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ABSTRACT

We report an approach to predict DNA specificity
of the tetracycline repressor (TetR) family transcrip-
tion regulators (TFRs). First, a genome sequence-
based method was streamlined with quantitative P-
values defined to filter out reliable predictions. Then,
a framework was introduced to incorporate struc-
tural data and to train a statistical energy function
to score the pairing between TFR and TFR binding
site (TFBS) based on sequences. The predictions
benchmarked against experiments, TFBSs for 29 out
of 30 TFRs were correctly predicted by either the
genome sequence-based or the statistical energy-
based method. Using P-values or Z-scores as indi-
cators, we estimate that 59.6% of TFRs are covered
with relatively reliable predictions by at least one of
the two methods, while only 28.7% are covered by
the genome sequence-based method alone. Our ap-
proach predicts a large number of new TFBs which
cannot be correctly retrieved from public databases
such as FootprintDB. High-throughput experimental
assays suggest that the statistical energy can model
the TFBSs of a significant number of TFRs reliably.
Thus the energy function may be applied to explore
for new TFBSs in respective genomes. It is possible
to extend our approach to other transcriptional factor
families with sufficient structural information.

INTRODUCTION

Transcription factors (TFs) are key players in gene regula-
tion. Thanks to the rapid development of DNA sequenc-
ing technologies, a large number of TFs can be identified
from the many sequenced genomes of various organisms (1–
3). Knowing the DNA sequences specifically recognized by

these TFs is important for identifying the TFs’ target genes
and for elucidating gene regulatory networks (4,5). Experi-
mental approaches can provide comprehensive information
about the DNA sequences recognized by particular TFs (6–
13). However, such experimental analyses have only covered
a small fraction of TFs identifiable from known genome
sequences. It is thus of great interest to develop computa-
tional methods to predict TF-binding DNA sequences (TF
binding sites or TFBSs) with available sequence (14–27) and
structural data (28–33).

As one of the largest TF families in bacteria (34), the
tetracycline repressor (TetR) family of regulators (TFRs)
are involved in many important cellular processes such as
antibiotic resistance (35) and biofilm formation (36). Up to
now, the TFBSs of only dozens of TFRs have been exper-
imentally known (37), and genome sequence-based TFBS
predictions have been reported for more but still a limited
number (24). TFRs usually function as homodimers, each
monomer recognizing a specific half-palindromic DNA se-
quence via its DNA binding domain (DBD). The DBDs of
TFRs are of highly similar structures, each DBD contain-
ing a structurally conserved helix-turn-helix (HTH) motif,
which constitutes the part of the protein that directly inter-
acts with the DNA (24). Thus, it is the amino acid sequence
of the HTH motif of a TFR that determines the TFR’s
DNA specificity at the level of half palindromes. A model
that correctly captures this relationship between amino acid
and nucleotide sequences can facilitate the TFBS prediction
for TFRs.

In this work, we introduce a model in which three differ-
ent aspects, including genome sequences, structural infor-
mation of protein-DNA complexes, and statistical learning,
are integrated to enable sequence-based TFBS predictions
for a significant number of TFRs. As briefly introduced be-
low, although these aspects have been important ingredients
of different published methods for TFBS prediction, they
are usually separately involved in different studies, not in a
single approach.
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In principle, TFBSs may be predicted by quantifying the
specific DNA-protein interactions based on structures of
protein-DNA complexes (28–32). However, the applicabil-
ity of structure-based predictions is still strongly inhibited
by the relative scarcity of high quality structural data as
well as by inaccuracies of current computational models for
quantifying molecular interactions (28).

Structure-independent methods for TFBS predictions
have been proposed to consider solely genome sequences,
using ideas of phylogenetic footprinting (14–16,21–24). Ba-
sically, such predictions are made based on two hypotheses.
The first is that the TFBSs recognized by a particular TF
are likely to be present or enriched within certain genome
regions given the locations of the TF or its targeted genes in
genome DNA. The second is that these TFBSs are likely to
be more conserved than their surrounding sequences. These
assumptions allows TFBSs to be proposed as shared se-
quence motifs across different regions in the same genome
or in different genomes containing TFs sharing DNA speci-
ficity (15). For a significant number of TFs from prokaryotic
organisms, their TFBS motifs are enriched in the genome
regions near the genes encoding the TFs themselves, allow-
ing predictions to be made solely based on the sequences of
genomes containing TFs anticipated to share DNA speci-
ficity. These ideas have been exploited by Francke et al. (22)
to predict TFBSs in Lactobacillus plantarum, by Yan et al.
(23) to predict TFBSs in Geobacter sulfurreducens. and by
Yu et al. (24) to predict TFBSs of the tetracycline repressor
(TetR) family of repressors.

For the phylogenetic footprinting approach to yield re-
liable predictions, multiple homologous TFs sharing DNA
specificity with the TF of interest must exist in sequenced
genomes, and their TFBSs should exist in close proximity
to the TFs’ encoding genes. In addition, the sequences sur-
rounding the actual TFBS motifs in different genomes must
be far more variable than the TFBS motifs themselves. Oth-
erwise the false positive rate would be high (25). For many
TFs, these conditions are not met by the available data and
reliable predictions cannot be made solely based on genome
sequences.

Another promising type of methods suitable for large
scale TFBS prediction is statistical learning or machine
learning (38–41). By supervised learning, computational
models are trained using datasets comprising TFs with
known TFBSs. The trained models can be applied to make
predictions for TFs that are different from but still closely
related to the training TFs. Using experimentally charac-
terized DNA binding properties and guided by structural
models, Anton et al. (38,39) defined and trained support
vector machines (SVM) to predict the DNA binding pref-
erences of C2H2 Zinc finger domains. Khamis et al. (40)
trained random forest models to summarize experimentally
known DNA sequence preferences of eukaryotic TFs. More
recently, Alipanahi et al. (42) trained deep learning mod-
els to predict sequence specificities of RNA binding and
DNA binding proteins based on experimental binding data.
In general, machine learning models are limited mainly by
available training data. To train a model suited for TFs of
diverged amino acid sequences and DNA specificity, a large
number of TFs with known TFBS sequences are needed. In

addition, the training TFBS nucleotide sequences need to
be pre-aligned correctly for most machine learning models
so that the nucleotide types at individual positions can be
encoded by the correct components of sequence-encoding
vectors (40) (although the deep learning method used by
Alipanahi et al. (42) did not consider pre-aligned nucleotide
sequences, it did require a large amount of experimental
data for each individual TF so that sequence patterns of
TFBSs could be extracted and used by the underlying neu-
ral networks). When the TFBS sequences of different train-
ing TFs are not similar enough and do not observe well-
defined sequence patterns, the lack of correct DNA se-
quence alignments becomes a major obstacle for machine
learning. Because of this, most current machine learning
models have been trained for small groups of TFs, for each
of which available experimental data were sufficient to al-
low its TFBS sequences to be aligned according to sequence
similarity or sequence patterns.

In the current work, genome sequences, structural data,
and statistical learning are integrated in a single approach
to enable the prediction of TFBS sequences based on the
amino acid sequence of the DBDs of TFRs, which are avail-
able in large numbers from sequenced prokaryotic genomes.
The first part of this approach is a streamlined version of
genome sequence-based TFBS prediction (15,19). This au-
tomated version enables large scale predictions and pro-
duces P-values to measure the significance of individual pre-
diction results. In the second part of the approach, the di-
verse TFBS nucleotide sequences predicted with small P-
values are aligned together based on the structures of the
various TFR-DNA complexes. In this step, the small num-
ber of DNA motifs in the protein-DNA complexes are first
aligned together according to the structure alignments be-
tween the DNA-binding motifs of the proteins. Then these
DNA motifs from the protein-DNA complexes of known
structures are separately used as seeding sequences in psi-
BLAST-like (43) sequence search and alignment processes
against the TFBSs predicted with low uncertainty by the
genome sequence-based method. This leads to a unified set
of TFBS DNA sequences jointed with DBD amino acid
sequences, with all sequences properly aligned, and each
TFBS sequence correctly paired with its cognate DBD se-
quence. In the last part of our approach, this unified set of
aligned sequences are used to train a statistical energy de-
fined as a function of both the amino acid sequence of the
DBD HTH motif and the nucleotide sequence of the TFBS
motif. To verify our model, besides using pre-existing exper-
imental data, we perform new experiments on some TFRs
to test their binding with respective TFBSs predicted from
their upstream genome sequences. For several TFRs, high-
throughput Spec-Seq experiments (11–13) are carried out
to verify the TFBS sequence profiles represented by the sta-
tistical energy function.

MATERIALS AND METHODS

Figure 1 shows the overall framework of the computation
and analysis steps of the current study. Details of these steps
are described below and in Supplementary Methods.
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Figure 1. An overall framework of the computational and analysis steps.

A streamlined workflow to predict TFBSs based on genome
sequences

TFR dataset and genome sequence degeneracy weights. Ac-
cording to previous studies (24,44), the TFBSs of TFRs are
enriched in the genome sequence segments upstream the
genes encoding TFRs. We will refer to the upstream genome
sequence segments as GSSs. A dataset of >197 000 TFRs
paired with respective GSSs have been defined (see Supple-
mentary Methods). Some of the different GSSs may be of
highly similar overall sequences, potentially causing prob-
lems of high false positive rates for motif enrichment-based
TFBS predictions (25). To offset this effect, each GSS i has
been assigned a numerical GSS degeneracy weight w

g
i =

1/ni , where ni is the number of GSSs in the dataset that are
globally similar to i (specifically, a BLASTN search of the
GSS dataset is performed with GSS i as the query and ni
is the number of hits with alignment coverage > 50% and
E-value < 10−15).

Candidate TFBSs and enrichment scores. For each TFR, a
set of candidate TFBSs were identified as short palindromic
fragments (44) within its GSS using the Palindrome pro-
gram (45) (see Supplementary Methods and Supplemen-
tary Figure S1). Following the idea of phylogenetic foot-
printing (15,16), we assume that the probability for a candi-
date palindromic fragment to be the actual TFBS of a query
TFR is proportional to an enrichment factor. Straightfor-
wardly, this factor can be determined as the number of oc-
currences of similar DNA motifs in the GSSs of other TFRs
that are expected to share the same TFBS specificity as
the query (TFRs sharing TFBS specificity are determined
based on their amino acid sequence similarity, especially

in the HTH motif of the DBD domain, see below). This
idea has been implemented in the following quantitative
enrichment scores. First, as TFRs of low overall sequence
similarity rarely have similar DBD sequences to bind sim-
ilar TFBSs, to increase computational efficiency, we limit
subsequent analyses to a subset of homologous TFRs that
share more than 30% amino acid sequence identity with the
query TFR. For each such homolog i , the amino acid se-
quence of its HTH motif is compared with that of the query
TFR to determine ns , the number of substituted residues
within the HTH motif (substitutions at a few chosen posi-
tions were not counted in ns as these positions were found
to be unimportant for DNA specificity, see Supplementary
Methods and Supplementary Figure S2). For convenience,
the number ns is transformed into an empirical protein
similarity weight w

p
i using a tableted function (Supplemen-

tary Table S1), the largest possible value of w
p
i of 1.0 cor-

responding to zero substitutions and the smallest value of
5x10−5 corresponding to 14 substitutions. The GSSs of the
homologs were incrementally collected into an enrichment
set of GSSs for the given query, starting from those of the
homologs of the largest w

p
i , until the accumulated total w

g
i

of GSSs in the set had reached a value of 20. Then for every
candidate TFBS x of the query TFR, an absolute enrich-
ment score eabs(x) was determined by comparing the can-
didate TFBS with each of the palindromic fragments con-
tained in the enrichment GSS set and using the following
formula,

eabs(x) =
∑

i∈collected GSSs θi (x)w p
i w

g
i∑

i∈collected GSSs w
p
i w

g
i

, (1)
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where w
g
i and w

p
i are respective GSS degeneracy weights

and protein similarity weights defined above, and θi (x) rep-
resents the number of palindromic fragments contained in
GSS i that are similar to x. The criterion for similarity be-
tween two palindromic fragments is that at least 4 (for
shorter palindromes of half lengths no more than 6) or 5 (for
longer palindromes of half-lengths longer than 6) of the nu-
cleotides in the half palindromic regions should be the same.
If by this criterion the candidate TFBS x occurred in similar
forms multiple times in the query TFR’s GSS, the scores of
those similar motifs were added into the score for x.

Normalization of the enrichment scores. The absolute en-
richment scores as calculated by formula (1) depend on
heuristic parameter choices. In addition, they depend on the
lengths and nucleotide compositions of the candidate TF-
BSs, and are thus not directly comparable between differ-
ent candidate TFBSs. To address these issues, the absolute
enrichment factors were subjected to the following normal-
ization treatment: a controlling set of 60 000 palindromic
fragments were extracted from random genome segments in
bacterium genomes contributing to the TFR dataset, and a
normalization factor N(x) for a candidate fragment x was
determined as

N(x) = max (0, m(x) − 1) + 1
60000

, (2)

where m(x) is the number of palindromic fragments in the
controlling set that are similar to x according to the same
criteria as those used to determine θi (x). The normalized
enrichment score was calculated as

eN(x) = eabs(x)/N(x). (3)

Mapping the normalized enrichment scores to P-values.
The normalized enrichment score eN(x) was further gauged
using a reference distribution of normalized enrichment
scores calculated against a set of randomly selected GSSs
instead of the set of GSSs selected according to the se-
quence similarity of the HTH motifs. This step mapped the
eN(x) values to P-values. To estimate the reference distribu-
tion, the highest score associated with each of 70 000 ran-
domly chosen TFRs was determined against a randomly se-
lected GSS set. A histogram of the resulting scores, noted as
e0, was obtained. The P-value for predicting the candidate
TFBS x to be the true TFBS of the corresponding TFR was
defined as the probability P(e0 ≥ eN(x)) in the reference
distribution.

Building a statistical model by combining genome sequence-
based predictions and structural data

Using structural data to obtain an extended and unified set
of aligned TFBSs. Overall, the TFBSs for thousands of
TFRs could be predicted with high significance (small P-
values). However, these TFBSs are highly divergent in their
nucleotide sequences because the corresponding TFRs have
diverged HTH amino acid sequences and distinguished
DNA specificities. It is not feasible to obtain a unified set
of aligned TFBSs covering extensive TFRs by just align-
ing the diverse DNA sequences. To overcome this diffi-
culty, we used the structural alignments between different

TFR proteins in complexes with DNA to bridge the DNA
sequence alignments. More specifically, 16 non-redundant
TFR-DNA complexes (Supplementary Table S2) from the
Protein Data Bank (PDB) (46) were considered. After align-
ing the HTH motifs according to structures, core regions of
the DNA fragments that directly interact with the aligned
HTH motifs could also be well-aligned (see results). Thus
the TFBS of these TFRs, although not being able to be
aligned against each other reliably based on their DNA
sequences, could be unambiguously aligned based on the
structural alignments between these core regions. Subse-
quently, each of the TFBSs in the protein-DNA complexes
was used as a seeding sequence to retrieve a group of similar
TFBSs from the genome-sequence prediction results asso-
ciated with small P-values, using an incremental approach
similar to psi-BLAST (43) (see Supplementary Methods).
Within each group, the retrieved TFBSs were aligned ac-
cording to sequence similarity. Between groups, the align-
ments were determined according to the bridging structural
alignments. We assessed the reliability of this approach by
looking at TFBSs that have been found by differently seeded
searches. Should the approach be valid, the sequence-based
alignments of the same TFBS with different seeding TF-
BSs should be consistent with the structural alignments be-
tween the seeding TFBSs. To further verify the TFBS align-
ments, we paired each of the aligned TFBS sequences with
the amino acid sequence of the corresponding HTH mo-
tif, and carried out direct coupling analysis (DCA) (47) be-
tween the amino acid and the nucleotide positions in the
unified set of aligned amino acid and nucleotide sequences.
The DCA results were correlated with inter-residue spatial
distances in protein–DNA complexes.

Training a statistical energy function of jointed amino
acid sequence and DNA sequence. We used the unified
set of aligned amino acid sequences of the HTH motifs
and the nucleotide sequences of the TFBSs to learn a
statistical energy function E(a1, a2, . . . , al p , b1, b2, . . . , bld )
which is related to the joint probability distribution
P(a1, a2, . . . , al p , b1, b2, . . . , bld ) of the amino acid

and nucleotide sequences through the inversed Boltz-
mann relationship E (a1, a2, . . . , al p , b1, b2, . . . , bld ) =
− ln P(a1, a2, . . . , al p , b1, b2, . . . , bld ), where l p = 14 is

the number of considered residues in the HTH motifs and
a1, a2, . . . , al p are residue types, and ld = 8 is the number of
considered nucleotide in the DNA motifs and b1, b2, . . . , bld

are base types. More details are given in Supplementary
Methods.

Z-scores and sequence profiles from statistical energies. For
a TFR of a given HTH amino acid sequence, the statistical
energy function was used to estimate the energy associated
with an octamer DNA sequence motif, or to scan the GSS
of the TFR to identify potential TFBSs. For the latter pur-
pose, we scan each position of the GSS, considering it as
a starting position of an octamer half site, followed by a
gap segment and another complementary and reversed oc-
tamer half site. For each possible TFBS starting position,
the gap width was allowed to vary systematically from –2
to 6 (a negative value corresponds to overlapping half sites).
Each combination of the starting position with a gap width
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was considered as a candidate TFBS and its statistical en-
ergy computed accordingly. The energies of the two half
sites are added together to give the overall energy of the po-
sition. The statistical energies of TFBSs for a given TFR
were transformed into Z-scores by considering an average
energy ē and a standard variation �, Z = e − ē

σ
When the

statistical energy function was applied to scan the GSS of a
given TFR, the average and standard deviations have been
determined from energies computed by considering every
position of the GSS as a possible TFBS starting position
and calculating the respective statistical energy. When the
energies of octamers were considered, the average energy
and standard variation were determined from energies of
all 65 536 possible octamers. The statistical energies of all
65 536 octamers can also be transformed into a sequence
profile, by assuming the probability of each octamer to be
proportional to exp(−e).

Experimental tests of some predicted TFBSs

From existing literatures, 20 TFRs whose TFBS in respec-
tive GSSs have been experimentally confirmed were col-
lected and used to verify our prediction results. Besides
these 20 TFRs, we carried out post-prediction validation
experiments on 10 additional TFRs whose TFBS have not
been reported before. These TFRs were selected so that
their corresponding predictions were associated with var-
ied significance as measured by P-values and/or Z-scores.
The TFRs have been expressed from synthesized genes us-
ing E. coli host using standard techniques. Purified proteins
were used for in vitro DNA binding assays by either elec-
trophoretic mobility shift assay (EMSA) (48) or DNase I
footprinting (49). Specifically, for 4 of the selected TFRs
with best P-values smaller than 0.01, EMSA assay was car-
ried out on only the highest-score candidate TFBS of each
of them. For another 2 selected TFRs of best P-values of
0.21 and 0.26, respectively, EMSA assays were carried out
on 6 highest P-value candidate TFBSs for each TFR. Evalu-
ated by the statistical energy function, the 26 TFRs thus col-
lected are associated with mostly low Z-scores. To purpose-
fully include TFRs associated with higher Z-scores (namely,
smaller absolute values), 4 additional TFRs associated with
Z-scores between -2.5 to -2 have been selected. For each of
these 4 TFRs, DNase I footprinting assays were carried out
with DNA substrates containing 6 to 8 lowest Z-scores can-
didate TFBSs, disregarding their P-values.

To test whether or when the statistical energy function
leads to reliable models about of the TFBS motifs, high-
throughput Spec-Seq experiments (11,12) were carried out
on 4 TFRs whose GSS TFBSs have been predicted with dif-
ferent Z-scores but all verified by experiments. In these ex-
periments, the variability of the TFBS sequences of a TFR
were explored in a single assay.

More experimental details are given in Supplementary
Methods, Supplementary Tables S3, S4 and S7.

RESULTS AND DISCUSSION

Performance of the genome sequence-based predictions

Enrichment scores and P-values. Figure 2A shows the dis-
tribution of the actual normalized enrichment scores eN(x).

For each TFR, only the maximum score has been counted.
For comparison, the reference distribution of the control-
ling scores computed using randomly selected GSS sets is
also shown. For a significant number of TFRs, the actual
normalized enrichment scores are far above the controlling
scores. The cumulated distribution of P-values computed
according to the normalized scores and the reference distri-
bution is shown in Figure 2B. For more than 54.8% TFRs,
the P-values associated with the maximum scoring TFBSs
are no more than 0.05, while for 28.7% of TFRs the P-values
are no more than 0.01.

We note that many parameters for the genome sequence-
based prediction have to be chosen empirically (some of
them by trials and errors) in lack of a large amount of
ground truth data against which our model could be opti-
mized. For this reason, the normalization step and the con-
version of the enrichment scores into P-values have been
designed to minimize the impacts of these choices. Supple-
mentary Figure S3A-C show data illustrating the robust-
ness of the P-values with respect to some limited varia-
tions of the function mapping ns (the number of substituted
residues in DBD) to the enrichment weight w

p
i . In Supple-

mentary Figure S3D, normalization factors computed with
random palindrome sets containing different numbers of
palindromes (30 000 versus 60 000) are compared, the re-
sults suggesting that a set of 60 000 palindromes is suffi-
ciently large for the normalization factor to converge. Be-
sides this, the data show that the absolute enrichment score
depends strongly on the GC content of the query TFBS,
suggesting the necessity for normalization.

We further notice that the actual TFBSs are predicted
based not on the exact P-values, but on the ranking accord-
ing to the estimated P-values. Some variations that have lim-
ited but still noticeable effects on the exact P-values (such as
the mapping function 1 versus the mapping functions 2 and
3 in Supplementary Figure S3A) turned out to have little
effects on the final top ranking TFBSs for most TFRs. This
insensitivity added another layer of robustness around the
genome-based prediction results with respect to parameter
choices.

Experimental tests of predicted TFBSs. The experimental
set used to verify the predictions includes 20 TFRs from the
literatures and 10 TFRs tested by ourselves by either EMSA
or DNase I footprinting assays. An example of the EMSA
assay results is shown in Figure 3A, which clearly indicates
that the TFR A0A0L8NT36 specifically binds to the pre-
dicted maximum scoring candidate TFBS A0A0L8NT36O
but not to the TFBS P0ACT4O, which served as a negative
control in this experiment. P0ACT4O was shown to bind to
its own TFR in another EMSA assay (Supplementary Fig-
ure S4). An example of the DNase I footprinting results is
shown in Figure 3B, which indicates that the TFR A6FXP3
also specifically binds to the two predicted TFBSs, protect-
ing the sites from DNase I digestion. Results of the other
DNA binding assay experiments are given in Supplemen-
tary Figure S5.

In Supplementary Table S5, the DNA sequences of the
experimentally verified true TFBSs and the highest P-value
candidate TFBSs are given. The P-value ranks of the true
TFBSs are also given. For 26 of the 30 TFRs, the true



Nucleic Acids Research, 2020, Vol. 48, No. 22 12609

Figure 2. (A) Distribution of the actual normalized enrichment scores eN(x) (black bars) and the reference distribution of the controlling scores (grey
bars). The right-most black bar corresponds to the sum of all entries with scores higher than 110. (B) The cumulated distribution of −log10 (P-value) in
TFR dataset. The dashed lines indicate the accumulated fraction at the P-value of 0.05 and the dash-dotted lines indicate the fraction at P-value 0.01.

Figure 3. (A) The EMSA result for TFR A0A0L8NT36. The bound DNA and unbound DNA are indicated by ‘shift band’ and ‘free DNA’, respectively.
A0A0L8NT36O is the predicted TFBS and the P0ACT4O a negative control. (B) The DNase I footprinting result of TFR A6FXP3. The DNA regions
protected by binding with A6FXP3 are indicated by red boxes and the respective nucleotide sequences are shown below the boxes. Capital letters represent
regions corresponding to predicted TFBSs. The red arrows below the sequence of TFBS O1 indicate the forward and backward octamer regions, which
overlap by one nucleotide in this case. (C) and (D) show respective sequence logos of A0A0L8NT36 and A6FXP3, generated according to statistical energies
computed for all possible nucleotide octamers. The actual nucleotide sequences of the forward and backward palindromic halves of the experimentally
verified TFBSs are given with their Z-scores.
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TFBSs are associated with either the highest P-values (21
TFRs) or the second highest P-values (5 TFRs). For the re-
maining 4 TFRs, the true TFBSs ranked between 6 and 34
according to the P-values.

P-values indicate the reliability of predictions. Figure 4A
shows the P-values of the top ranking candidate TF-
BSs of the 30 TFRs and of the true TFBSs. The data
clearly indicate that those top ranking candidate TFBSs
associated with lower P-values are more likely to be the
true TFBSs. According to the data, all predictions asso-
ciated with P-values≤0.01 can be safely accepted as reli-
able predictions, while there are some chances for top pre-
dictions associated with higher P-values to be false posi-
tives. Thus the P-value is a good indicator for reliability
of the genome sequence-based predictions. We note that
technically, the P-value representing statistical significance
is a monotonic function of the normalized enrichment
score. Thus the enrichment score normalization step in our
workflow has been essential for obtaining this quantitative
indicator.

Using structural data to obtain an extended and unified set of
aligned HTHs and TFBSs

Structure-based alignments of TFBSs are feasible. The re-
sults shown in Figure 5A and B suggest that TFR TFBSs of
highly dissimilar nucleotide sequences can be aligned based
on the structures of TFR-DNA complexes. The high struc-
tural similarity between the TFRs’ HTH motifs allowed
them to be aligned with each other easily. After applying
the geometric transformations that align the HTH motifs to
the DNA structures, 4-bp core DNA segments in half palin-
dromes can be unambiguously aligned with each other (Fig-
ure 5A), the mutual root mean square deviations (RMSD)
of DNA backbone atom positions being no more than 2.3
Å and mostly below 1.5 Å for the 16 complexes consid-
ered here. The TFBS sequences for these TFRs with experi-
mentally determined complex structures can thus be aligned
faithfully according to the structure-based alignments of
the core DNA segments.

Sequence-based alignments of dissimilar TFBSs are not reli-
able. Despite the high structure similarity, the amino acid
sequences of the HTH motifs of TFRs included for struc-
tural alignments have been kept low (the pairwise sequence
identities between the HTH motifs <50% except for one
pair (P0C093 and Q9KVD2, whose HTH motif sequence
identity is 89%), so that the TFRs recognize TFBSs of dis-
tinguished nucleotide sequences. Because of the lack of se-
quence similarity, sequence-based alignments of the TFBSs
of these TFRs generated erroneous results as judged by the
structure-based alignments (Figure 5B).

Obtaining an extended and unified set of jointly aligned
HTH and TFBS sequences. The structure-based align-
ment, while being accurate, can cover only a handful of
TFRs. To obtain extended groups of jointly aligned TFRs
and TFBSs, each of the 16 structurally aligned TFBSs have
been used to seed iterative searches of TFBSs of similar se-
quences within the genome sequence-based prediction re-
sults that were of P-values ≤0.01. In the meantime, the

amino acid sequences of the HTH motifs of the corre-
sponding TFRs have also been aligned. This led to extended
groups of jointed and simultaneously aligned sequences of
HTHs and TFBSs. Finally, the groups generated from dif-
ferent seeding TFBSs were combined to obtain a single
unified set, the alignment between the TFBS sequences in
different groups bridged by the structure-based alignments
between the seeding TFBSs. In total, the unified set con-
tained 6932 unique HTH motifs and TFBSs. Supplemen-
tary Table S6 lists the sizes of the groups and the num-
ber of overlapping TFBSs between groups. Among the 16
groups, 11 contained >100 members, with varied number of
between-group overlapping TFBSs. Supplementary Table
S6 also gives the numbers of overlapping TFBSs for which
their sequence alignments with the seeding TFBSs of the
different groups were consistent with the structural-based
alignments between the seeding TFBSs. The data indicate
a significant overall fraction (86%) of consistent overlap-
ping TFBSs, suggesting that a majority of entries in the ex-
tended unified set contained correctly aligned TFBSs. An-
other piece of evidence in support of the overall correctness
of the unified joint alignment has come from direct coupling
analysis (DCA) (47) between the amino acid residue types at
positions of the HTH motif and the nucleotide types at posi-
tions of the core DNA segments. In Figure 5C, the value of
direct information (DI) which indicates the extent of cou-
pled residue type substitutions in the joint protein-DNA
sequence set are plotted against the inter-residue spatial
distances computed from structures of protein–DNA com-
plexes. The results show that the distances between amino
acid residue-nucleotide pairs of larger values of DI are all
around or below 5 Å.

Performance of the statistical energy function learned from
the unified set of HTH and TFBS sequences

Tests against the genome sequence-based predictions. The
trained statistical energy function allows the prediction of
TFBS nucleotide sequences from a given amino acid se-
quence of the HTH motif. We used two sets of data to
test the accuracy of such predictions. The first set com-
prised 1055 randomly selected entries from the training
data. The second set does not contain any entries from the
training data. It comprised 1000 randomly selected TFRs
with sequence identities between any two HTH motifs being
<85% and TFBSs predicted by the genome sequence-based
method being associated with P-values ≤0.001. In addition,
the TFBSs were required to be longer than 12 bp and of GC
contents between 25% and 75%. For each TFR in the tests
sets, two ways of using the energy function to predict TFBS
have been considered. The first is to find the lowest energy
DNA octamers based only on the energy function. The sec-
ond is to use the energy function to scan the TFR’s GSS
and identify sites of lowest Z-scores. The TFBSs predicted
by the genome sequence-based method with small P-values
served as references to judge the TFBS predicted using the
statistical energy function. To consider Z-score-dependent
accuracies, the prediction results for each test sets have been
evenly divided into five groups associated with different Z-
score ranges. Within each group, the distributions of the
number of identical nucleotides between the TFBSs pre-
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Figure 4. (A) The P-values of the top-tanking TFBSs (crosses) predicted by the genome sequence-based method and of the experimentally verified true
TFBSs (circles) for 30 TFRs. The dashed horizontal line separates P-values above and below 0.01. (B) The Z-scores of the top ranking TFBSs predicted
by the statistical energy method (crosses) and of the experimentally verified true TFBSs (circles). The dashed line separates Z-scores below and above –2.5.
In both (A) and (B), the two types of symbols falling on top of each other indicates that the top-ranking prediction is a true TFBS. Along the horizontal
axis, the TFRs are identified by their UniProt IDs, TFRs experimentally investigated in the current study underlined.

dicted by the statistical energy function methods and the
TFBSs predicted by the genome sequence-based method for
the same TFRs have been estimated.

The results for predictions based on the statistical ener-
gies of DNA octamers are given in Figure 6A (first test set)
and Figure 6B (second test set). The agreements between the
energy-based and the genome sequence-based predictions
increase as the Z-scores decrease. For the first set containing
training data, the fractions of predictions with no more than
2 non-identical nucleotides accounted for 41%, 52%, 66%,
63% and 75% of data for the five Z-score ranges between
–∞ and 0 separated by values of –3.04, –3.21, –3.41 and –
3.69, respectively, each range containing equal amount of
data. For the second test set not containing any training
data, the respective fractions are 21%, 37%, 39%, 45% and
63%. If for each TFR we consider any of the top 5 lowest
energy non-redundant (sequences differ by two or more nu-
cleotides) octamer sequences to be possible predictions, the
respective fractions increased to 89%, 94%, 93%, 95% and
98% for the first test set and to 71%, 74%, 74%, 73% and
82% for the second test set. Thus, the prediction of DNA
octamers without referring to any DNA sequences in the
GSSs show reasonable success rates even on non-training
data.

When the statistical energy function was applied to scan
the GSS sequences, much higher success rates were achieved
than considering all possible octamer sequences. For the

first test set composed of training data, the fractions of pre-
dictions with >80% sequence identity accounted for 44%,
65%, 79%, 85% and 90% for respective Z-score ranges sep-
arated by values of –2.39, –2.71, –2.99 and –3.33. For the
second test set containing no training data, the respective
fractions are 31%, 48%, 72%, 84% and 86%. If any of the
top 5 predictions are considered to be possible, the respec-
tive fractions for the first test data set are 63%, 90%, 97%,
98%, 99%, while those for the second test data set are 68%,
85%, 95%, 97% and 98%. Thus for a TFR in the lowest
three Z-score ranges, the chance for the top 5 predictions
to contain a presumably correct TFBS is above 95% (Sup-
plementary Figure S3E shows the distribution of the total
number of candidate TFBS sites per GSS segment, which
varies around 52 between 40 to 65).

Ranks of the experimentally verified true TFBSs by the sta-
tistical energy function. Figure 4B shows the GSS Z-scores
of the true TFBSs of the 30 TFRs and the Z-scores of the
top ranking candidate TFBSs for the same TFRs. The Z-
scores have been computed by using the statistical energy
function to scan the respective GSSs. For 26 of the TFRs,
the true TFBSs correspond to the lowest Z-score ones. For
the remaining four TFRs, the true TFBS ranks are 3, 5, 5
and 34, respectively.
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Figure 5. (A) Structure alignments of HTH motifs and 4-bp core DNA segments in protein-DNA complexes. Only the HTH motifs have been fitted for
superimposing structures. For clarity, only 8 complexes (PDB IDs: 1jt0, 1pqi, 3zql, 4gct, 5dy0, 5k7z, 6c31, 4i6z) have been included. (B) Sequence-based
and structure-based alignments between the nuleotide sequences of the TFBSs of 4 TFRs (PDB IDs: 1jt0, 1pqi, 3zql, 4gct). The first column gives the
UniProt IDs of the TFRs, the second column gives the alignment maximizing the nuleotide type identity at aligned positions, and the third column gives
the alignment generated from the structure alignment of the TFR-DNA complexes. The four bases colored in red cooresponding to the 4-bp core segments
shown in (A). (C) The correlation between values of direct information computed from the aligned DBD and TFBS sequences and the inter-residue spatial
distances computed from the structures of protein–DNA complexes. In this plot, each point corresponds to a pair of one amino acid position of the
HTH motif and one nucleotide position of the octamer TFBS half site. The direct information values have been obtained through Directed Coupling
Analysis of the unified set of aligned HTH and TFBS sequences. The spatial distances have been calculated as averages of distances between backbone
atom pairs in four protein–DNA complexes (PDB IDs: 1jt0, 1pqi, 3zql, 4gct). If both the sequence alignment and the structural models are correct, high
direct information between two residues would imply direct interactions (and thus short distances) between the residues in the 3D structure. The plot shows
that all of the amino acid-nucleotide residue pairs associated with high direct information are in short spatial distances from each other.

GSS Z-scores indicate reliability of statistical energy
function-derived TFBS motifs. In theory, the statistical en-
ergy function can be used not only to rank the candidate
TFBS sites in the upstream GSS sequence profiles, but also
to model sequence variations of the TFBS. In practice,
whether a statistical energy-derived TFBS model (such as
the sequence profile) for a particular TFR is reliable de-
pends on the available data. More specifically, it depends
on whether the training data have unbiasedly covered the
respective regions in the joint sequence space of the DBD
and the TFBS. The answer to this question is unknown a
priori. On the other hand, the following reasoning suggests
that the GSS Z-score (the Z-score of the lowest energy GSS
sites among all candidate palindromic sites in the upstream
GSS) can be used as an empirical indicator of the validity
or reliability of the statistical energy function-derived TFBS
model for a particular TFR. First, applying the statistical
energy function to a TFR leads to two Z-scores. One is the
octamer energy Z-score (or energy Z-score for short), which
is the Z-score of the lowest energy 8-nucleotide core frag-
ment among all possible 8-nucleotide fragments. The other
is the GSS Z-score. The two Z-scores have different mean-
ings. The energy Z-score reflects the extent to which the
TFBS sequence is restrained by the statistical energy model.
The lower the energy Z-score, the less variable or more re-
strained the TFBS sequences are. The GSS Z-score reflects
how good the statistical energy restraints are satisfied by
an actual upstream (candidate) TFBS sequence. While a

low energy Z-score alone cannot guarantee that the TFBS
model or profile produced by the statistical energy function
is unbiased or reliable, a sufficiently low GSS Z-score un-
ambiguously indicates that an upstream TFBS actually ex-
ists in consistence with the sequence model derived from the
statistical energy function. This latter fact can be considered
as strong evidence to support the applicability of the statis-
tical energy function to the corresponding TFR. In other
words, low GSS Z-score effectively indicates high reliability
of the TFBS motif model derived from the statistical energy
function.

The above reasoning is supported by results in Figure
3C, D and Supplementary Figure S6, in which a num-
ber of sequence profiles derived from the statistical energy
are shown together with the experimentally verified TFBS
sequences in GSSs. Among these Figures, Supplementary
Figure S6F shows the results for TFR O66122, the only
TFR (among the 30 TFRs) for which the predicted TFBS
failed in experimentally tests. In general, the results indicate
qualitative correlation between the GSS Z-scores and the
agreements of the actual TFBS sequences to the statistical
energy-derived sequence profiles.

Such a correlation in all TFRs is illustrated in Figure 7A,
in which the similarity between the actual upstream TFBSs
and the statistical energy-derived TFBS profiles is plotted
against the GSS Z-score. The similarity has been measured
as the number of identical nucleotide residues averaged over
a small GSS Z-score range around a given Z-score value.
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Figure 6. Agreements between the TFBSs predicted by the statistical energy function method and those by the genome sequence-based method. Two test
sets of TFRs with TFBSs predicted by the genome sequence-based method with high significance have been considered. The first set of TFRs have been
randomly selected from the training data for the statistical energy function (panels A and C) and the second set included non-training TFRs predicted by
the genome sequence-based method with P-values ≤0.001 (panels B and D). Data in panels A and B correspond to predictions made based on energies
computed for DNA octamers, and those in panels C and D correspond to predictions made by using the energy function to scan the genome sequence
segments. The horizontal axes indicate the number (A and B) or fraction (C and D) of identical nucleotides between the TFBSs predicted by the statistical
energy function and those predicted by the genome sequence-based method. The vertical axes indicate fractions of TFR entries. The test data have been
evenly divided into five groups covering different Z-score ranges and the fractions within each group have been determined separately, shown in one
subpanel for one Z-score range. The Z-score ranges are indicated on the right sides of the panels A and C, respectively.

At the GSS Z-score around –3.0, the average number of
identical nucleotide residues is about 8 (or four identical nu-
cleotide residues per half palindrome).

The Spec-Seq experiments provided data to verify the
statistical energy-derived TFBS profiles for specific TFRs.
In these experiments, probing DNA libraries have been de-
signed by randomizing the experimentally verified upstream
TFBS sequences at 4 (or occasionally 3) nucleotide posi-
tions, with the positions varied in different libraries to cover
all positions of interest (see Figure 7 and Supplementary
Figures S7 and S8 for the libraries used in the current work).
If the chosen upstream TFBS sequence is indeed close to
the consensus binding sequence of the corresponding TFR,
different library members should be able to bind to the
TFR in a conserved mode, allowing sequence variability at
individual nucleotide positions to be mapped out by ana-
lyzing the sequencing results of bound and unbound frac-
tions of the libraries. For one TFR(A0A0L8NT36), whose
TFBS was predicted with a low GSS Z-score of –3.24, the
Spec-Seq profile agrees excellently with both the statisti-
cal energy-derived motif and the upstream TFBS sequence
(Figure 7B and Supplementary Figure S7A). For another
TFR(A0A0F4IWJ2) associated with a GSS Z-score of –
1.9, there are also obvious similarities between the Spec-
Seq profiles, the statistical energy-derived motif, and the up-
stream TFBS sequence, the latter two exhibiting not out-
right but still substantial extent of similarity (see Figure
7C and Supplementary Figure S7B). For each of the re-

maining two TFRs (A0A0S1UE03 and A0A0N0TFX2) an-
alyzed by Spec-Seq, standard analyses of the corresponding
Spec-Seq data did not lead to consistent profiles between
the forward and backward halves of the palindrome (Sup-
plementary Figure S8), while neither of the experimental
data-based forward and backward profiles agree with the
upstream TFBS sequence or the statistical energy-derived
TFBS motif (Supplementary Figure S8). This is probably
because for these TFRs, the upstream TFBS sequences de-
viate too much from the (unknown) consensus TFBS se-
quences, leading the perturbed DNA sequences in the Spec-
Seq libraries to not retain the same relative binding orienta-
tions and position shifts, prohibiting consistent and mean-
ingful analysis of the Spec-Seq data. In summary, the Spec-
Seq results in Figure 7 and Supplementary Figure S7 con-
firm our reasoning that the GSS Z-score (or the agreement
between the upstream TFBS and the statistical energy-
derived TFBS profile) can effectively indicate the applica-
bility of the statistical energy function for TFBS motif pre-
diction.

The above proposition given, Figure 7D shows the Z-
score distribution of all TFRs on a 2D plane spanned by
the energy Z-score and the GSS Z-score. From this distri-
bution, we can estimate that >10 000 TFRs are associated
with energy Z-scores < –3.5 and GSS Z-scores < –3.0 (there
are 1 980 TFRs if we require the energy Z-score < –4.0),
suggesting that for these TFRs, the statistical energy func-
tion may produce meaningful TFBS sequence models. In
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Figure 7. (A) The correlation of GSS Z-score and the similarity between the actual upstream TFBS and the statistical energy-derived TFBS motif. The
similarity has been measured as the number of identical nucleotide residues averaged over a small GSS Z-score range (±0.04) around a given Z-score
value. In (B) and (C), the TFBS sequence patterns derived from the Spec-Seq data (upper panels) are compared with statistical energy function-derived
sequence motifs (lower panels) for the TFRS A0A0L8NT36 and A0A0F4IWJ2, respectively. The energy logos from the Spec-Seq data have been computed
by enforcing symmetry of the forward and backward half palindromes (described as the second approach in Supplementary Method). The nucleotide
positions in the core octamer are numbered from 1 to 8 to be consistent with results in Supplementary Figures S7 and S8. (D) A scattering plot showing
the distribution of all TFRs on a 2D plane spanned by the energy Z-score and the GSS Z-score. Non-empty cells are labelled by the numbers of TFRs that
fall into corresponding cells.

applications investigating specific TFRs, such a model may
be applied to scan genome sequences to propose new TF-
BSs located far from the TFR genes. As examples, Supple-
mentary Table S7 shows likely TFBSs discovered at differ-
ent genome locations for three TFRs associated with low
Z-scores.

Combining predictions based on genome-sequences and on
statistical energies. Results in Figure 4A and B suggested
that for seven TFRs for which the genome sequence-based
method did not produce reliable predictions, the statisti-
cal energy method still predicted the true TFBSs as of the
lowest Z-scores. These include the TFRs A0A0L0JV89 (P-
value = 0.22), H5WZ02 (P-value = 0.26), A6FXP3 (P-
value = 0.32), Q7AKH5 (P-value = 0.06), Q9HZR6 (P-
value = 0.04), Q9HUS3 (P-value = 0.04) and Q4BFK4
(P-value = 0.011). Only for two TFRs, G3XCU9 (P-
value = 0.17) and P9WMC1(P-value = 0.003), the genome

sequence-based method but not the statistical energy func-
tion predicted the true TFBSs as the top results. The scatter-
ing plot of the smallest P-values versus the lowest Z-scores
for 12 000 TFRs is shown in Figure 8A, which indicates
that the two indicators are to a very large extent uncorre-
lated. These results suggest that the energy function gen-
erated by statistical learning significantly complements the
genome sequence-based approach. For a particular TFR,
more robust final results may be obtained by considering
the top ranking candidates identified by the two methods si-
multaneously, the best predictions according to one method
cross-checked by considering the significance indicators of
the other method. As examples, Figure 8 shows scattering
plots of P-values versus Z-scores for top predictions by both
methods for 5 TFRs. For 4 of them, the true TFBSs are in-
cluded in the top 10 results of both methods. For two TFRs,
the top predictions of both methods agree with each other
and they turn out to be the true TFBSs (Figure 8B and C).
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Figure 8. (A) The scattering plot of best Z-score (horizontal axis) and log10 (P-value) (vertical axis) of prediction results for 12 000 randomly selected
TFRs. (B)-(F) The scattering plots of Z-score (horizontal axis) and log10 (P-value) (vertical axis) of top-ranking predictions for five TFRs. The UniProt
IDs of the TFRs are indicated above respective plots. The tilted crosses (♦) represent TFBSs only in the top 10 of the statistical energy function predictions,
stars (✩) represent TFBSs only in the top 10 of the genome sequence-based predictions, and the crosses (+) represent TFBS in the top 10 sets of both
methods. Points corresponding to experimentally verified true TFBSs are enclosed by open cycles (©).

For the TFRs Q9HUS3 and G3XCU9, the true TFBSs are
of either the lowest Z-scores or the lowest P-values, all in the
top 10 results of both methods (Figure 8D and E). For the
TFR A0A0L0JV89, no prediction of significant P-values
was made and the true TFBSs are those of the lowest Z-
scores (Figure 8F). Overall, statistical learning significantly
extended the range of TFRs for which reliable TFBSs can
be predicted. According to the results in Figure 6D, which
shows that for the Z-score range between –2.7 and –2.4, the
fractions of successful predictions on non-training data are
86% considering only the top 1 candidate and 98% consider-
ing the top 5 candidates, we may choose a threshold Z-score
of –2.5 to separate between ‘reliable’ and ‘unreliable’ pre-
dictions. Then the statistical energy-based predictions for
48.3% of all the TFRs in the TFR dataset can be considered
as reliable. If this set is combined with those satisfying the
P-value≤0.01 condition in genome sequence-based predic-
tions, the overall coverage increases to 59.6%, which more
than doubled the coverage of the genome sequence-based
method alone.

CONCLUSIONS

In summary, we have developed an approach combining
genome sequence data and protein-DNA complex structure
data to systematically predict DNA binding sites of tran-
scription factors of TetR family. First, we have developed
a computational workflow to streamline predictions based
on genome sequences, quantitative P-values proposed to

represent statistical significance of results. The definition of
a quantitative P-value allowed predicted candidates to be
ranked and reliability of results assessed. This has allowed
us to filter out those highly reliable prediction results to
construct a large training set of TFBSs and TFRs covering
diverse sequence space for subsequent statistical learning.
By incorporating structural information from a handful of
protein-DNA complexes of diverged sequences, we were
able to construct a unified set of more than 6 000 aligned
TFBS sequences each jointed with the amino acid sequence
of its respective recognition protein motif. This large set en-
abled the training of a statistical energy function, which rep-
resents the joint distribution of the amino acid sequences of
TFRs (more specifically, the TFRs’ DNA-recognizing HTH
motifs) and the nucleotide sequences of the TFBSs. Bench-
marking against experimental results have validated the use
of P-values in the genome sequence-based method and of
Z-scores in the statistical energy-based method to rank can-
didates and to indicate reliability of predictions.

Combining the genome sequence-based and the statisti-
cal energy-based prediction results leads to more robust pre-
dictions on individual TFRs. The joint application of both
methods more than doubles the number of TFRs with pre-
dictable TFBSs. Besides ranking given TFBSs, the statistical
energy function may also be applied to model the variable
TFBS sequences of given TFRs. The applicability can be
judged empirically by the GSS Z-score. If considered ap-
plicable, the statistical energy can be employed to scan en-
tire genome sequences to discover new TFBS. Besides TFBS
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discovery, data shown in Figure 6A and B suggest that the
statistical energy function may also be applied to design
new core DNA octamer motifs for TFRs of given amino
acid sequences, although the success rates may be lower, but
can still be acceptable (63% for top one design and 82% in
top 5 designs) for sufficiently low energy Z-score (-3.7) re-
sults (Figure 6B). In the future, the statistical energy func-
tion can be further improved when more structures of TFR-
DNA complexes become available, allowing the training
data to be extended to cover wider regions in the sequence
space.

Compared with most previous computational ap-
proaches to TFBS prediction, our approach integrated
genome sequence and structural data to produce pre-
dictions for as many TFRs as possible. As a result, the
TFR-TFBS interactions predictable by our method sig-
nificantly extend currently known specific interactions
between TFs and DNA. We have used each of the 1 000
TFRs contained in the second test set constructed from
the genome sequence-based predictions to query the
FootprintDB database (50). For only 84 (371) TFRs,
results of E-values smaller than 10−10(10−5) were returned.
Among the returned TFBS DNA sequences, only 11 (16)
exhibited sequence identities above 80% with the genome
sequence method-predicted top results (P-value ≤ 0.001).
Thus the newly predicted TFR-TFBS interactions can be
applied to improve the construction of gene regulatory
networks. To facilitate this, a public webserver has been
provided for others to retrieve our prediction results
or to make predictions on new TFRs with our models
(http://biocomp.ustc.edu.cn/servers/tfbs-predict.php). For
interested users, a downloadable package provided at
the same address contains source codes with installation
guide and input/output examples, intermediate data for
predictions on the experimentally verified TFR sets, and
a collection of predicted TFBSs of significant P-values or
Z-scores.

Our study on the TetR family can be considered as an ex-
ample that shows the substantial benefits of integrating se-
quence and structural data in data-driven models predict-
ing specific protein-DNA interactions. This framework of
data integration can be extended to other prokaryotic TF
families for which sufficient structural data are available. A
preliminary survey of TF-DNA complex structures in PDB
suggested that for 13 of the 15 TF families considered to
be the most important prokaryotic regulators by Ramos et
al. (51), more than one protein-DNA complex structures of
different members of the same families have been reported.
Besides the TetR family, the other families with more than
5 non-redundant protein-DNA complex structures are the
MarR, GntR, Crp, DeoR, LysR, LacI and MerR families,
which respectively have structures available for 14, 11, 10,
9, 9, 7 and 6 family members. Just like the TFRs, the struc-
tures of the DNA binding domains and the bound DNA
fragments of different members of the same family can be
well-aligned simultaneously. Thus the structure alignment-
based approach may be extended to these other TF families,
especially those with more structural data, with the caveat
that family-specific re-parameterization of the method may
be needed.
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