis. Optimal Lambda = 0.023. (C) Pearson
correlation analysis between HRI and hypoxia status. (D,E) Time-dependent ROC curve analysis of
HRI. (D) Training cohort. (E) Testing cohort. LASSO: least absolute shrinkage and selection operator;
ROC: receiver operating characteristic; HRI: hypoxia-related index.

3.6. Identification of 12 Drugs for the Treatment of High Hypoxia Score Patients Based on CMap
Analysis

Based on our criteria, we found 12 potential therapeutics related to the hypoxia
score. These are celastrol, droxinostat, retinol, varenicline, bicuculline, tyrphostin-AG-126,
narciclasine, QL-X-138, verrucarin-A, homoharringtonin, torin-2, and calyculin (Figure 6).
These components may be of great value in the prevention and treatment of OA and the
treatment of their symptoms.

Genes 2022, 13, x FOR PEER REVIEW  7 of 12 
 

 

lation analysis revealed  that HRI was closely positively correlated with hypoxia status 

(Figure 5C, r = 0.639, p < 0.05). It  implied that HRI could efficiently reflect the hypoxia 

level of OA. In the ROC curve analysis, we also found that HRI performed with high ac‐

curacy and potentiality  (Figure 5D, AUC  training cohort = 0.919).  It was verified  in an 

independent cohort (Figure 5E, AUC testing cohort = 0.985). 

 

Figure 5. Construction and verification of hypoxia−related diagnostic marker. (A,B) Hub hypoxia‐

related genes were identified by LASSO regression analysis. Optimal Lambda = 0.023. (C) Pearson 

correlation analysis between HRI and hypoxia status. (D,E) Time‐dependent ROC curve analysis 

of HRI. (D) Training cohort. (E) Testing cohort. LASSO: least absolute shrinkage and selection op‐

erator; ROC: receiver operating characteristic; HRI: hypoxia‐related index. 

3.6. Identification of 12 Drugs for the Treatment of High Hypoxia Score Patients Based on  

CMap Analysis  

Based  on  our  criteria, we  found  12  potential  therapeutics  related  to  the  hypoxia 

score. These  are  celastrol, droxinostat,  retinol, varenicline, bicuculline,  tyrphostin‐AG‐

126,  narciclasine,  QL‐X‐138,  verrucarin‐A,  homoharringtonin,  torin‐2,  and  calyculin 

(Figure 6). These components may be of great value in the prevention and treatment of 

OA and the treatment of their symptoms. 

 

Figure 6. Potential therapeutic agents were  identified by the CMap analysis. CMap: connectivity 

map. 

Figure 6. Potential therapeutic agents were identified by the CMap analysis. CMap: connectivity map.

4. Discussion

OA is a chronic disease characterized by an imbalance of chondrocyte anabolic and
catabolic activities [30]. In recent years, it has been revealed that hypoxia plays a crucial
role in cartilage metabolism and the development of OA [31]. On the one hand, hypoxia
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changes the phenotype of OA chondrocytes and enhances chondrocyte interaction, pro-
motes apoptosis and the autophagy of chondrocytes, and leads to cartilage destruction [32].
On the other hand, hypoxia can affect the inflammatory microenvironment and innate or
adaptive immunity to promote OA joint pain and cartilage damage [33,34]. In this study,
we found that many hypoxia-related genes and hypoxia status exhibited significant values
concerning OA, which is consistent with previous studies [15,35].

The relationship between hypoxia and OA is complex. In the functional analysis, we
found that hypoxia is involved in multiple pathways in OA development. P53 plays an
important role in apoptosis, the inhibition of growth, the inhibition of cell cycle progres-
sion, and senescence after cell stress [36]. Under hypoxia, p53 inhibits reactive oxygen
species (ROS) generation and ROS detoxification to promote cell survival by promoting cell
metabolic energy generation in OA [37]. Apoptosis is the programmed death of most cells
under hypoxia. Studies have revealed that apoptosis leading to chondrocyte loss is one of
the mechanisms of cartilage degeneration [38]. NF-κB is regarded as a transcriptional factor
that is activated by several pro-inflammatory cytokines. It is closely related to inflammation,
apoptosis, oxidative stress, and the extracellular matrix degradation of chondrocytes [39].
The ubiquitin–proteasome pathway is a major proteolytic pathway. It plays a key role in
regulating cell proliferation, survival, and differentiation, and its destruction leads to many
human diseases. Increased ubiquitination in OA knees can lead to proteasome damage and
chondrocyte apoptosis [40].

In general, OA is classified as non-inflammatory arthritis and is predominantly a
degenerative disease of old age [27]. However, with further study of OA, immunity is con-
sidered to be an important part of OA pathogenesis [41,42]. Except for multiple signaling
pathways, our results found that hypoxia was correlated with multiple immune cells in
OA. CCR may regulate the expression of MMP-3 to reduce the storage of proteoglycan
and thus participate in the degradation of OA cartilage [43]. DCs secrete inflammatory
cytokines with peripheral tolerance potential, which will significantly promote chondroge-
nesis and reduce inflammation [44]. It has potential immunotherapeutic value in OA. B cell
infiltration is directly associated with the severity of local inflammation [45]. Th1, Th2, Tfh,
and Treg cells are the main T-cell subsets associated with OA pathology, which may be the
markers of OA disease activity [46–48]. In this study, high hypoxia status had higher levels
of CCR, Tfh, and Th1. Low hypoxia status had higher levels of aDCs, Th2, and Treg. It
suggests that different immune cell infiltrates may affect the hypoxia environment, which
plays an essential role in the occurrence and development of OA.

Hence, we believed that hypoxia could improve the accuracy of the diagnosis of
OA. In this study, we found a novel marker that is composed of seven hypoxia-related
genes (ADM, CDKN3, ENO1, NDRG1, PGAM1, SLC2A1, and VEGFA), which are optimal
signatures for the diagnosis of OA. HRI was construed to be a marker for the diagnosis and
prognosis of OA. ADM, an anti-apoptotic peptide, could promote synovial cell apoptosis
and chondrocyte dedifferentiation in inflammatory arthritis by increasing the production
of oxidative stress and pro-inflammatory cytokines [49,50]. CDKN3 is an important regu-
lator of the cell cycle. CDKN3 downregulation is involved in the formation of a hypoxic
microenvironment by inhibiting the proliferation and invasion of cancer cells [51]. ENO1,
a metabolic enzyme involved in pyruvate synthesis, is upregulated under hypoxic con-
ditions. It is involved in the transformation of oxidative decomposition into glycolysis
and lactic acid formation [52]. NDRG1 is a potent metastatic repressor [53]. Dong et al.
showed that NDRG1 silencing significantly induced apoptosis under hypoxia conditions
and allowed mitochondrial damage to be induced and disrupt hypoxia-enhanced aerobic
glycolysis [54]. That agreed with the pathological features of OA. PGAM1, a glycolytic
enzyme, can activate inflammatory cytokines and induce chondrocyte apoptosis in OA [55].
SLC2A1 is a metastable glucose transporter and is related to the normal proliferation of
the growth plate chondrocytes [56]. VEGFA is an important regulator of cell, bone, and
angiogenesis [57]. The overexpression of VEGFA promoted cell proliferation, inhibited
apoptosis, and reduced matrix degradation in OA chondrocytes [58]. Above all, the novel
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marker showed great potential for clinical applications, which provides new insights into
the search for effective targets and drugs for the treatment of OA.

The current treatment of OA is only for symptoms but cannot prevent or cure OA [28].
Discovering effective and sensitive drugs for OA helps improve the patient’s quality of
life. The CMap analysis showed that 12 drugs were identified as treatment options for
OA. Celastrol, a naturally extracted compound with anti-inflammatory and antioxidant
properties, also acts as an HSP90 [59], NF-κB pathway [60], and topoisomerase inhibitor [61].
It plays a strong capacity in anti-inflammation. Droxinostat, a Histone Deacetylase inhibitor,
increases intracellular oxidative stress and induces cell apoptosis [62]. Torin-2, a novel
mammalian target of the rapamycin inhibitor, can activate autophagy by inhibiting the
negatively-regulated PI3K/Akt/mTOR signaling pathway [63]. Narciclasine, a natural
compound of Haemanthus coccineus L belonging to the Amaryllidaceae family, exhibits
strong anti-inflammatory activity and attenuates the production of ROS [64]. According
to current drug experiments, we implied that these components have a potential value in
the treatment of OA, but the remaining other drugs have not been reported, and further
exploration of these drugs is conducive to improving the current treatment status of OA.

The mechanism of hypoxia and OA is complex and is greatly significant in the explo-
ration and treatment of OA. There are some limitations to our study, such as the use of
animal experiments, clinical validation cohorts, and experimental studies on OA are severely
lacking. Thus, more evidence and experiments are needed to determine the mechanism of
hypoxia, and a well-designed clinical trial is necessary to validate our marker further.

5. Conclusions

In this study, we preliminary find that hypoxia plays an important role in OA. Hypoxia
may involve multiple pathways and the immune environment. HRI based on seven impor-
tant hypoxia-related genes (ADM, CDKN3, ENO1, NDRG1, PGAM1, SLC2A1, and VEGFA)
can serve to improve diagnosis in the early and asymptomatic stages of OA. Celastrol,
droxinostat, torin-2, and narciclasine may be potential compounds for the treatment of OA.
Our results are useful for clinical decision-making and intervention measures.
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