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High mobility group box 1 (HMGB1) is a non-histone DNA-binding protein of about

30 kDa. It is released from a variety of cells into the extracellular milieu in response

to inflammatory stimuli and acts on specific cell-surface receptors, such as receptors

for advanced glycation end-products (RAGE), Toll-like receptor (TLR)2, TLR4, with or

without forming a complex with other molecules. HMGB1 mediates various mechanisms

such as inflammation, cell migration, proliferation, and differentiation. On the other

hand, HMGB1 enhances chemotaxis acting through the C-X-C motif chemokine ligand

(CXCL)12/C-X-C chemokine receptor (CXCR)4 axis and is involved in regeneration. In

the oral cavity, high levels of HMGB1 have been detected in the gingival tissue from

periodontitis and peri-implantitis patients, and it has been shown that secreted HMGB1

induces pro-inflammatory cytokine expression, such as interleukin (IL)-1β, IL-6, and

tumor necrosis factor (TNF)-α, which prolong inflammation. In contrast, wound healing

after tooth extraction or titanium dental implant osseointegration requires an initial acute

inflammation, which is regulated by secreted HMGB1. This indicates that secreted

HMGB1 regulates angiogenesis and bone remodeling by osteoclast and osteoblast

activation and promotes bone healing in oral tissue repair. Therefore, HMGB1 can prolong

inflammation in the periodontal tissue and, conversely, can regenerate or repair damaged

tissues in the oral cavity. In this review, we highlight the role of HMGB1 in the oral cavity by

comparing its function and regulation with its function in other diseases. We also discuss

the necessity for further studies in this field to provide more specific scientific evidence

for dentistry.

Keywords: high mobility group box 1, inflammation, periodontal regeneration, periodontitis, osseointegration,

tooth movement, wound healing

INTRODUCTION

An inflammatory or immune response in oral tissues occurs when biological reactions such as
microbial infection, physical trauma, neoplastic processes, and autoimmune conditions occur in
the oral environment. The oral cavity contains complex microbial flora, and the immune system
promotes pro-inflammatory cytokine production (1). Sterile injuries, such as tooth extraction
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and orthodontic tooth movement also cause an immune
reaction and subsequent tissue repair. Immediately after a dental
extraction is performed, blood platelets are recruited into the
collagen connective tissue, a clot starts to form, and growth
factors and angiogenesis mediators are being produced (2). In the
context of orthodontic tooth movement, an initial inflammatory
reaction is generated at the compression sites caused by
constriction of the periodontal ligament. The periodontal
ligament releases pro-inflammatory cytokines and promotes
tissue resorption (3). It has been mentioned that chronic
inflammation and oxidative stress promote carcinogenesis (4). In
the oral cavity, it has been suggested that both cyclooxygenase
(COX) 2 and chronic inflammation are involved in the initiation
of carcinogenesis process of oral squamous cell carcinoma (5).
Becht’s disease, a well-known autoimmune condition, exhibits
symptoms such as aphthous ulcers in the oral cavity, and it
is suggested that there is a relationship between this disease
and periodontitis, which is a major chronic oral inflammatory
pathology (6). It is thought that the inflammatory and immune
response are closely related to both the progress of the diseases
and tissue repair.

HMGB1 is a nuclear protein that regulates transcription and
is one of the damage-associated molecular patterns (DAMPs),
which act as major mediators in immune reactions. HMGB1
has several isoforms, which have distinct biological implications.
These isoforms are: “fully reduced HMGB1,” “disulfide HMGB1,”
and “sulfonyl HMGB1” named after the different redox reactions
that occur in the three cysteines at positions 23, 45, and 106
of HMGB1 (7). Necrotic cell death or cell stress promotes fully
reduced HMGB1, which forms a heterocomplex with CXCL12.
The heterocomplex binds to the CXCR4 receptor with increased
affinity and enhances chemotaxis (8). Fully reduced HMGB1
can be oxidized to disulfide HMGB1, which forms a disulfide
bond between C23 and C45, and exerts a pro-inflammatory
effect by promoting cytokines production via the TLR4/myeloid
differentiation factor 2 (MD-2) complex. Fully oxidized HMGB1
and sulfonyl HMGB1 are thought to be inert (9, 10). The
difference in the isoforms is thought to be one of the reasons why
HMGB1 is involved in two opposing functions: progression of
inflammation and tissue repair.

Initially, HMGB1 was shown to cause a danger signal in
acute inflammatory diseases such as sepsis. Wang et al. (11)
reported that HMGB1 was liberated from cells stimulated with
cytokines and that HMGB1 plays an important role in mediating
experimental sepsis. Yamamoto et al. (12) reported that
lipopolysaccharide (LPS) increased pro-inflammatory cytokine
secretion from peritoneal macrophages and initiated intracellular
signaling to activate nuclear factor kappa-light-chain-enhancer
of activated B cells (NF-κB) by binding RAGE and TLR2. In
the report, they mentioned that LPS-mediated RAGE signaling
accelerates acute inflammation and vascular dysregulation,
leading to tissue damage, which then mediates HMGB1 release
in the late phase, resulting in a pernicious cycle of RAGE-
dependent lethality in septic shock. Yang et al. (9) reported
that disulfide HMGB1 binds MD-2/TLR4, andMD-2 antagonists
inhibited hepatic ischemia/reperfusion injury, chemical toxicity,
and sepsis in mice. HMGB1 is not only involved in acute

inflammation but also in chronic inflammation. Gasiorowski
et al. (13) reported that RAGE activation should be perceived
as a primary mechanism that determines self-perpetuated
chronic inflammation in Alzheimer’s disease, and the crosstalk;
RAGE cooperation with TLRs amplifies inflammatory signaling
via extracellular signal-regulated kinase (ERK)1/2, mitogen-
activated protein kinase (MAPK), p38, c-Jun N-terminal kinase
(JNK), and NF-κB signaling. In a recent report, it was shown
that the HMGB1/CXCL12 heterocomplex can be maintained in
rheumatoid arthritis (RA) by the activity of the prostaglandin
E2 (PGE2)/COX2 pathway, the Janus kinase/signal transducer
and activator of transcription (JAK/STAT) pathway, and the
thioredoxin system, all of which are associated with the activation
of the disease (14). In addition, in juvenile idiopathic arthritis
patients (JIA), the presence of three functional HMGB1 redox
isoforms confirms the complexity of their pathogenic role during
chronic inflammation (15).

Until now, many researchers have focused on HMGB1 as
an inflammatory mediator that prolongs various inflammatory
diseases, and because of this research has focused on inhibiting
the function of HMGB1 to treat such diseases (16, 17). However,
in recent reports, another aspect of HMGB1, which is related to
its role in tissue healing and regeneration, is being highlighted
(18, 19). Originally, inflammation is believed to be not only
a chronic and degenerative disease, but also part of the
physiological process that initiates tissue repair and regeneration.
Infection or injury of epithelium leads to the generation of
DAMPs and pathogen-associated molecular patterns (PAMPs),
which then activate immune cells for regeneration by stimulating
cell proliferation and differentiation (20). Vénéreau et al. (18)
created the mutant HMGB1 (3S HMGB1), in which the cysteines
are replaced with serines, which are resistant to oxidation, and
behave as reduced HMGB1. Tirone et al. (21) reported that 3S
HMGB1 orchestrates muscle and liver regeneration via CXCR4.
A recent study also reported that fully reduced HMGB1 forms
a heterocomplex with CXCL12, which binds to CXCR4 and then
accelerates skeletal, hematopoietic, andmuscle regeneration (22).

In addition, an explanation of the HMGB1 function is
that HMGB1-C1q complexes regulate macrophage polarization
by inducing the differentiation to anti-inflammatory M2-like
macrophages (23). The activation of complements is strongly
involved in immune cell migration. There are three pathways
of complement activation: the classical pathway, the Mannan-
binding lectin pathway, and the alternative pathway, all of
which promote immune cell migration by producing the cleaved
complement component 3 (C3a) and cleaved complement
component 5 (C5a) (24). On the other hand, the C1 complex
(C1q), which normally triggers the classical pathway, is
thought to regulate both inflammation and regeneration by the
coexistence of DAMPs. Liu et al. (25) reported that the HMGB1-
C1q complex induces production of proresolving mediators such
as resolvin (Rv)D1 and RvD2. The resolution of inflammation
and macrophage polarization may result in tissue regeneration.

The oral cavity has a complex environment having a variety
of different tissues such as epithelium, connective tissue, and
hard tissue such as teeth and bone, along with various bacterial
species. Thus, in this complex environment HMGB1 may play
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its dual role in prolonged inflammation and tissue regeneration.
However, we still do not know the detailed mechanism by which
the isoform of HMGB1, or how the HMGB1 forming complex is
involved in oral inflammation and regeneration in the oral cavity.
In this review, we specifically focus on the role of HMGB1 in oral
inflammation and regeneration. We introduce past reports and
suggest future directions.

HMGB1 IN ORAL INFLAMMATORY
CONDITIONS

Periodontal Inflammation
Periodontal diseases are dysbiotic conditions in the gingival
margin, which are characterized by an imbalance between
subgingival microbial communities and the host immune
response (26, 27). Clinical studies have demonstrated that
the levels of TLR2 and TLR4 in periodontitis patients were
significantly higher than those in control groups (28, 29). Li et al.
(29) also demonstrated the presence of TLR4, CD14, and MD-
2 expression in both cultured human gingival keratinocytes and
fibroblasts. Porphyromonas gingivalis (P. gingivalis) is considered
a keystone pathogen for periodontitis (30). P. gingivalis fimbriae
can activate the TLR2 and TLR4 pathways, leading to excessive
production of pro-inflammatory cytokines and chemokines
in monocytic cells (31). PAMPs are conservative molecules
associated with groups of pathogens or their products, and are
involved in the development of periodontitis. LPS of P. gingivalis
is an effective ligand for TLR4, and Li et al. (32) discovered that
the ability of human periodontal ligament stem cells (hPDLSCs)
to differentiate into osteoblasts was impaired by LPS, through
a TLR4-mediated NF-κB pathway. Lipoprotein derived from P.
gingivalis can serve as a ligand for TLR2 and activate the NF-
κB pathway (33). Okugawa et al. (34) reported that soluble
peptidoglycans (PGNs) of P. gingivalis and Aggregatibacter
actinomycetemcomitans (A. actinomycetemcomitans) induced
IL-8 production in cultured oral epithelial cells. TLRs on
gingival tissues such as gingival epithelium, gingival fibroblasts,
periodontal ligaments, and immune cells recognize PAMPs, and
the TLR signals induce significant amounts of inflammatory
mediators. An exaggerated reaction response by the immune
response promotes the production of receptor activator of
nuclear factor kappa-B ligand (RANKL), activates osteoclasts,
and then cause tissue destruction and bone resorption.

The Cells in Periodontal Tissue Produce
HMGB1
Not only PAMPs but also alarmins such as HMGB1 are
considered as a significant factor during osteoclastogenic.
Infection promotes HMGB1 secretion from periodontal tissue,
and the secreted HMGB1 is involved in the lingering or
aggravation of periodontitis. HMGB1 was detected at high
levels in gingival crevicular fluid (GCF) in periodontitis patients
(35, 36). There were significant positive correlations between
the levels of HMGB1 in GCF and all periodontal parameters,
including plaque index, bleeding index, probing depth, and
clinical attachment level. The abundance of HMGB1 in GCF

in chronic periodontal patients suggests that human gingival
epithelial cells secrete HMGB1 up on stimulation by bacterial
infection (37). That study also confirmed that TNF-α promotes
HMGB1 production in vitro, using rat gingival epithelial cells
and Ca9-22 cells, which is an oral epithelial cell line. Ito et al.
(38) reported that IL-1β promoted the secretion of HMGB1
in human gingival epithelial and fibroblast cells. They also
confirmed that gene expression of RAGE was highly upregulated
by IL-1β stimuli in cultured human gingival epithelial cells,
and that HMGB1 and RAGE were highly expressed in gingival
epithelial cells in patients with oral inflammation. Another
study reported that HMGB1 was dislocated from the nucleus
of the cells in the pocket epithelium, which faces the infected
root surface, but it was mainly localized in the nucleus in
the gingival epithelium of periodontitis patients (39). They
also confirmed that butyric acid, which is a metabolite of
periodontal pathogens and a virulence factor of P. gingivalis,
induced HMGB1 production in Ca9-22 cells in vitro. Our
previous report suggested that HMGB1 translocated from the
nucleus into the cytoplasm in the gingival epithelium in vivo,
in a periodontal mouse model with P. gingivalis-soaked ligatures
(40). In vitro analysis using cultured progenitor human gingival
epithelial cells (HGECs) and THP-1 cells, which is a macrophage-
like cell line, showed that TNF-α induced HMGB1 production.
Interestingly, the amount of HMGB1 production was lower in
HGECs (<20 ng/mL) than in THP-1 cells (more than 60 ng/mL)
(40). Gingival connective tissue located between the epithelium
and the root surface contains gingival fibroblasts. It has been
reported that cultured human gingival fibroblasts (HGF) produce
HMGB1 upon stimulation by LPS of A. actinomycetemcomitans,
P. gingivalis, and Escherichia coli, and upon apoptotic and
necrotic initiation (41). The periodontal ligament, which is also
a connective tissue lying between the alveolar bone and tooth
root, contains periodontal ligament fibroblasts (PDLF). Nogueira
et al. (42) reported that HMGB1was produced in cultured human
PDLF upon treatment LPS and IL-1β. They also confirmed
the expression of HMGB1 in the periodontal ligament in an
experimental periodontitis rat model (42). However, we still do
not know which tissue is the main source of HMGB1 production
in periodontium.

Secretion of HMGB1 around periodontal tissue is considered
to promote pro-inflammatory cytokine production and prolong
periodontitis. Kim et al. (43) reported that recombinant HMGB1
induced the expression of TNF-α, IL-1β, IL-6, IL-11, and IL-
17 mRNA in immortalized human PDL cells (hPDLCs). They
also showed that TLR4 and TLR2 expression was increased
in hPDLCs exposed to HMGB1 and that neutralizing anti-
TLR2 and anti-TLR4 antibodies specifically inhibited HMGB1-
induced expression and secretion of osteoclastogenic cytokines
and expression of RANKL (43). Parks et al. (44) reported
that RAGE plays only a minor role in macrophage activation
by HMGB1, whereas signaling through TLR 2 and TLR4
prompted the release of TNF-α, IL-1β, and IL-6 from cultured
mouse neutrophils and macrophages. In addition to other
inflammatory diseases, secreted HMGB1 is considered to
promote inflammation; however, there is little evidence to
have examined the difference in HMGB1 isoforms in this
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research area. One of the reasons for these limitations was
the difficulty in using recombinant HMGB1 proteins because
they easily form complexes with other molecules such as LPS
and IL-1β.

Periapical lesions are osteolytic bone defects that are
inflammatory immune defensive reactions that originate as a
consequence of microbial and toxin invasion into the root canal.
It has been established that a variety of cytokines and chemokines
participate in the innate immune-inflammatory response and
later in the adaptive immune response (45). These cytokines,
including matrix metalloproteinases (MMPs), IL-1β, and IL-6
play a critical role in osteoclast formation and alveolar resorption
(46). Liu et al. (47) reported the presence of HMGB1 and TLR4-
positive cells around periapical lesions surrounding the apical
foramen via osteoclast activation.

In addition to teeth, dental implants also suffer from
bacterial infection. Peri-implantitis is a destructive inflammatory
process caused by bacteria surrounding dental implants (48).
Previously, it was reported that RAGE levels were elevated
in patients susceptible to periodontitis compared to healthy
patients, but TLR2 and TLR4 levels did not change before
implant therapy. After implant therapy, RAGE and TLR4 levels
were upregulated but TLR2 levels were downregulated (49). In
addition, a higher concentration of HMGB1 has been found
in the GCF from inflammatory gingival tissue in comparison
to the healthy site around the dental implant (35, 50). The
expression levels of other pro-inflammatory factors, such as IL-
1β, Il-6, IL-8, and TNF-α, were also higher in the GCF from
peri-implantitis sites than in the GCF from healthy sites. They
reported that HMGB1 expression level in GCF is indicative
of the progression of peri-implantitis and may be a useful
diagnostic biomarker.

HMGB1 Blockade Inhibits Periodontitis
Progression
It was revealed that HMGB1 is involved in the aggravation
of periodontitis by HMGB1 blockade analysis. Glycyrrhizin is
the chief sweet-tasting constituent of Glycyrrhiza glabra root
and is contained in various oral hygiene products such as
toothpaste and mouth wash to exert an anti-inflammatory effect
(51, 52). Mollica et al. (52) reported that glycyrrhizin binds
to HMGB1 specifically and inhibits cytokine activity. In our
previous report, the progression of periodontitis was inhibited
in a mouse periodontitis model with glycyrrhizin (53). A recent
study reported that glycyrrhizic acid suppressed inflammation
and reduced the increased glucose levels induced by the
combination of Porphyromonas gulae and ligature placement
in mouse model of diabetes (54). In this study, glycyrrhizic
acid also suppressed ligature/P. gulae-induced increases in
HMGB1 and RAGE both at the mRNA and serum levels in
the gingiva of diabetic mice. The anti-HMGB1 antibody is
one of the most powerful HMGB1 inhibitors and has been
used in many inflammatory disease models such as sepsis and
brain infarction (11, 55). In our study, administration of anti-
HMGB1 antibody in a murine periodontitis model inhibited
myeloperoxidase (MPO) activity, neutrophil migration, and bone

resorption in a dose-dependent manner. This result suggested
that a faster resolution of periodontal inflammation can be
achieved by blocking HMGB1. The antibody inhibited the
expression of IL-1β and C-X-C motif chemokine ligand 1
(CXCL1) in cultured cells. The antibody also inhibited TNF-
α-induced IL-1β production in HGECs and TNF-α-induced
GM-CSF production in THP-1 cells in vitro (40). In early
inflammation, gingival epithelial cells release various cytokines
and chemokines, and HMGB1 is then translocated from the
nucleus to the cytoplasm upon stimulation by TNF-α. The
released HMGB1 induces the translocation in an autocrine-
related manner; the released HMGB1 also induces GM-
CSF secretion from gingival epithelial cells, resulting in the
differentiation and activation of immune cells. As inflammation
proceeds via the continuous secretion of HMGB1, macrophages
release more cytokines, chemokines, and HMGB1. Moreover,
the released IL-1β promotes osteoclastogenesis and bone
resorption. Therefore, periodontal inflammation is initiated,
exacerbated, and prolonged by the HMGB1 secretion cycle.
The present study demonstrated that anti-HMGB1 antibody
succeeded in preventing prolonged immunostimulation and
bone-resorbing activity of osteoclasts by inhibiting the release
of cytokines in periodontal tissue. However, HMGB1 blockade
with anti-HMGB1 antibody partially inhibited periodontal
progression, thus indicating that there might be another
HMGB1-independent pathway.

Periodontitis has been associated with many other systemic
diseases; for instance, there is a two-way relationship between
diabetes and periodontitis (56). In 2012, a hypothesis was
reported that secreted HMGB1 acting through RAGE, on
monocytes, macrophages, and vascular endothelial cells, and
might play an important role in the development of diabetes-
associated periodontitis (57), and many reports regarding this
relationship are currently being conducted. RAGE is one
of the receptors for HMGB1, and its expression is higher
in gingival tissue of patients with type 2 diabetes than
in healthy patients (58). Blockade of HMGB1 by soluble
RAGE (sRAGE) suppressed periodontitis-associated bone loss
in diabetic mice (59), and serum levels of sRAGE and cleaved
RAGE were significantly lower in periodontitis patients (60).
However, soluble RAGE to neutralize RAGE receptors does
not specifically block HMGB1, as there are multiple other
RAGE ligands, such as AGEs, S100As, and lysophosphatidic
acid (LPA), which may bind to this receptor as well as to
HMGB1 (61, 62). Metformin, the first-line medication for the
treatment of type 2 diabetes, is also considered an HMGB1
inhibitor because it directly binds HMGB1 and inhibits the
pro-inflammatory activity (63). Metformin and metformin
hydrochloride-loaded poly lactic-co-glycolic acid nanoparticles
decreased the inflammatory response and bone loss in a rat
periodontitis model (64, 65). These findings indicate that
metformin does not only have a hypoglycemic action but also
has an anti-inflammatory effect to block HMGB1, and it might
be effective in diabetes-associated periodontitis. In summary,
HMGB1, and RAGE are involved in the two-way relationship
between diabetes and periodontitis, and metformin has the
potential to resolve them.
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ORAL REGENERATION ASSOCIATED WITH
HMGB1

Wound Healing Around the Gingival Tissue
and After Tooth Extraction
Tancharoen et al. (66) reported that HMGB1 promotes intraoral
palatal wound healing through RAGE. In vivo analysis showed
that the wound closure of palatal gingival tissue was attenuated
in heterozygous HMGB1 (Hmgb1+/−) mice compared to
wild type (WT) mice. In the Hmgb1+/− mice, the number
of proliferating cell nuclear antigen (PCNA), NF-κB p50,
and vascular endothelial growth factor (VEGF) were lower
than those in WT mice. In vitro analysis using cultured
HGF revealed that keratinocyte proliferation and migration
during re-epithelialization was delayed in RAGE knockdown
cells compared to that of the control, as determined by
the wound scratch assay and the gene expression level of
PCNA. Bone healing after tooth extraction is representative
of intramembranous ossification. Healing after tooth extraction
requires an initial acute inflammation, which is regulated by
secreted HMGB1. Anti-HMGB1 antibody inhibits MPO activity,
IL-1β and VEGF-A expression, and migration of CD31-, CD68-
, TRAP-, and osteocalcin-positive cells. This indicates that the
secreted HMGB1 regulates angiogenesis and bone remodeling by
osteoclast and osteoblast activation, thus promoting bone healing
in the tooth extraction socket (67). This indicates that anti-
HMGB1 antibody inhibits not only aggravation of inflammatory
diseases such as periodontitis, but also inhibits initial acute
inflammation, which is essential for tissue repair.

Periodontal Regeneration
Periodontal regeneration is defined histologically as regeneration
of the tooth’s supporting tissues, including alveolar bone,
periodontal ligament, and cementum on a previously
diseased root surface (68). Particularly, PDLFs are thought
to play an important role in periodontal wound healing and
regeneration because they contain stem cells that can be used
to regenerate periodontal tissues (69). HMGB1 protein induced
PDLF proliferation and migration in in vitro studies. It also
promoted osteogenic differentiation parameters such as alkaline
phosphatase (ALP), osteopontin, osteocalcin, RUNX2, and
bone morphogenetic protein (BMP) (70). However, the authors
considered that HMGB1 might support the reestablishment
of the structural and functional integrity of the periodontium,
following periodontal trauma such as orthodontic tooth
movement described later, and might not support periodontal
regeneration. Indeed, there is no evidence that HMGB1 is
involved in periodontal regeneration. For further study, it must
be explored whether the different isoforms of HMGB1 are
involved in periodontal regeneration.

Orthodontic Tooth Movement
In addition to the in vitro analysis with PDLF (70), Wolf et al.
(71) also indicated that HMGB1, initially produced in PDLFs
by mechanical loading during orthodontic tooth movement,
decreased gradually. Initial HMGB1 production enhances the
activity ofmonocytes andmacrophages by clearing cellular debris
and activating RANKL to initiate bone remodeling (71). Cui

et al. (72) also reported that mechanical stress during orthodontic
tooth movement induces PDLFs to secrete HMGB1. Mechanical
stress also induced pro-inflammatory cytokine expression, such
as TNF-α and IL-6, from macrophages, which activates the
innate immune response. HMGB1 and these pro-inflammatory
cytokines are reduced in a time-dependent manner (72). HMGB1
is thought to react in an acute innate immune response, and
the gradual reduction of HMGB1 in PDLF is necessary for the
achievement of orthodontic tooth movement; however, more
evidence is still needed.

Dental Pulp Regeneration
Many studies regarding tissue regenerative procedures have
found that dental pulp cells (DPCs) are one of the stem cell
sources (73, 74). Zhang et al. (75) showed that in healthy dental
pulps, HMGB1 remains in the nuclei (confirming its nuclear
localization), but in inflamed pulps, the presence of HMGB1 in
the cytoplasm of infiltrated inflammatory cells, fibroblasts, and
endothelial cells increases. Moreover, HMGB1 mRNA levels in
these cells have been demonstrated to increase, which means that
the pulp infection also stimulates the synthesis of this molecule.
Through in vitro studies, these authors have also demonstrated
that elevated cytoplasmic presence of HMGB1 mRNA levels
after E. coli LPS stimulation in cultured DPCs. It has also been
demonstrated that high levels of cytokines in pulpitis such as
IL-6, IL-1, and TNF-α are also released by HMGB1 secretion
(76). Some studies have concluded that HMGB1 and its receptor,
RAGE, are involved in stem/progenitor cell differentiation in
order to repair damaged tissues (77, 78). In a study by Zhang
et al. (75) it was demonstrated that HMGB1 promoted DPCs
migration in a dose-dependent manner, and that HMGB1 also
activated Rho signaling and cytoskeletal reorganization. Thus,
the formation of new dentin could be established, confirming
the findings from Qi et al. (79) who found that HMGB1
promotes odontoblast differentiation from DPCs. However,
excessive quantities of this molecule may amplify inflammation
and may cause tissue damage. Based on these findings, it can be
concluded that HMGB1 plays crucial roles not only in dental pulp
inflammation, but also in dentine regeneration, enhancing DPC
recruitment into the pulp injury, stimulating their differentiation
into odontoblasts, and new dentin formation for healing of
damaged tissues. Furthermore, we recently reported that RvD2
induces active resolution of inflammation through pulp-like
tissue regeneration after root canal infection (80). It is possible
that the HMGB1-C1q complex induces the production of RvD2
for dental pulp regeneration, as suggested by Liu et al. (25).

Ti Osseointegration
Interestingly, in the latest report, HMGB1 is involved not only
in peri-implantitis but also in osseointegration. Osseointegration
is defined as the direct structural and functional connection
between the living bone and the surface of a load-bearing artificial
dental implant. Biguetti et al. (81) reported that the released
HMGB1 binding to RAGE contributes to titanium (Ti)-mediated
osseointegration in dental implants. In this report, HMGB1 was
detected at high levels at bone Ti implantation sites immediately
after implantation, followed by a gradual decrease in later time
points. Inhibition of HMGB1 with glycyrrhizic acid and RAGE
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FIGURE 1 | Scheme of the role of HMGB1 in periodontitis progression.

FIGURE 2 | Scheme of the role of HMGB1 in oral regeneration.

antagonistic peptide decreased bone matrix formation, blood
vessel formation, and migration of osteoblasts and osteoclasts
around the Ti surface. The growth factors andmesenchymal stem
cell markers were upregulated in the oral osteointegration model,
but these were reduced in the HMGB1 inhibition models.

CONCLUSION AND FUTURE DIRECTIONS

Evidence indicates that HMGB1 is associated with inflammation
or immune response in both pathogenic and repair processes
in the oral cavity. The reason may depend on the amount
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and duration of HMGB1, and the kind of stimulus, such
as whether the conditions were sterile or infectious, not its
dual role. In the context of periodontal inflammation, PAMPs
such as LPS initially bind TLR2/4 and butyric acid binds
to other receptors on the gingival epithelium, and promotes
HMGB1 secretion. The secreted HMGB1 forms a complex with
other molecules such as LPS, binds TLR2/4 and RAGE on
the adjacent epithelium, thus promoting autocrine/paracrine
signaling. The inflamed epithelium produced pro-inflammatory
cytokines and chemokines such as IL-8 and GM-CSF to migrate
and differentiate immune cells. Migrated immune cells, such as
neutrophils and macrophages, are activated by secreted HMGB1,
and produce pro-inflammatory cytokines such as IL-1β, IL-6,
TNF-α, and HMGB1 via TLR2/4 and RAGE. These cytokines
induce further HMGB1 production from other tissues, such
as gingival fibroblasts and periodontal ligaments. Then, the
aggravated inflammation promotes osteoclastogenesis and causes
alveolar bone resorption (Figure 1). There was no evidence
regarding which isoform of HMGB1 was mostly involved in the
progression of periodontal disease. In JIA, which is characterized
by chronic inflammation and periodontitis, it was indicated
that the presence of various functional HMGB1 redox isoforms
confirms the complexity of their pathogenic role during chronic
inflammation (15). Thus, subsequent studies should focus on
improving the understanding of the biological effects of different
isoforms of HMGB1 and different receptors in periodontitis.

On the other hand, regarding tissue repair, it is believed
that because of the complexity of HMGB1, its different
pathways depending on the redox forms, and its complex
formation with other molecules, it is difficult to know
how it orchestrates its biological function (Figure 2). The
administration of HMGB1 antibody inhibited chemotaxis, such
as neutrophil and macrophage migration, during socket repair.
Tirone et al. (21) reported that fully reduced HMGB1 induced
muscle and liver regeneration via CXCR4, whereas “disulfide
HMGB1” and its receptors TLR/MD-2 and RAGE are not
involved. However, we believe that HMGB1/RAGE signaling is
also important in oral tissue repair. Keratinocyte proliferation
and migration during oral palate healing are regulated by
HMGB1/RAGE signaling (66). Biguettiet al. (81) reported that
HMGB1/RAGE signaling is involved in stem cell migration,
macrophage M1/M2 polarization, and osteogenesis during Ti-
implant osseointegration. In addition, further studies are needed
to examine whether fully reducedHMGB1, CXCL12, and CXCR4
participate in the biological process.

Furthermore, there is need to produce a certain amount
of HMGB1; disulfides HMGB1 binding TLR2 or TL4, to
produce pro-inflammatory cytokines for initial inflammation
during tissue repair. The presence of oral bacteria may be

important to determine whether HMGB1 plays a role in
inflammation or regeneration in the oral cavity. Pathogen
removal by physical approach or immune cell activity such
as phagocytosis decreases HMGB1 secretion following pro-
inflammatory cytokine reduction, M1/M2 polarization change,
and then promotes tissue repair. However, the remaining
pathogen induces further HMGB1 secretion, continued pro-
inflammatory cytokine production, and impaired healing or
chronic inflammation. To understand the detailed mechanism
of this complexity of HMGB1, further studies are required. For
example, the use of different isoforms of recombinant HMGB1
or knock down analysis of HMGB1 receptors are needed in this
research field. In addition, mostly, in vivo and in vitro studies
have been included in this review; thus, further clinical studies,
such as a translational study using anti-HMGB1 antibody or
HMGB1 protein as a therapeutic agent, are needed to examine
the biological effects of HMGB1 in the human body.
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