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Background: The effectiveness of conventional MRI (cMRI)-based radiomics in
differentiating glioblastoma (GBM) from solitary brain metastases (SBM) is not
satisfactory enough. Therefore, we aimed to develop an integrated radiomics model to
improve the performance of differentiating GBM from SBM.

Methods: One hundred patients with solitary brain tumors (50 with GBM, 50 with SBM)
were retrospectively enrolled and randomly assigned to the training set (n = 80) or
validation set (n = 20). A total of 4,424 radiomic features were obtained from contrast-
enhanced T1-weighted imaging (CE-T1WI) with the contrast-enhancing and peri-
enhancing edema region, T2-weighted imaging (T2WI), diffusion-weighted imaging
(DWI)-derived apparent diffusion coefficient (ADC), and 18F-fluorodeoxyglucose positron
emission tomography (18F-FDG PET) images. The partial least squares (PLS) regression
with fivefold cross-validation is used to analyze the correlation between different radiomic
features and different modalities. The cross-validity analysis was performed to judge
whether a new principal component or a new feature dimension can significantly improve
the final prediction effect. The principal components with effective interpretation in all
radiomic features were projected to a low-dimensional space (2D in this study). The
effective features of the new projection mapping were then sent to the random forest
classifier to predict the results. The performance of differentiating GBM from SBM was
compared between the integrated radiomics model and other radiomics models or
nonradiomics methods using the area under the receiver operating characteristics
curve (AUC).
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Results: Through the cross-validity analysis of partial least squares, hundreds of radiomic
features were projected into a new two-dimensional space to complete the construction
of radiomics model. Compared with the combined radiomics model using DWI + 18F-FDG
PET (AUC = 0.93, p = 0.014), cMRI + DWI (AUC = 0.89, p = 0.011), cMRI + 8F-FDG PET
(AUC = 0.91, p = 0.015), and single radiomics model using cMRI (AUC = 0.85, p = 0.018),
DWI (AUC = 0.84, p = 0.017), and 18F-FDG PET (AUC = 0.85, p = 0.421), the integrated
radiomics model (AUC = 0.98) showed more efficient diagnostic performance. The
integrated radiomics model (AUC = 0.98) also showed significantly better performance
than any single ADC, SUV, or TBR parameter (AUC = 0.57–0.71, p < 0.05). The integrated
radiomics model showed better performance in the training (AUC = 0.98) and validation
(AUC = 0.93) sets than any other models and methods, demonstrating robustness.

Conclusions: We developed an integrated radiomics model incorporating DWI and
18F-FDG PET, which improved the performance of differentiating GBM from SBM greatly.
Keywords: 18F-FDG PET, diffusion-weighted imaging (DWI), apparent diffusion coefficient (ADC), glioblastoma,
solitary brain metastases (SBM)
INTRODUCTION

As the most common malignant brain tumor in adults,
metastasis is estimated to be at least 10 times more common
than primary malignant central nervous system tumors (1).
Glioblastoma (GBM) accounts for more than half of all
primary brain malignancies (2). Differentiating GBM from
solitary brain metastases (SBM) preoperatively is significantly
critical for optimizing individualized therapeutic decision-
making, as the medical staging, therapeutic strategies, and
prognosis are different (3–5). En bloc resection is preferred for
metastases, and stereotactic radiosurgery is also considered an
effective strategy for metastases of less than 3–4 cm (6), and
maximal resection of the tumor followed by radiotherapy and
temozolomide chemotherapy should be considered for GBM (7).
Generally speaking, metastasis usually presents as multiple
nodular enhancing lesions with surrounding edema in the
cortical gray-white matter junction, whereas GBM mostly has
general characteristic image features, such as the invasion of the
deep white matter and the presence of solitary ring-enhancing
lesion (3, 8). In patients with multiple lesions and systemic
cancer, brain metastasis identification may be easily performed
using conventional MRI (cMRI). However, when metastasis
presents with a solitary ring-enhancing lesion or an unknown
clinical history, it is challenging to differentiate the two tumors
due to their similar imaging features. Both GBM and SBM can
present with irregular ring enhancement and intratumoral
necrosis on contrast-enhanced T1-weighted imaging (CE-
T1WI), surrounding edema on T2-WI and ring-hypermetabolic
on 18F-fluorodeoxyglucose positron emission tomography
(18F-FDG PET) images. Histopathology is the gold standard for
the diagnosis of GBM or metastasis. Unfortunately, the present way
for identifying GBM from SBM is to undertake a biopsy or open
surgical resection invasively. However, when the tumors are located
near eloquent areas or the patient is weak, biopsy or open surgical
resection may risk morbidity and mortality. Therefore, an accurate
2

noninvasive preoperative method would be preferable and
sometimes necessary (9, 10).

It has been shown that infiltrating neoplastic cells have been
found in surrounding edema of GBM, while peritumoral edema
of metastasis consists essentially of vasogenic edema, indicating
that there are some differences in cells, edema type, angiogenesis,
etc. between the peri-enhancing edema regions of the two
tumors. However, the surrounding edema of the two tumors
showed no enhancement, hypometabolic, or no obvious
diffusion limitation. Therefore, it is reasonable to assume that
there are pathophysiological abnormalities in the peritumoral
edema area that cannot be visually recognized besides the tumor
enhancement area. We hope to find a new and more effective
method to distinguish two tumors based on the difference
between the metastatic vasogenic edema and GBM infiltrative
edema containing tumor cells infiltrating the white matter.

With the rapid development of medical image analysis,
radiomics has become a hot research topic. Radiomics can
noninvasively extract quantitative features of lesions from
magnetic resonance images, providing important reference
information for tumor characterizations, treatment monitoring,
and outcome prediction (11). Previous studies have established
radiomics models based on cMRI sequences to differentiate GBM
from SBM and achieved good results. Qian et al. (12) developed a
CE-T1WI-based radiomics model to differentiate GBM from
SBM, with a test AUC value of 0.90. A radiomics model based on
T1WI, T2WI, and CE-T1WI trained by Dong et al. (13) has a
test AUC value of 0.76. Artzi et al. (14) established a radiomics
model based on postcontrast 3D-T1W gradient echo images, and
the test mean accuracy was 0.85. The radiomics classifier
based on CE-T1WI established by Su et al. (15) yielded good
performance with AUC values of 0.82 and 0.81 in the training
and validation cohorts to distinguish GBM from SBM. These
results are barely satisfactory for having limited value in
demonstrating heterogeneity, function, and tumor metabolism
and still have room for improvement. Some studies have
August 2021 | Volume 11 | Article 732704
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reported that the mean diffusivity and minimum apparent
diffusion coefficient (ADC) values of peritumoral edema seem
lower in GBM than in SBM (16–18). Even though some other
studies denied this result (19–21), diffusion-weighted imaging
(DWI) seems to have the potential to distinguish GBM from
SBM. Compared with cMRI, DWI can evaluate brain tumor
diffusion and hypercellularity. 18F-FDG PET imaging has been
shown to be helpful for assessing surgery and radiotherapy as
well as providing important imaging biomarkers for tumor
metabolism evaluation (22–26). Therefore, DWI and 18F-FDG
PET imaging may show great potential for differentiating GBM
from SBM. However, no studies have been reported to build a
radiomics model incorporating DWI and 18F-FDG PET imaging
in differentiating GBM from SBM.

We hypothesized that a multivariate radiomics model
incorporating DWI and 18F-FDG PET could differentiate GBM
from SBM more precisely than any other radiomics models or
nonradiomics approaches, which will be more useful for
clinicians to optimize clinical management decision-making.
Thus, the study aimed to develop and validate a radiomics
model using DWI and 18F-FDG PET to improve the
performance of differentiating GBM from SBM.
METHODS

Patient Enrollment
This retrospective study was approved by the local institutional
review board, and the informed consent was obtained. The data
and pathological information were obtained from The First
Affiliated Hospital of Chongqing Medical University and the
United Medical Imaging Center. We identified 128 consecutive
patients who were pathologically confirmed with GBM or SBM
on surgical resection or biopsy performed at the Department of
Neurosurgery of our hospital. The inclusion criteria were as
Frontiers in Oncology | www.frontiersin.org 3
follows: (1) pathologically confirmed GBM or SBM; (2) all the
lesions are solitary and limited to a single lobe, not across the
lobes; (3) performed CE-T1WI, T2WI, DWI, and 18F-FDG PET/
CT examinations; (4) the interval between MRI and 18F-FDG
PET/CT examinations was less than 2 weeks; and (5) no history
of preoperative radiotherapy or other medical treatments before
surgery. A total of 28 patients were excluded according to the
exclusion criteria (Figure 1). Finally, a total of 100 consecutive
patients were included in the study. The patient selection process
is presented in a flowchart in Figure 1 in detail.

MR Imaging Acquisition
The MRI protocol for both training and validation sets included
CE-T1WI, T2WI, DWI, and 18F-FDG PET imaging.

MR images were obtained from the 3.0-T MRI system (Genesis
Signa and Signa HDtx) with an eight-channel head coil (GEMedical
Systems, Chicago, IL, USA). The main parameters of the T2WI
sequence were as follows: repetition time/echo time (TR/
TE) = 8,000/140 ms, flip angle = 90°, slice thickness = 5 mm,
acquisition matrix = 256 × 256. The main parameters of the CE-
T1WI sequence were as follows: TR/TE = 750/15 ms, slice
thickness = 5 mm, acquisition matrix = 384 × 256. The main
parameters of the DWI sequence were as follows: TR/TE = 6,379/
70 ms; section thickness = 5 mm; intersection gap = 1.5 mm; matrix
size = 128 × 128; FOV = 260 × 260 mm. The apparent diffusion
coefficient (ADC) map (b = 1,000) was generated fromDWI images.

18F-FDG PET data acquisition was carried out with a PET/CT
scanner (Philips Gemini TF 64 PET/CT scanner). The
participants fasted for at least 6 h before 18F-FDG
administration and stopped any drugs that could affect brain
metabolism for at least 12 h before the 18F-FDG PET acquisition.
Blood glucose levels were determined in all patients before 18F-
FDG administration, and blood glucose level was less than
8.0 mmol/L. PET/CT images of the head were acquired 60 min
after intravenous injection of 370–555 MBq 18F-FDG (produced
FIGURE 1 | The flowchart of patient selection process.
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by Sumitomo accelerator of Japan with a radiochemical purity
of >95%). PET images were acquired for one bed position
(5 min/bed position), and a slice thickness of 2 mm. Low-dose
CT images were obtained with a standardized protocol of 400 mAs,
120 Kv, matrix size of 512 × 512, and a slice thickness of 1 mm. The
fusion images (a slice thickness of 2 mm) were obtained by
computer iterative reconstruction and attenuation correction.

Image Preprocessing
For the CE-T1WI and T2WI data, signal intensity normalization
was performed to reduce the variance in the T1-based signal
intensity of the brain. We used the hybrid white-stripe method
(22) for intensity normalization using the ANTsR and White
Stripe packages (27, 28) in R, which incorporates processes of the
statistical principles of image normalization, preserves ranks
among the tissues, and matches the intensity of the tissues
without upsetting the natural balance of the tissue intensities (29).

Skull stripping and tumor segmentation were performed by
the 3D-Slicer Software (version 4.3, https://www.slicer.org) (30),
an open-source software widely used for image visualization and
segmentation. The tumor and perifocal edema contours were
manually segmented using the fast-grow cut tool based on the
T2WI imaging by two radiologists with 10 and 5 years of
diagnostic experience, respectively, who were blinded to the
final pathological result. The final region of interest (ROI) was
determined by the two radiologists. If the divergence between
segmentations was less than 5%, the final ROI was determined as
the overlapping region of the two ROIs, otherwise, it was
determined by the two radiologists. The segmented tumor
contour was finally overlaid with source CE-T1WI, T2WI,
ADC, and 18F-FDG PET image.

Radiomics Feature Extraction
The radiomic features were composed of five groups of features:
18 first-order features, 14 shape features, 73 texture features, 273
Frontiers in Oncology | www.frontiersin.org 4
LoG-transformed features, and 728 wavelet-transformed
features. All patients had undergone CE-T1WI, T2WI, DWI,
and 18F-FDG PET, from which 1,106 radiomic features were
derived, respectively. Finally, all radiomic features were extracted
for group comparisons after z transformed. The entire feature
extraction algorithm was fully automated, which yielded
identical features regardless of the operators. The overall
process of the radiomics pipeline is shown in Figure 2.

Feature Selection and Model Construction
In this study, we first used a t-test to screen radiomics features with
significant independence, then applied partial least squares (PLS) to
complete the regression analysis of those high-dimensional
radiomics features in the training set. PLS regression method was
applied using principal component analysis to extract and
compress multiple independent variables X and multiple
dependent variables Y into corresponding principal components
U and V, respectively. Then, under the guidance of the canonical
correlation principle and the multiple linear regression principle,
the relationship can be analyzed between X and U, Y and V, and X
and V. Thus, the relationship between X and Y can be studied. The
PLS regression can project the high-dimensional data to the
appropriate low-dimensional space and complete the effective
feature selection of the data, which was chosen because the
extracted radiomics features have the following two
characteristics: (1) The number of feature dimensions extracted
is far more than the number of patients. (2) Radiomics features
exist in multiple correlations. PLS performs well in studies with
small sample and multicollinearity among independent variables
(radiomics features) and can emphasize the role of independent
variables in the interpretation and prediction of dependent
variables (classification of patients) when selecting feature
vectors to remove the influence of useless noise on regression
and make the radiomics model contain the least number of
variables. As a result, final prediction performance gets better.
A B

D

C

FIGURE 2 | Radiomics worklist. (A) Part 1 includes image acquisition, registration, and segmentation. Signal intensity normalization is conducted for CE-T1WI and
T2WI. (B) Part 2 includes the extraction of radiomics features. (C) Part 3 includes feature selection. (D) Part 4 includes model construction.
August 2021 | Volume 11 | Article 732704
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To evaluate the robustness of the radiomics model and
consider the number of data samples, we applied fivefold
cross-validation. Cross-validity analysis was used to determine
the final output dimension size of PLS regression; after that, all
radiomics features with significant independence were projected
to the new two-dimensional space through PLS regression. Then
a variety of classical classifiers were used to predict the outcome
using the selected effective features and the optimal random
forest classifier is selected to construct the final radiomics model.
Finally, the predictive efficiency of the radiomics model was
compared under the different modality features combination.

Model Performance With Validation and
Comparison of Diagnostic Performance
The accuracy of differentiating GBM from SBM using the above
methods was assessed with the receiver operating characteristic
(ROC) curve and the AUC values in two sets. The optimal
thresholds of the AUC values were determined by maximizing
the sum of the sensitivity and specificity values calculated for
differentiating GBM from SBM.

The performance of the integrated radiomics model was
compared with that of the three combined radiomics models,
three single radiomics models, and five single nonradiomics
methods. Bonferroni correction was applied to adjust the p-
values for multiple comparisons. A Bonferroni-corrected
significance level of p < 0.008 was used to compare the
integrated radiomics model and six other radiomics models,
and a value of p < 0.01 was used to compare between the
integrated radiomics model and the five nonradiomics methods.

Statistical Analysis
Statistical analyses were performed using R software (version
3.3.3). Differences in clinical information between the training
and validation sets were evaluated using Student’s t-test and Chi-
square tests, and p < 0.05 was considered statistically significant.
The Student’s t-test was used to assess differences in the imaging
parameters between GBM and SBM in the training and
validation sets.
RESULTS

Clinical Characteristics
All patients underwent biopsy or surgery, and their pathological
examination results were assessed. Of the 80 enrolled patients in
Frontiers in Oncology | www.frontiersin.org 5
the training set, 41 (51.2%) were identified as GBM and 28
(36.8%) as SBM. Twenty patients in the validation set consisted
of nine (45.0%) GBM and 11 (55.0%) SBM. The clinical
characteristics of the training and validation sets are shown in
Table 1. No significant differences were found between the
patients with GBM and SBM regarding age and sex, which
justified the applicability of the training and validation sets.

Radiomics Feature Extraction
In total, 4,424 radiomic features were extracted from the
multiparametric MR data (1,106 features were derived from
CE-T1WI, T2WI, ADC, and 18F-FDG PET). Partial least
squares regression was used to find the correlation between
radiomic features and patient classification. After cross-validity
analysis, the top-m principal components of radiomic features
with significant improvement for prediction results were selected
by truncation method, so that hundreds of radiomic features
were projected into a new m-dimensional space. Table 2 shows
the corresponding numerical relationship between different
modality combinations (columns) and the final projection
mapping dimensions (rows). The table starts from the analysis
with only one principal component and gradually increases the
number of retained principal components until the cross-validity
principle is no longer satisfied, to select the number of final
effective feature dimensions. The specific performance is the
corresponding Qh2 value less than 0.0975, indicating that adding
a new principal component or feature dimension based on the
previous number of principal components no longer has an
obvious improvement on the final prediction effect and then
ends the increase of the principal component number. It can be
obtained from Table 2 that the effective principal components of
almost all modality combinations are less than or equal to 3. At the
same time, judging fromthe importance andcumulativeproportion
of each principal component to the outcome (Figure 3), evenwhen
there are only three principal components, the newly screened
features can affect thefinal result bymore than50%.From this point
of view, it is reasonable to use the partial least squares method to
screen the effective features. Through the experimental test, the
number of dimensions of the optimal result is 2.

In constructing a random forest model, not all the training
data were used by each decision subtree, so these data can be
used as test cases to measure the generalization performance of
the model by calculating the classification error of out-of-bag
estimation, which was 0.10 in the training cohort. The mean
prediction accuracy of 84.00% (AUC = 0.9330) for fivefold cross-
TABLE 1 | Clinical characteristics of the patients.

Group Training set Validation set

GBM (n = 41) SBM (n = 39) p-Value GBM (n = 9) SBM (n = 11) p-Value

Age 48.8 ± 11.2 49.6 ± 10.9 0.87 52.3 ± 10.3 51.8 ± 10.2 0.71
No of male patients 24 (58.5%) 17 (43.6%) 0.76 4 (44.4%) 5 (45.5%) 0.12
Biopsy 35 (85.4%) 31 (79.5%) 5 (55.6%) 7 (63.6%)
Surgical resection 7 (14.6%) 8 (20.5%) 4 (44.4%) 4 (36.4%)
August
 2021 | Volume 11 | Article
Data are expressed as the mean ± standard deviation. Numbers in parentheses are percentages.
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validation was achieved in the validation cohort (Figure 4). For a
random forest classifier, the classification score matrix represents
the possibility that the label comes from a specific category. As
shown in Figure 5, the red line indicates the median, and in our
radiomics classifier model, the average scores (white diamond in
Figure 5) of correct prediction for samples with GBM label and
SBM label are 0.9365 (95% CI: 0.9044–0.9686) and 0.8762 (95%
CI: 0.8350–0.9174), respectively.

Model Performance and Comparison of
Diagnostic Performance
The sensitivity and specificity of the integrated radiomics model in
the training set were 92.5% and 98.7%, respectively. The AUC value
was higher in the integrated radiomics model (AUC = 0.98) than in
the combined radiomicsmodels (DWI+ 18F-FDGPET:AUC=0.93,
p=0.014; Conventional +DWI: AUC=0.89, p=0.011; Conventional
+ 8F-FDG PET: AUC = 0.91, p = 0.015), the single radiomics model
using cMRI (AUC = 0.85, p = 0.018), DWI (AUC = 0.84, P = 0.017),
18F-FDG PET (AUC = 0.85, p = 0.421) and single nonradiomics
method (AUC = 0.57–0.71, p < 0.05), showing the integrated model
with better performance (Table 3).

The sensitivity and specificity of the integrated radiomics
model in the validation set were 83.5% and 84.9%, respectively.
Frontiers in Oncology | www.frontiersin.org 6
The AUC value was higher in the integrated radiomics model
(AUC = 0.93) than in the combined radiomics models (DWI +
18F-FDG PET: AUC = 0.81; Conventional + DWI: AUC = 0.86;
Conventional + 8F-FDG PET: AUC = 0.83), the single radiomics
model using cMRI (AUC = 0.84), DWI (AUC = 0.83), and 18F-
FDG PET (AUC = 0.84) and the single nonradiomics method
(AUC = 0.51–0.67), showing the integrated model with better
performance as well. The comparison of diagnostic performance
of the radiomics models in the validation is shown by the fivefold
mean ROC curve for different combinations in Figure 6, and
more evaluation indicator information can be seen in Table 4.
DISCUSSION

In the present study, we built seven radiomics models and five
nonradiomics methods and compared their performance. By
optimizing the radiomics models from single parameter, single
and double sequences to multimodality, we finally concluded
that the integrated radiomics model incorporating DWI and
18F-FDG PET outperformed any other radiomics models and
nonradiomics methods. The integrated radiomics models in the
FIGURE 3 | Principal component contribution histogram and cumulative contribution rate line chart.
TABLE 2 | Score of crossvalidity analysis (Qh2 score).

Modality combination Number of principal components Effective number

1 Component 2 Components 3 Components 4 Components 5 Components

ADC 1 0.2402 0.0498 None None 2
PET 1 −0.0122 None None None 1
ADC+PET 1 0.1755 0.1990 −0.0559 None 3
T1+T2 1 0.1115 0.1243 0.1260 0.0369 4
T1+T2+ADC 1 0.0839 None None None 1
T1+T2+PET 1 0.2057 0.0183 None None 2
T1+T2+ADC+PET 1 0.1829 0.0475 None None 2
August 2021 | Volume 1
Qh2≤0.0975indicates that adding a new principal component or feature dimension based on the previous number of principal components no longer has an obvious improvement effect on
the final prediction effect, and then ends the increase of the component number.
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training and validation sets have an AUC of 98% and 93%, a
sensitivity of 92.5% and 83.5%, and a specificity of 98.7% and
84.9%, respectively. Some studies have used advanced imaging
modalities (DWI and PET, etc.) to differentiate GBM from SBM.
Lee et al. (29) analyzed patient age and sex, minimum ADC
Frontiers in Oncology | www.frontiersin.org 7
value, and ADC ratio of the two groups and found a statistical
difference between GBM and metastasis. Kamson et al. (31)
tested the accuracy of a[11C]-methyl-L-tryptophan (AMT)–
positron emission tomography (PET) to differentiate GBM
from metastases and concluded that tumor/cortex AMT SUV
FIGURE 5 | Random forest classifier scores for glioblastoma and solitary brain metastases in the validation cohort; the red line indicates median, and the white
diamond represents average prediction score.
FIGURE 4 | Fivefold and mean receiver operating characteristic (ROC) curve for prediction in the validation cohort.
August 2021 | Volume 11 | Article 732704
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ratios could distinguish GBM from metastases. However, their
researches are just quantitative or semi-quantitative statistical
analyses and limited to depict heterogeneous nature and excavate
Frontiers in Oncology | www.frontiersin.org 8
deeper information of GBM and metastases. As far as we know,
this is the first radiomic study in brain tumors that combines
MRI and 18F-FDG PET. The CE-T1WI/T2WI, DWI, and
FIGURE 6 | Fivefold mean ROC curve for different modality combination.
TABLE 3 | Comparison of diagnostic performance between integrated radiomics model and other methods in the training and validation sets.

Group Training set Validation set

AUC p-Value* Sensitivity Specificity AUC Sensitivity Specificity

Integrated radiomics model Conventional + DWI+ 18F-FDG
PET

0.98 (0.93,
0.99)

92.5% 98.7% 0.93 (0.81,
0.97)

83.5% 84.9%

Combined radiomics model DWI + 18F-FDG PET 0.93 (0.89,0.97) 0.014 82.3% 91.2% 0.81 (0.67,0.89) 72.5% 78.1%

Conventional + DWI 0.89 (0.83,
0.94)

0.011 92.1% 89.7% 0.86 (0.74,
0.93)

76.1% 86.8%

Conventional + 18F-FDG PET 0.91 (0.84,
0.95)

0.015 91.7% 94.7% 0.83 (0.74,
0.93)

80.4% 80.3%

Single radiomics model Conventional MR 0.85 (0.74,
0.93)

0.018 82.6% 88.7% 0.84 (0.77,
0.91)

79.8% 76.1%

DWI 0.84 (0.71,
0.87)

0.017 77.2% 75.8% 0.83 (0.78,
0.88)

82.2% 74.5%

18F-FDG PET 0.85 (0.72,
0.91)

0.421 66.4% 93.5% 0.84 (0.76,
0.89)

87.8% 72.2%

Single nonradiomics
method

ADC max 0.59 (0.52,
0.65)

<0.001 56.4% 62.1% 0.51 (0.49,
0.72)

77.1% 61.3%

ADC avg 0.57 (0.51,
0.63)

<0.001 61.4% 72.3% 0.53 (0.51,
0.64)

67.3% 77.3%

SUV max 0.67 (0.62,
0.75)

<0.001 64.1% 53.4% 0.55 (0.47,
0.62)

62.1% 57.1%

SUV avg 0.64 (0.59,
0.71)

<0.001 81.7% 74.3% 0.59 (0.56,
0.67)

69.3% 62.7%

TBR max 0.71 (0.66,
0.77)

<0.001 80.4% 71.9% 0.67 (0.63,
0.77)

71.2% 89.3%
August 2021 |
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Numbers in parentheses are 95% confidence intervals.
ADC, apparent diffusion coefficient; SUV, standardized uptake value; TBR, tumor-to-background ratio.
*P-value refers to the significance among the differences of the AUCs between the integrated radiomics model and the other model or method.
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18F-FDG PET in the model provided structural, functional, and
metabolic information at the same time and space, which makes
our research more comprehensive and in-depth.

This study extended previous radiomic studies that only
extracted features from cMRI sequences on enhancing tumor
region or peri-enhancing edema region to differentiate GBM
from SBM (12–15, 32–35). First, we incorporated DWI and 18F-
FDG PET based on cMRI sequences, which is the first of its kind.
Second, the ROI of our study covers both enhancing tumor
region and peri-enhancing edema region, which is larger than
that of previous studies and is conducive to extracting more
effective features. Third, we used the t-test to screen radiomics
features with significant independence, and then used partial
least squares regression to process these features further. The
partial least squares regression with fivefold cross-validation was
applied to analyze the correlation between different radiomics
features within and between different imaging types in this study.
Through cross-validity analysis to determine the final output
dimension size of PLS regression, all radiomics features were
mapped to the new two-dimensional space. After that, a variety
of classical classifiers were used to predict classification outcomes
using the new effective features, and the classifier with the best
result (The random forest classifier is selected in this paper) will
be selected to build the final radiomics model. Unlike the partial
original radiomics features screened by LASSO in previous
studies, we built the new interpretation dimensions according
to the correlation between all radiomics features principal
components and the corresponding label principal components
to complete the construction of radiomics model. Even in a few
new projection mapping dimensions, the final results are
satisfactory. By comparing the diagnostic performance of
models, we finally found an optimal integrated radiomics
model to distinguish GBM from SBM. The integrated
radiomics model achieved a noteworthy result, with AUCs of
0.98 (95% CI: 0.83–0.99) and 0.93 (95% CI: 0.81–0.97) in the
training and validation sets, respectively, indicating the higher
predictive performance of our study than the former ones.

Nevertheless, there are several limitations in this study. The
total sample size was relatively small for the radiomics study, and
a larger data set is needed to assess and adjust our model.
Moreover, the validation set size is small, leading to the
relatively low sensitivity of the integrated radiomics model.
Finally, the study is a retrospective single-center study, and
larger data sets from multicenter registration using different
Frontiers in Oncology | www.frontiersin.org 9
MR protocols should be interrogated to improve the radiomics
model’s stability further. If validated correctly and properly, this
integrated model is expected to differentiate GBM from SBM
before surgery, which can improve the diagnostic accuracy and
provide help for the treatment plan and prognostic evaluation.
Although the low-dimensional effective features screened by PLS
can get a satisfactory performance, it ignores those principal
components with large numbers but small contributions in
feature screening, which may lead to a low cumulative
contribution rate of the final screened effective features.
Therefore, how to mine new information from these principal
components with a large number but small contribution can be
the future research direction.

In conclusion, our results confirm that the integrated
radiomics model incorporating functional (DWI) and
metabolic (18F-FDG PET) sequences can achieve promising
diagnostic efficiency for distinguishing between GBM and SBM
with robustness. A large-scale multicenter study should be
carried out to further confirm the preliminary results, thus
making this noninvasive, simple and effective method
applicable for routine clinical practice.
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