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Abstract

Large-scale biodiversity studies can be more informative if observed diversity in

a study site is accompanied by dark diversity, the set of absent although ecolog-

ically suitable species. Dark diversity methodology is still being developed and a

comparison of different approaches is needed. We used plant data at two differ-

ent scales (European and seven large regions) and compared dark diversity esti-

mates from two mathematical methods: species co-occurrence (SCO) and

species distribution modeling (SDM). We used plant distribution data from the

Atlas Florae Europaeae (50 9 50 km grid cells) and seven different European

regions (10 9 10 km grid cells). Dark diversity was estimated by SCO and

SDM for both datasets. We examined the relationship between the dark diver-

sity sizes (type II regression) and the overlap in species composition (overlap

coefficient). We tested the overlap probability according to the hypergeometric

distribution. We combined the estimates of the two methods to determine con-

sensus dark diversity and composite dark diversity. We tested whether dark

diversity and completeness of site diversity (log ratio of observed and dark

diversity) are related to various natural and anthropogenic factors differently

than simple observed diversity. Both methods provided similar dark diversity

sizes and distribution patterns; dark diversity is greater in southern Europe.

The regression line, however, deviated from a 1:1 relationship. The species com-

position overlap of two methods was about 75%, which is much greater than

expected by chance. Both consensus and composite dark diversity estimates

showed similar distribution patterns. Both dark diversity and completeness

measures exhibit relationships to natural and anthropogenic factors different

than those exhibited by observed richness. In summary, dark diversity revealed

new biodiversity patterns which were not evident when only observed diversity

was examined. A new perspective in dark diversity studies can incorporate a

combination of methods.

Introduction

Analysis of large-scale species richness patterns is an

important tool for ecology, biogeography and conserva-

tion biology (Gaston 2000). An important facet to the

study of diversity patterns can be obtained by including

the set of species that could potentially inhabit a study

site but are currently absent – the dark diversity (P€artel

et al. 2011a; Ronk et al. 2015), that is, the absent por-

tion of the site-specific (i.e., both abiotic and biotic fil-

tered) species pool (Cornell and Harrison 2014; Zobel

2016). Although suitable methods to estimate dark

diversity are being developed, few attempts have been

made to compare different methods (e.g., Dupr�e 2000;

de Bello et al. 2016; Lewis et al. 2016b). Here we com-

pare the estimates of dark diversity resulting from two

different mathematical methods and how each relates to

various natural and anthropogenic factors. We use vas-

cular plant data at the continental scale, but our

approaches can be applied to other organisms and at

any spatial scale.

Dark diversity cannot be measured directly from local

plant inventories (as opposed to observed species rich-

ness), rather it is estimated indirectly (P€artel et al. 2011a).
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In particular, dark diversity can be detected from a

broader view that incorporates data on the regional distri-

bution and environmental preferences of species. For

example, a species could be absent from a site (at large

scale due to changes in environmental conditions or dis-

persal limitation or at small scale due to competition with

other species or local stochastic events) but may still be

present in the surrounding region (thereby constituting

part of the species pool for that site) and potentially

available to recolonize if suitable conditions recur. There

can be also a concern whether species included in dark

diversity are truly absent or have merely eluded detection

(P€artel et al. 2013). For example, when studying a

1 9 1 m vegetation plot once, species could have just

been dormant. Similarly, published species’ distribution

maps should be considered reliable although not perfect.

Thus, dark diversity studies have same constraints as

other biodiversity research and we should keep in mind

the possibility that some species in estimated dark diver-

sity have actually eluded sampling.

Dark diversity and the species pool concept have often

been applied at the community (habitat type) scale (Les-

sard et al. 2012; de Bello et al. 2016; Lewis et al. 2016b),

but dark diversity, as the complement of observed species

richness, can be applied irrespective of scale (P€artel et al.

2011a; Ronk et al. 2015). For example, we can study a

1 9 1 m plot in a grassland and determine which species

are absent although ecologically suitable and present in

the surrounding. Similarly, we can investigate a 1-ha plot

and look the landscape in the surrounding and determine

which species in the surrounding area can potentially

inhabit the plot. The plots in both examples inarguably

contain a degree of environmental variability (only a

point is completely homogeneous). At larger scales used

in biogeography and macroecology (e.g., 10 9 10 km or

50 9 50 km), we deal with a combination of different

traditionally distinguished habitat types and have a speci-

fic distribution of ecological conditions. A combination

of traditional habitat types (e.g., boreal forest, raised bog,

calcareous grassland) can still be considered as a habitat

filter. Note that the term “species pool” was first used by

MacArthur and Wilson (1967) in island biogeography

theory in which it meant terrestrial habitat (in contrast to

marine habitat), and the paper that introduced the dark

diversity idea presented an example in which dark diver-

sity was found a 100 9 100 km scale (P€artel et al.

2011a). Even if a study site contains a mosaic of different

ecological conditions, we can still find many other loca-

tions in the surrounding with similar habitat patterns and

species compositions. We can summarize that a species

from the surrounding region belongs to dark diversity if

at least some part of the study site is ecologically suitable

for that species. Thus, we acknowledge that dark diversity

can be applied at smaller scales, but it is not limited to

specific scales.

Scientists and nature conservationists can be more

informed on the condition of biodiversity when we also

explore dark diversity (Lewis et al. 2016a). From a nature

conservation perspective, species “moving” from observed

to dark diversity could indicate that local extinctions are

occurring at the site. On the other hand, dark diversity

can be seen as a buffer for protected areas. If species of

interest are still in dark diversity, those species are still

present in the region and can potentially disperse to pro-

tected areas (Lewis et al. 2016a). Dark diversity is espe-

cially informative when studied together with observed

species richness. For example, we could have two sites

which both have high species richness, but with low dark

diversity in one site and high dark diversity in the other.

At a relative scale, these sites will exhibit different realiza-

tions of their site-specific species pool. This difference

between sites would not have been evident from species

richness alone. Completeness of site diversity index is

defined as the log ratio between observed species richness

and dark diversity and shows how much of the site-speci-

fic species pool is actually realized at the site (P€artel et al.

2013; Ronk et al. 2015). Dark diversity and completeness

of site diversity can advance our understanding of how

biodiversity is related to different natural and anthro-

pogenic factors. For example, Ronk et al. (2015) found

no relationship between completeness of site diversity and

latitude because both observed richness and species pool

exhibit a strong latitudinal gradient. By contrast, moun-

tainous areas tended to be more complete than their sur-

rounding areas suggesting lower human influence in

mountainous areas at the European scale. It is unknown

whether dark diversity and completeness estimates by dif-

ferent methods can provide unique information about

diversity patterns when compared to observed species

richness.

Dark diversity can include species that have not yet dis-

persed to the study site or that are temporarily absent

due to stochastic changes in the study site (P€artel et al.

2011a). In order to assign a species to dark diversity, the

absent species must have a reasonable probability to dis-

perse to the study site and be able to tolerate the local

environmental conditions (at least somewhere within the

study site). To determine which species can be assigned

to dark diversity, we need to apply a series of dispersal

and environmental filters (Ronk et al. 2015). Dispersal fil-

ters can be determined geographically. For example, some

species from the high Alps may be able to tolerate envi-

ronmental conditions near the Arctic. However, these

environmentally similar regions are separated by other

types of habitat, thereby rendering migration across these

regions unlikely. Therefore, only species that occupy
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neighboring sites should be considered potential candi-

dates for dark diversity (Ronk et al. 2015). Environmental

filters can be based on different criteria, for example,

using expert opinions, experiments, or mathematical algo-

rithms (P€artel et al. 2013). At small scales, all methods

are possible; local experts can suggest which species can

inhabit a site, compiled databases on habitat requirements

(e.g., Ellenberg indicator values) can be used, or organ-

isms can be introduced experimentally and their success

observed. Mathematical approaches are more appropriate

at large scales, because expertise is likely inadequate and

the study extent and grain size is unsuitable for introduc-

tion experiments.

Each mathematical method has its own limitations and

it is therefore prudent to maintain several methods in the

dark diversity toolbox. The species co-occurrence (SCO)

approach has already been used to quantify environmen-

tally suitable absent species at the European scale (Ronk

et al. 2015). This method uses a large species 9 sites

matrix to predict species’ ecological suitability based on

the co-occurrence of a given species with other species.

Another promising approach to estimate dark diversity is

species distribution modeling (SDM) (P€artel et al. 2013).

Species distribution models (SDM) are widely used in

ecology and nature conservation (Elith et al. 2006; Thuil-

ler et al. 2009). Methods of SDM have also developed

greatly over the last decade (Thuiller 2003; Thuiller et al.

2009). Traditionally, SDM has been used to estimate the

environmental niches of species and to project their

potential distributional ranges using environmental vari-

ables and actual distribution data. Although SDM and

SCO techniques serve a similar aim, to predict species

occurrence at sites where species are previously absent

although potentially suitable, they differ in methodology

and the data type needed for modeling. Therefore, these

methods could complement each other at large-scale

studies. Moreover, combining different methods could

provide semiquantitative dark diversity estimates (species

estimated by both or at least one method).

Whereas the SCO method requires only information on

species presence and absences at sites (species 9 site data

matrixes), SDM method also needs information on envi-

ronmental conditions throughout the study region. This

method uses sites where a species is present to find other

sites which share similar environmental conditions but

where the species is absent (Thuiller et al. 2009). Thus, the

SCO method can be seen as a community approach (Ovas-

kainen and Soininen 2011), because the method uses a

complete set of species co-occurrences (De Caceres and

Legendre 2008). Therefore, the SCO method could be well

suited to testing hypotheses concerning community assem-

bly and diversity maintenance; when applied at smaller

scales, it might indicate biotic interactions (Riibak et al.

2015). By contrast, SDM can be seen as a species-specific

approach; an environmental envelope is developed for each

species to predict its suitability at other sites. Both meth-

ods may be sensitive to species frequency characteristics in

the dataset. Thus, a combination of these methods might

complement each other.

Dark diversity has been usually considered a binary

variable; species either belong to dark diversity or not

(P€artel et al. 2011a; Ronk et al. 2015). However, it

would be beneficial to define dark diversity quantitatively

using fuzzy set principles (P€artel et al. 2011b), as in

recently published biodiversity studies (Karger et al.

2016; Lessard et al. 2016). A step toward this would also

be the combination of different dark diversity methods.

This would allow for consensus dark diversity and com-

posite dark diversity, defined as species which are

assigned to dark diversity by both methods or by one

method, respectively.

In this study, we explore two mathematical methods to

estimate large-scale dark diversity at two scales, the Euro-

pean-wide and in more detail in seven regions within

Europe. We aim to determine (1) whether SCO and SDM

methods give similar dark diversity estimates; (2) the

extent and significance of overlap between species compo-

sition in these dark diversities estimates; (3) whether con-

sensus and composite dark diversity (one method or both

methods) form different distribution patterns; and (4)

whether different estimates of dark diversity and com-

pleteness of site diversity are related to observed richness,

and whether they differ in their relations to various natu-

ral and anthropogenic factors.

Material and methods

Data

We used different a European-wide and seven regional

datasets for this study. For the European-wide analyses,

we used “Atlas Florae Europaeae” (Jalas and Suominen

1972–1994; Jalas et al. 1996, 1999; Kurtto et al. 2004), in

accordance with the official license purchased from the

Finnish Museum of Natural History (http://www.luo-

mus.fi/en/database-atlas-florae-europaeae). This atlas con-

tains presence–absence distribution data for 4123 species

or subspecies in Universal Transverse Mercator (UTM)

grid cells with a resolution of 50 9 50 km. The study

area was delimited in the east along the political bound-

aries of the Russian Federation, Ukraine, Belarus, and

Moldova. This restriction was used because Atlas Florae

Europaeae contains incomplete data in these regions

(Manne and Williams 2003; Nogu�es-Bravo and Ara�ujo

2006). Remote islands (Azores, Canary, and Svalbard)

were also excluded because most of these grid cells
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contain ocean. These delineations of the area reflect a

trade-off between geographical coverage and data quality.

The European-wide analyses contained 2486 grid cells.

For regional analyses, we used seven different areas

from Europe with plant atlases freely available online:

Finland (Lampinen and Lahti 2013, http://www.luomus.fi/

kasviatlas/), Estonia (http://efloora.ut.ee/Eesti/index.html),

Britain and Ireland (http://www.brc.ac.uk/plantatlas/), the

Netherlands (http://soortenbank.nl/), Germany (http://

www.floraweb.de/), Switzerland (http://www.infoflora.ch/

de/flora/art-abfragen.html), and Catalonia (http://

www.floracatalana.net/). Data were extracted from the

web pages using the function “scan” in the R base pack-

age (R Core Team 2015). Most of these online atlases

have a spatial resolution of ca 10 9 10 km; although the

German atlas features a roughly 12 9 11 km grid cell

size, the Dutch and Swiss atlases have a spatial resolution

of 5 9 5 km. We aggregated the 5 9 5 km spatial resolu-

tion to 10 9 10 km to better match the scale of other

regions. Altogether, the seven regions contained 12,606

grid cells. We considered each grid cell as one study site

with defined observed richness, species composition, and

environmental conditions.

Species distribution modeling requires environmental

data at the same resolution as that of species presences

and absences (Austin 2007). Large-scale species distribu-

tion patterns often depend on climatic factors such as

temperature and precipitation. Recent evidence has shown

that climatic factors alone are often sufficient to predict

species distributions at large scales (Bucklin et al. 2015).

We used mean annual temperature, temperature seasonal-

ity (annual range), mean annual precipitation, and pre-

cipitation seasonality (annual range). Climatic data were

averaged to each 50 9 50 and 10 9 10 km grid cell from

50 data derived from WorldClim (http://www.world-

clim.org/; Hijmans et al. 2005). European landscapes,

however, have been strongly modified by human land

use; therefore, the dominant land cover type based on

CORINE 2006 level 2 (http://www.eea.europa.eu/data-

and-maps/data/corine-land-cover-2006-raster; Bossard

et al. 2000) was included. A lack of CORINE land cover

data resulted in some regions (e.g., Greece) being

excluded from the analyses.

Estimating dark diversity

We merged subspecies at the species level and resolved

taxonomic synonyms according to the Plant List database

(http://www.theplantlist.org/). For both European and

regional scales, we used only species that occurred in at

least in twenty grid cells (each region was treated sepa-

rately). Environmental suitability of species for dark

diversity was estimated by SCO and SDM methods.

Dark diversity estimation (count of number of species)

by SCO is based on an index that quantifies the probabil-

ity of joint occurrence of a particular species with other

species (Beals 1984; Ewald 2002; Ronk et al. 2015; Lewis

et al. 2016b):

Pij ¼ ð1=SiÞ
X

k

NjkIik=Nk

where Pij is the probability that species j occurs in site i,

Si is the number of species at site i (excluding species j),

Njk is the number of joint occurrences of species j and k

(j 6¼ k), Iik is the incidence (0 or 1) of species k in site i,

and Nk is the number of occurrences of species k. Each

species was assigned a threshold value for inclusion into

dark diversity. A species was included in dark diversity

when it was absent from a grid cell and its occurrence

probability was greater than 5% of the values in grid cells

where the species was actually present. Observed species

richness and species composition (species that were actu-

ally recorded in the grid cell) were treated as presence/ab-

sence; we did not calculate occurrence probabilities for

observed species.

Species distribution modeling can be performed by dif-

ferent algorithms. Some algorithms perform generally bet-

ter in specific circumstances, but there is no superior

method (Segurado and Ara�ujo 2004; Pearson et al. 2006;

Austin 2007). We used generalized additive models, which

have often performed well (Elith et al. 2006; Meynard

and Quinn 2007), especially with large sample sizes (Thi-

baud et al. 2014). Generalized additive models were fitted

using logit as the link function and a binomial error dis-

tribution. As commonly practiced, we used data splitting

(80% of the data was used for calibration and 20% for

evaluation), which we ran on different random selections.

Resultant species occurrence probabilities were trans-

formed into species presences and absences using a

threshold giving the best quality of predictions, evaluated

as the best score of true skill statistic (TSS, Allouche et al.

2006). Therefore, depending on the method (SCO or

SDM), we used different thresholds for inclusion to dark

diversity. We did not use an ensemble forecast of differ-

ent methods as different methods have their own limita-

tions and are unable to work with all species. As a

consequence, such a technique omits many species from

the analyses.

In order to account for species dispersal probability

and biogeographical history, we applied two additional

spatial filters along with the environmental filters (SCO

or SDM). For dispersal probability, we set a geographical

filter that excluded from dark diversity species not found

within a 500-km radius at the European scale

(50 9 50 km) and a 300-km radius at the regional scale

(10 9 10 km). This makes spatial and temporal scales
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comparable as species within 300 km can potentially

arrive in a shorter time span than species within 500 km.

Sensitivity analyses, however, confirm that these two radii

produce strongly correlated dark diversity estimates

(Ronk et al. 2015). To account for common biogeograph-

ical history, we excluded from dark diversity all species

not found within the biogeographical region, as defined

by the dispersion field technique (Graves and Rahbek

2005). For this technique, we used those grid cells con-

taining >50% of the species from the study grid cell (Car-

stensen et al. 2013). In other words, although species

could be assigned dark diversity based on environmental

criteria, species must also be present within a set radius

and must occur sites that share similar biogeographical

history as the study site (Ronk et al. 2015).

Completeness of site diversity was calculated sensu

community completeness index according to P€artel et al.

(2013) as ln(observed richness/dark diversity).

In order to obtain semiquantitative values of dark

diversity, we counted species which were assigned to dark

diversity by both methods (consensus dark diversity), or

by one method (composite dark diversity). Dark diversity

calculations were performed using R ver. 3.0.2 (R Devel-

opment Core Team). We used “BIOMOD2” (Thuiller

et al. 2009) package (R package version 3.1-25) for SDM

and “vegan” (Oksanen et al. 2013) package (R package

version 2.0-10) for SCO.

Comparisons of methods

We compared the results of the two methods using Euro-

pean-wide and regional datasets (all regions combined).

Dark diversity estimates by the SCO and SDM method

were ln-transformed and used as variables in type II

regression calculated by the “lmodel2” function within (R

package version 1.7-2) “lmodel2” (Legendre 2014). This

regression model does not assign independent and depen-

dent variables and can be used if both variables are esti-

mated. We extracted R2 values and tested whether the

major axis deviates from the 1:1 line (i.e., if the confi-

dence intervals for the type II regression slopes include

1). The overlap coefficient was calculated to compare spe-

cies composition of both methods (Kowalski 2011). This

index is defined as the number of species common to

both methods divided by the smaller dark diversity size of

the two methods. Compared with many other indexes

(e.g., Jaccard index), this index is not dependent on the

size variation of the dark diversity estimates. Separate

results for each region are given in Supplementary mate-

rial (Appendix S1, Table S1). In order to test whether the

overlap of two methods is different from random expec-

tation, we calculated probability values for the observed

and greater overlaps according to the hypergeometric

distribution (Forbes et al. 2011). This discrete distribution

describes the exact probability of overlap between two

methods if we draw randomly without replacement x1
species (dark diversity size according to the first method)

from a set of N species (number of species absent from

the site), divided into two groups: species belonging to

dark diversity according to the second method (x2), and

the remainder (N-x2 species). We used R function “phy-

per” (R Core Team 2015) and calculated mean and med-

ian P-values over all sites and percentage of sites when P

value was >0.05.
To test how dark diversity and completeness of site

diversity estimates are related to observed species richness,

we plotted different estimates of dark diversity (Supple-

mentary material Appendix S2) and completeness of site

diversities against observed species richness and calculated

Pearson correlation coefficients (Appendix S3). In order

to test the effects of various explanatory variables (cli-

mate, geological and soil properties, plant growth condi-

tions, land-use practices) on the diversity metrics, we first

constructed principal components with “PCA” function

within the package “FactoMineR” (R package version

1.29) (Husson et al. 2015). To correct for a possible bias

in species richness due to reduced land surface in coastal

cells, we used only grid cells that encompassed 100%

land. For PCA analyses at the European scale, we were

able to use 1214 grid cells and for regional scale 10,284

grid cells in which all explanatory variables had a numeri-

cal value. For European scale analyses, we used 31 differ-

ent factors and for regional scale 22 different factors for

which we had sufficient data and spatial resolution

according to scale. For most variables, we used both mean

and range. We constructed principal components for

European (50 9 50 km) and regional (10 9 10 km)

scales. For European scale, we chose the first three princi-

pal components, which altogether explained 54% of the

variance. The first principal component had its strongest

relationships with mean of temperature range, mean of

altitudinal range, and mean of precipitation range. There-

fore, we named PCA1 “heterogeneity”. The second princi-

pal component had its strongest relationships with mean

soil organic matter, latitude, and mean pH. Therefore, we

named PCA2 “latitude”. The third principal component

had its strongest relationships with temperature and pre-

cipitation seasonality. Therefore, we named PCA3 “sea-

sonality”. For regional scale, we chose the first two

principal components, which altogether explained 51% of

variance. The first principal component had its strongest

relationships with latitude and mean of precipitation

range. Therefore, we named PCA1 “latitude”. The second

principal component had its strongest relationships with

average altitude, altitudinal range, and annual tempera-

ture range. Therefore, we named PCA2 “heterogeneity”.
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Selected principal components were used as explanatory

variables in linear mixed effect models constructed with

the “lme” function within R package “nlme” (Pinheiro

et al. 2015). All parameters were first standardized (mean

0, standard deviation 1). In regional analyses, we used

region as a random factor in the models. We measured

the effect of spatial autocorrelation in our models with

Moran’s I on normalized residuals of the simple models.

Due to spatial autocorrelation, we fitted linear mixed

effect models with exponential spatial correlation struc-

ture and a nugget value allowed (Dormann et al. 2007).

We used z-test to test differences between models esti-

mates when the dependent variable was observed species

richness or an estimate of dark diversity or a complete-

ness of site diversity. Detailed information on explanatory

variables and their contribution to principal components

is available in Supplementary material (Appendices S4

and S5).

Our calculations of dark diversity are limited to the

available data. Theoretically dark diversity at sites at the

study area borders might be underestimated as the area

for geographical species pool extends beyond the data

limit. We estimated this effect for the European dataset.

For this, we compared dark diversity sizes along sites next

to the border (first site situated completely within the

study area, where we would expect a boundary effect to

be strongest) and sites 500 km from the eastern border

(paired t-test at P < 0.05). We found statistically signifi-

cant boundary effect only for SDM method (t = �3.0,

P = 0.006), although the average difference in dark diver-

sity sizes between the compared sites was small (6%).

SCO and combined dark diversity methods were not

affected by a boundary effect.

Results

Estimates of dark diversity exhibit strong positive correla-

tion at both scales, but type II regression slopes differed

from the 1:1 line (Fig. 1). On average, SCO and SDM

assigned similar sizes of dark diversity at the European

scale, but at the regional scale SCO assigned more dark

diversity than SDM. As a result, at the European scale

both methods were fairly similar at intermediate dark

diversity values; at the regional scale, the difference

between dark diversity estimates was greater at low values

but roughly agreed at larger values. Dark diversity values

were positively correlated with observed species richness

(r = 0.27 . . .0.42 at the European scale, 0.50 . . . 0.70 at

the regional scale, Appendix S2). Completeness of site

diversity was positively correlated with observed richness

(r = 0.27 . . . 0.47 at the European scale, 0.38. . .0.61 at

the regional scale, Appendix S3). Species composition

overlap of two methods was about 75% at both European

and regional scales (the first and the third quartiles at the

European scale are 63% and 78% and at the regional scale

64% and 84%). We found that the overlap between two

methods was greater than random expectation at both

European scale (average and median P-values <0.001; per-
centage when P value was >0.05 over all sites was 0.1%)

and regional scale (average and median P-values <0.001;
percentage when P value was >0.05 over all sites was

2.9%).
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Figure 1. Relationship between dark diversity (ln-transformed) by

species co-occurrence (SCO) and species distribution modeling (SDM)

methods at (A) European scale (R2 = 0.61, slope = 1.6, 95% CI 1.5

and 1.7, P < 0.001) and (B) regional scale R2 = 0.48, slope = 1.32,

95% CI 1.29 and 1.35, P < 0.001). Solid line represents type II

regression line and dashed line 1:1 relationship. Regression lines

deviate from 1:1 lines.
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At the European scale, SCO and SDM methods both

showed that dark diversity is low in north Europe and

high in south Europe (Fig. 2), although in some areas,

for example, in the Iberian Peninsula, SCO assigned less

dark diversity than SDM. Consensus and composite

dark diversity showed relatively similar patterns (Fig. 3).

Consensus dark diversity by both methods estimated

dark diversity to be greatest in southern Europe. Com-

pared with consensus dark diversity, the composite dark

diversity showed rather greater dark diversity in central

Europe and in the Iberian Peninsula. Heterogeneity

(PCA1) showed differences between observed species

richness and dark diversity estimates: All dark diversity

estimates were significantly weaker than for observed

species richness. Dark diversity calculated by SDM

method and composite dark diversity both showed posi-

tive relationships with latitude (PCA2), and these rela-

tionships differed significantly from that of observed

species richness (no relationship in spatially informed

model). Seasonality (PCA3) showed the greatest differ-

ences between observed species richness and dark diver-

sity estimates: Observed species richness was related

positively whereas dark diversity estimates related nega-

tively (Table 1). The regional scale shows also a similar

pattern with some differences, for example, dark diver-

sity by SCO is less than by SDM in north Germany.

Dark diversity estimates showed similar negative rela-

tionships with latitude (PCA1) and heterogeneity

(PCA2, Table 2), and all dark diversity estimates had

significantly different relationships than patterns from

observed species richness.

Both SCO and SDM methods resulted in similar scat-

tered patterns of completeness of site diversity across Eur-

ope (Fig. 4). Relatively complete sites can be found in

both in north and south Europe. Estimates of complete-

ness of site diversities increased with increasing hetero-

geneity (PCA1); the trend, however, was significantly

weaker compared with the positive relationship between

heterogeneity and observed species richness (Table 1). In

general, completeness estimates were not significantly dif-

ferent from observed species richness results, which

showed no strong relationship with latitude (PCA2).

There were positive relationships with seasonality (PCA3),

similar to the relationship with species richness (Table 1).

At the regional scale, SCO and SDM methods show in

general concordant patterns with some differences, for

example, sites appear more complete by SDM than by

SCO in some regions in Germany and Ireland (Fig. 5).

Different estimates of completeness of site diversities

decreased with increasing latitude (PCA1), but the rela-

tionships were generally not stronger for observed species

richness (except for SCO completeness, Table 2). All esti-

mates of completeness of site diversities showed positive

relationship with heterogeneity (PCA2), which was signifi-

cantly different than that of observed species richness

(negative relationship).

Discussion

Dark diversity (ecologically suitable absent species in a

study site) can complement commonly used observed

species richness in studies on biodiversity and nature con-

servation (P€artel et al. 2011a; Ronk et al. 2015). Although

dark diversity can be estimated by different means (P€artel

et al. 2013), the methodical toolbox is still being devel-

oped and properties of mathematical methods usable at

large spatial scales need exploration. In biodiversity stud-

ies, ensemble forecasts from different models have shown

promise, because different techniques can potentially

carry unique information (Ara�ujo and New 2007). A sim-

ilar philosophy can be applied to dark diversity estimates

as well. We used plant data at two different biogeographi-

cal scales (European-wide and seven regions) and mea-

sured dark diversity by two mathematical methods: SCO

and SDM. Estimates of dark diversity sizes exhibited

strong positive correlation at both scales despite deviating

from the 1:1 line. Clearly, each method carried unique

information. The overlap coefficient of two methods was

75%. By combining these two methods, we can attain

consensus dark diversity estimates (species predicted by

both methods) and composite dark diversity estimates

(species predicted by one method), each of which can

serve different purposes. Dark diversity and completeness

of site diversity estimates added new information to

diversity patterns when related to various natural and

anthropogenic factors.

When relating dark diversity estimates of both meth-

ods, the type II regression line deviated from a 1:1 rela-

tionship, showing that the two methods are not totally

equivalent. At the European scale, SCO and SDM gener-

ally produced similar dark diversity estimates, especially

at intermediate dark diversity sizes. At the regional scale,

dark diversity was less according to SDM than SCO with

closer agreement at greater dark diversity values. This dif-

ference could arise from the finer scale of the study sys-

tems, that is, factors other than climate might dictate

species distribution used in SDM (Austin 2007). Also

SCO likely captures within-grid floristic variation better

and therefore predicts greater richness for heterogeneous

conditions with mixed floristic elements. Both SCO and

SDM methods clearly agreed that dark diversity was larger

in southern Europe and smaller in northern Europe,

although with slight regional differences. A similar latitu-

dinal pattern of dark diversity was found using the SCO

method (Ronk et al. 2015). This suggests that either

method can be used when the size of dark diversity is
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Figure 2. Dark diversity estimates at the European scale calculated with (A) species co-occurrence (SCO) and (B) species distribution modeling

(SDM) method; and at the regional scale (C) species co-occurrence and (D) species distribution modeling. For comparison, we used the same scale

for both dark diversity methods in A and B, and C and D, respectively. Projection: Lambert azimuthal equal area.
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Figure 3. Consensus and composite dark diversity estimates (species predicted by both or one method) at the European scale (A) consensus dark

diversity, (B) composite dark diversity, and at the regional scale (C) consensus dark diversity and (D) composite dark diversity. Note that each map

has own scale. Projection: Lambert azimuthal equal area.
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needed but not its composition. In addition, SDM

requires checking for a possible boundary effect.

Species co-occurrence and SDM methods gave an over-

lap coefficient of approximately 75%. This highly signifi-

cant agreement on species composition was similar at

both European and regional scale. The remaining 25%

could arise from varying species frequency. SCO method

uses only species presences and absences and needs

“enough” co-occurrences with other species to include a

species in dark diversity. The SDM method has been

found to perform rather poorly for common species with

wide environmental niche (Elith et al. 2006).

Our results on the size and composition of dark diver-

sity estimates by SCO and SDM indicates that both meth-

ods carry some unique information and can potentially

complement each other. Dark diversity can be regarded as

a fuzzy set in which species are granted probabilistic

membership, although so far membership in dark diver-

sity has been mostly applied as a binary variable (P€artel

et al. 2011b). Combinations of different methods enabled

us to define dark diversity semiquantitatively by including

species from both or one method: consensus and com-

posite dark diversity estimates. Both estimates showed

similar spatial patterns, although the distribution of com-

posite dark diversity was smoother. As consensus dark

diversity has greater confidence by having support from

two methods, it could be preferred for nature conserva-

tion to decide whether a particular species should be

included in the dark diversity of a site, for example, for

restoration. By contrast, we suggest that composite dark

diversity could be used for analyses of large-scale diversity

patterns as it contains more information from different

methods.

Compared with observed richness, dark diversity and

completeness of site diversity estimates added new infor-

mation. Both were correlated with observe richness, but

the correlation coefficients were not particularly great.

While dark diversity estimates showed patchy geographi-

cal distributions at both the European scale and within

regions, similar to observed richness (Ronk et al. 2015),

the completeness of site diversity showed scattered pat-

terns. It is crucial to know which natural and anthro-

pogenic factors determine different aspects of diversity

(Gaston 2000). We used a large number of explanatory

parameters and were able to describe >50% of variation

when reduced to a few principal components. Compared

with observed richness, dark diversity or completeness

estimates were in general similarly related to principal

components, but with some significant differences. Conse-

quently, processes that define how many species are actu-

ally found (observed richness) do not necessarily define

how many species from the regional species pool are

absent (dark diversity) or the proportion of present and

absent species (completeness). Moreover, these measures

depend on the spatial scale. For example, at the European

scale (50 9 50 km), heterogeneity induces greater

observed richness than completeness; the opposite is true

at the regional scale (10 9 10 km).

Table 1. Coefficients of linear mixed effect model relating observed

species richness, different estimates of dark diversity and complete-

ness of site diversity to three principal components derived from vari-

ous natural and anthropogenic factors at the European scale.

Standard error is given in parentheses. Difference between coeffi-

cients from observed richness and from an estimate of dark diversity

or completeness was evaluated by z-test, and significantly different

results are in bold. Full model results are given in Supporting Informa-

tion (Appendix S6).

PCA1

(heterogeneity)

PCA2

(latitude)

PCA3

(seasonality)

Observed

richness

0.139 (0.014) �0.033 (0.022) 0.084 (0.028)

Dark diversity

(SCO)

�0.001 (0.014) 0.019 (0.023) �0.145 (0.030)

Dark diversity

(SDM)

0.022 (0.014) 0.100 (0.024) �0.097 (0.032)

Dark diversity

(Consensus)

�0.009 (0.016) �0.050 (0.026) �0.165 (0.035)

Dark diversity

(Composite)

0.024 (0.012) 0.113 (0.021) �0.111 (0.028)

Completeness

(SCO)

0.082 (0.017) �0.004 (0.025) 0.151 (0.034)

Completeness

(SDM)

0.049 (0.016) �0.054 (0.026) 0.127 (0.035)

Completeness

(Consensus)

0.074 (0.016) 0.050 (0.023) 0.130 (0.032)

Completeness

(Composite)

0.060 (0.016) �0.062 (0.026) 0.141 (0.034)

Table 2. Coefficients of linear mixed effect model relating observed

species richness, different estimates of dark diversity and complete-

ness of site diversity to principal components from various natural and

anthropogenic factors at the regional scale. Standard error is given in

parentheses. Difference between coefficients from the observed rich-

ness and from an estimate of dark diversity or completeness was eval-

uated by z-test, and significantly different results are in bold. Full

model results are given in Supporting Information (Appendix S6).

PCA1 (latitude) PCA2 (heterogeneity)

Observed richness �0.120 (0.015) �0.035 (0.011)

Dark diversity (SCO) �0.118 (0.011) �0.150 (0.008)

Dark diversity (SDM) 0.004 (0.011) �0.100 (0.008)

Dark diversity (Consensus) �0.038 (0.011) �0.119 (0.008)

Dark diversity (Composite) �0.072 (0.009) �0.133 (0.006)

Completeness (SCO) �0.038 (0.021) 0.100 (0.015)

Completeness (SDM) �0.110 (0.021) 0.056 (0.015)

Completeness (Consensus) �0.075 (0.020) 0.082 (0.015)

Completeness (Composite) �0.08 (0.022) 0.075 (0.016)
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Figure 4. Completeness of site diversity at the European scale calculated with (A) species co-occurrence and (B) species distribution modeling

method, and (C) consensus of used methods and (D) composite of used methods. For comparison, we used the same scale for all maps.

Projection: Lambert azimuthal equal area.
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Figure 5. Completeness of site diversity at the regional scale calculated with (A) species co-occurrence and (B) species distribution modeling

method, and (C) consensus of used methods and (D) composite of used methods. For comparison, we used the same scale for all maps.

Projection: Lambert azimuthal equal area.
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In summary, the dark diversity toolbox is still being

developed and examination is needed of the properties of

different methods. Mathematical methods, in particular

SCO and SDM, can be considered at large spatial scales.

We found that both methods give comparable results but

also carried unique information that complements

observed richness. We suggest that the new perspective in

dark diversity studies entails a combination of methods;

this allows semiquantitative definition of dark diversity

for different purposes.
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Additional Supporting Information may be found online

in the supporting information tab for this article:

Appendix S1. Separate analyses from different regions.

Table S1. Summary of dark diversity size estimates (ln

transformed) from species co-occurrence (SCO) and spe-

cies distribution modelling (SDM) methods, relationship

between dark diversity estimates (Type II regression slope

having SCO on x axis and SDM on y axis with 95 CI in

parentheses, and R2), and species composition matching

(Overlap coefficient); 25th and 75th quantiles are given in

parentheses.

Appendix S2. Correlation between observed species rich-

ness and different dark diversity estimates.

Figure S1. Scatterplots of observed species richness and:

A) dark diversity estimated only by species co-occurrence

(SCO) method (t = 15.0, df = 1590, P < 0.001, r = 0.35),

B) dark diversity estimated only by species distribution

modelling (SDM) method (t = 17.1, df = 1590,

P < 0.001, r = 0.39), C) dark diversity (common species)

estimated by both methods (t = 11.0, df = 1590,

P < 0.001, r = 0.27), D) dark diversity (all species) esti-

mated by both methods (t = 18.6, df = 1590, P < 0.001,
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r = 0.42), at the European scale (A,B,C,D) and E) dark

diversity estimated only by species co-occurrence (SCO)

method (t = 94.0, df = 9313, P < 0.001, r = 0.7), F) dark

diversity estimated only by species distribution modelling

(SDM) method (t = 55.0, df = 9313, P < 0.001, r = 0.5),

G) dark diversity (common species) estimated by both

methods (t = 65.3, df = 9313, P < 0.001, r = 0.56), H)

dark diversity (all species) estimated by both methods

(t = 87.8, df = 9313, P < 0.001, r = 0.67) at the regional

scale (E,F,G,H).

Appendix S3. Correlation between observed species rich-

ness and different completeness of site diversities.

Figure S2. Scatterplots of observed species richness and:

A) completeness of site diversity estimated only by species

co-occurrence (SCO) method (t = 21.2, df = 1590,

P < 0.001, r = 0.47), B) completeness of site diversity

estimated only by species distribution modelling (SDM)

method (t = 8.4, df = 1590, P < 0.001, r = 0.21), C)

completeness of site diversity (common species) estimated

by both methods (t = 18.3, df = 1590, P < 0.001,

r = 0.42), D) completeness of site diversity (all species)

estimated by both methods (t = 13.7, df = 1590,

P < 0.001, r = 0.32), at the European scale (A,B,C,D) and

E) completeness of site diversity estimated only by species

co-occurrence (SCO) method (t = 61.9, df = 9313,

P < 0.001, r = 0.54), F) completeness of site diversity esti-

mated only by species distribution modelling (SDM)

method (t = 50.3, df = 9313, P < 0.001, r = 0.46), G)

completeness of site diversity (common species) estimated

by both methods (t = 39.8, df = 9313, P < 0.001,

r = 0.38), H) completeness of site diversity (all species)

estimated by both methods (t = 74.4, df = 9313,

P < 0.001, r = 0.61) at the regional scale (E,F,G,H).

Appendix S4. Source and characteristics of the explana-

tory variables considered in this study.

Table S2. List of explanatory variables used in linear

mixed effect models

Appendix S5. Correlation matrices from PCA analyses.

Table S3. Relationships between explanatory variables

and first three principal components at the European

scale.

Table S4. Relationships between explanatory variables

and first two principal components at the regional scale.

Appendix S6. Spatially informed linear mixed effect

model results — Observed species richness and different

dark diversity and completeness of site diversity estimates

(European and regional scale) related to natural and

anthropogenic factors.

Table S5. Summary results of the spatially-informed lin-

ear mixed effect model linking observed species richness

to natural and anthropogenic factors at the European

scale (df = 1213).

Table S6. Summary results of the spatially-informed

linear mixed effect model linking observed species rich-

ness to natural and anthropogenic factors at the regional

scale (df = 10274).

Table S7. Summary results of the spatially-informed lin-

ear mixed effect model linking dark diversity (SCO) to

natural and anthropogenic factors at the European scale

(df = 1213).

Table S8. Summary results of the spatially-informed lin-

ear mixed effect model linking dark diversity (SCO) to

natural and anthropogenic factors at the regional scale

(df = 10274).

Table S9. Summary results of the spatially-informed lin-

ear mixed effect model linking dark diversity (SDM) to

natural and anthropogenic factors at the European scale

(df = 1213).

Table S10. Summary results of the spatially-informed lin-

ear mixed effect model linking dark diversity (SDM) to

natural and anthropogenic factors at the regional scale

(df = 10274).

Table S11. Summary results of the spatially-informed lin-

ear mixed effect model linking consensus dark diversity

to natural and anthropogenic factors at the European

scale (df = 1213).

Table S12. Summary results of the spatially-informed lin-

ear mixed effect model linking consensus dark diversity

to natural and anthropogenic factors at the regional scale

(df = 10274).

Table S13. Summary results of the spatially-informed lin-

ear mixed effect model linking composite dark diversity

to natural and anthropogenic factors at the European

scale (df = 1213).

Table S14. Summary results of the spatially-informed lin-

ear mixed effect model linking composite dark diversity

to natural and anthropogenic factors at the regional scale

(df = 10274).

Table S15. Summary results of the spatially-informed lin-

ear mixed effect model linking completeness of site diver-

sity (SCO) to natural and anthropogenic factors at the

European scale (df = 1213).

Table S16. Summary results of the spatially-informed lin-

ear mixed effect model linking completeness of site diver-

sity (SCO) to natural and anthropogenic factors at the

regional scale (df = 10274).

Table S17. Summary results of the spatially-informed lin-

ear mixed effect model linking completeness of site diver-

sity (SDM) to natural and anthropogenic factors at the

European scale (df = 1213).

Table S18. Summary results of the spatially-informed lin-

ear mixed effect model linking completeness of site diver-

sity (SDM) to natural and anthropogenic factors at the

regional scale (df = 10274).
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Table S19. Summary results of the spatially-informed lin-

ear mixed effect model linking consensus completeness of

site diversity to natural and anthropogenic factors at the

European scale (df = 1213).

Table S20. Summary results of the spatially-informed lin-

ear mixed effect model linking consensus completeness of

site diversity to natural and anthropogenic factors at the

regional scale (df = 10274).

Table S21. Summary results of the spatially-informed

linear mixed effect model linking composite completeness

of site diversity to natural and anthropogenic factors at

the European scale (df = 1213).

Table S22. Summary results of the spatially-informed lin-

ear mixed effect model linking composite completeness of

site diversity to natural and anthropogenic factors at the

regional scale (df = 10274).

ª 2016 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd. 6281

A. Ronk et al. Large-Scale Dark Diversity Estimates


