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Simple Summary: Slugs are significant pests, physically damaging plants from their voracious
appetite as well as dispersing bacteria which could be harmful to plants and humans. They
produce substantial economic costs, both as a direct result of plant destruction, and indirectly
through attempts of pest control. This study explored the ecological aspects of the bacterial micro-
biome of Ambigolimax valentianus, a slug invasive to California. We identified a core microbiome in
A. valentianus and found that their bacterial microbiome can be influenced and may depend sub-
stantially on both diet and environment. We also found that A. valentianus slugs harbor ecologically
important bacteria, therefore their dispersal could have environmental and agricultural implica-
tions for both crop health and plant science. Future studies that provide a better understanding
of the slug bacterial microbiome may be an important step in the development of comprehensive
slug management.

Abstract: Ambigolimax valentianus is an invasive European terrestrial gastropod distributed through-
out California. It is a serious pest of gardens, plant nurseries, and greenhouses. We evaluated
the bacterial microbiome of whole slugs to capture a more detailed picture of bacterial diversity
and composition in this host. We concentrated on the influences of diet and environment on the
Ambigolimax valentianus core bacterial microbiome as a starting point for obtaining valuable infor-
mation to aid in future slug microbiome studies. Ambigolimax valentianus were collected from two
environments (gardens or reared from eggs in a laboratory). DNA from whole slugs were extracted
and next-generation 16S rRNA gene sequencing was performed. Slug microbiomes differed between
environmental sources (garden- vs. lab-reared) and were influenced by a sterile diet. Lab-reared
slugs fed an unsterile diet harbored greater bacterial species than garden-reared slugs. A small
core microbiome was present that was shared across all slug treatments. This is consistent with our
hypothesis that a core microbiome is present and will not change due to these treatments. Findings
from this study will help elucidate the impacts of slug-assisted bacterial dispersal on soils and
plants, while providing valuable information about the slug microbiome for potential integrated pest
research applications.

Keywords: terrestrial slug; gastropod; bacteria; microbiome; host

1. Introduction

With the advances of next-generation sequencing, research focused on host–microbiome
systems has expanded and now includes a wider range of plants and animals. All inverte-
brates associate with bacterial communities, which form a component of their microbiome.
Notably, invertebrates’ microbiomes are often overlooked. Bacteria associated with inverte-
brates play many roles in association with their hosts—including protection or supporting
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overall health and fitness—or have negative implications for the host, and may, therefore,
be ecologically important [1,2]. Invertebrate systems have been shown to be excellent
models for the study of host–bacterial associations, partially due to their smaller size and
rather uncomplicated gut communities [3]; yet, to date, little work has been conducted in
malacological (the study of mollusks) research focused on bacteria associated with whole
terrestrial slugs [4].

Several observations concerning the life-history traits (reproduction, growth, distribu-
tion, seasonal variation, and fitness) of slugs have been explored [5–9]. Disruption of these
traits may lead to decreased slug fitness or slug death; therefore, any substances that affect
these traits should be explored as possible alternatives for slug control. Few studies have
focused on the role of the gastropod immune response [10,11] and how bacteria may affect
these traits. The majority of terrestrial gastropod microbiome research focuses on the guts
or feces of this invertebrate [12–26]; however, the cellular and humoral components that
make up the slug innate immune response are found in the slug’s open circulatory system
(hemolymph) throughout the slug’s body [27–29]. The characterization of the bacterial
community of whole slugs may provide knowledge about the slug immune response and
possibly help identify the bacterial players involved. Additionally, bacteria have been
shown to be affective against other pest species such as bollworms, cotton leaf worms,
nematodes, mussels, and snails [30–36]. Information regarding the bacterial players in-
volved in slugs would be useful for future slug life-history studies and may aid in the
development of bacterial biocontrol against slugs.

Slugs may serve as vectors for transporting microorganisms from place to place. There-
fore, many slugs that are considered invasive could harbor or translocate a variety of exotic
or pathogenic microorganisms within their microbiome. Horticulturalists, agronomists,
and land managers recognize the need to effectively control slug populations in an ecologi-
cally sound manner. Bacterial communities within organisms have notable functions to
their hosts survival, and in some cases, provide its host with insecticide resistance [37–40].
Furthermore, these microbes can offer protection to its host from its natural enemies [41–43].
The interactions between slugs, bacteria, and their environment can vary; characterizing
the bacterial community within—and among—slugs is an important step for elucidating
the nature of these various interactions [44]. Given their fundamental role, slugs provide
an exemplary system for addressing questions concerning composition, function, and
diversity of this malacological microbiome [3,45].

Slugs have the capacity to thrive in a range of conditions. Indeed, their success is
attributed to mucus production that deters predators, as well as high reproduction rates
and adaptable appetites [4]. They are major pests of plant nurseries and several agricultural
crops, including corn, soybean, wheat, brassicas, leafy vegetables, and strawberry crop
systems [46]. Slugs target a variety of plants and grasses, often by killing seedlings outright,
causing considerable amounts of economic damage in California arable and horticultural
crops, commercial nurseries, and home gardens [4,47].

Most slug species found in California nurseries are invasive, with many having been
transported long distances. Known invasive slug species in California include members of
genera Deroceras and Arion, as well as the species Milax gagates and Ambigolimax valentianus,
all originating from Europe [4,46]. Although individual slugs do not move rapidly per se,
trade in horticultural commodities has facilitated their spread. As a result, additional exotic
slug species, or species not considered to be endemic to California, are likely to appear
there in the near future [4,46].

Malacological studies have yet to determine the bacterial microbiome of whole slugs,
and more importantly, address the context wherein diversity of the slug bacterial micro-
biomes is being shaped. The bacterial microbiome of terrestrial gastropods has displayed
many important functions, including playing a vital role in digestion and having metabolic
capabilities, enzymatic activity, and biochemical activity reflective of plant biomass degra-
dation and the breakdown of lignocellulose [12–26]. Their bacterial microbiome also
responds to changes in their diet and environment, which has shown to affect their weight
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and health [14,21,48–50]. To gain an understanding into the slug’s bacterial ecological
relationships, we investigated the bacterial microbiome of Ambigolimax valentianus, a slug
invasive to California, using sterile microcosm experiments. Moreover, to address some
factors shaping slug bacterial microbiomes, we evaluated whether the bacterial microbiome
of A. valentianus can be influenced by changing their diet and environment. To elucidate the
impacts of slug-assisted bacterial dispersal on soils and plants, we hypothesized that (1) The
overall bacterial communities of A. valentianus can be manipulated via their environment
and diet, while (2) a core bacterial community creates the basis for future studies of slug
microbiomes on host physiology, but will also provide useful information for Integrated
Pest Management applications.

2. Materials and Methods
2.1. Study Species

Ambigolimax valentianus evolved in Europe and is invasive in California, geograph-
ically distributed throughout at least 29 counties in California [46]. One distinguishing
morphological characteristic of A. valentianus is the presence of two distinct lines extending
down their back along the entire length of their body. These slugs are wide-scale pests,
feeding on plants and decomposing wood [46].

2.2. Sample Collection

Adult slugs were collected with sterile gloves from shaded areas beneath flats and pots
of various plants from Louie’s Nursery, a market garden located in Riverside, California
in April 2017. Upon collection, slugs were placed in sterile 15 mL conical tubes and
subsequently returned to the laboratory at the University of California, Riverside, for
downstream analyses. For characterizing the initial slug bacterial microbiome, five of
these slugs were frozen immediately. The remaining 15 were divided into three sterile
microcosms, consisting of five slugs each.

In addition to slugs collected from the garden, slugs were also reared in the laboratory.
The eggs from previously collected A. valentianus were gathered and kept in a dish with
moist paper towels at room temperature (~20–23 ◦C) due to their vulnerability to increased
heat and cold [51,52]. The juvenile slugs that emerged from the eggs were transferred
to new dishes, kept moist, and fed with carrots and wet dog food. Slugs are usually
characterized by a juvenile or adult stage (sexually maturity), the latter of which can take
up to a few months to reach [47,53,54]. Laboratory-reared slugs were given 4–6 months
of growth to reach maturity to be consistent with the size of the adult slugs collected
from the garden. Ten randomly selected laboratory-reared slugs were divided; five were
frozen for initial bacterial microbiome analyses and the remaining five were placed into a
sterile microcosm.

2.3. Experimental Design

Each microcosm was composed of sterile, autoclaved paper towel, initially moistened
with ~5 mL of sterile water; thereafter, small amounts of sterile water were added to each
microcosm to maintain consistent moisture. All slugs were fed ad libitum with a sterile
diet composed of a mixture of autoclaved carrots, bran, and nutrient agar. To maintain
sterility, each microcosm was only opened in a biosafety cabinet; sterile forceps were used
for feeding, as well as slug placement or removal.

Laboratory-reared slugs were initially fed non-sterile dry and wet canned dog food
and carrots. Five of those slugs were placed into a sterile microcosm, as described above.
Some species of parasitic nematodes are natural enemies of slugs. They enter the slug
through natural openings and release pathogenic bacteria into the slug mantle. Symptoms
of nematode infection, such as swelling of the mantle and death, can appear as early as
4 days [55–60]. To prevent using slugs naturally infected with nematodes, slugs were
housed in sterile microcosms for two weeks before DNA analyses.
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2.4. Sample Processing

Whole slug tissues were prepared for DNA extraction in 15 mL conical tubes by
blending each slug with sterile water using 14 G, 16 G, and 18 G needles (in sequential
order) to create a slug mixture. The amount of sterile water added was determined by slug
weight. DNA extraction of the slug mixtures was performed using the MoBio PowerSoil®

DNA extraction kit (Qiagen Inc., Valencia, CA USA). An aliquot of 250 µL of each slug
mixture was used in lieu of the 0.25 g of soil called for in the kit protocol. Slug DNA
extracts were amplified by PCR to capture the full variety of the 16S rRNA genes within
each sample. These PCR extracts were sequenced using the Illumina MiSeq (Illumina, Inc.,
San Diego, CA USA) system (2 × 300) allowing for the sequencing of a ~450 bp section of
the 16S V3 and V4 region of the 16S rRNA gene. The sequences were multiplexed using
barcoded indexes and primers from the Illumina Nextera XT kit [61].

2.5. Data Analysis and Bioinformatics

To examine the core bacterial microbiome, as well as the relationship between the core
and communities from environment and diet, sequences were processed with Quantitative
Insights Into Microbial Ecology [62]. This approach was used to determine the relationship
between bacterial microbiome communities and host diet, rearing, and sterility variables.
We removed low-quality and chimeric sequences and computed core microbiomes in
QIIME (Open-source software, Caporaso Lab- Flagstaff, AZ USA and Knight Lab- San
Diego, CA USA); we amplified sterile PCR-grade water, as a negative control, which was
processed alongside the slug DNA samples. After samples were extracted, amplified,
and sequenced, any OTUs that were present in the negative controls were removed from
downstream analyses. We define the core bacterial microbiome of slugs as the bacteria
commonly detected among all sampled slugs [63].

Bacterial alpha diversity of the samples was determined using rarefied OTU counts
via the ‘rrarefy’ function in the vegan package for R [64]. Species richness was calculated
using raw OTU counts via the ‘specnumber’ function in the vegan package for R [64].
Alpha diversity and species richness across treatment conditions and treatment sources
were compared, respectively, using Wilcoxon tests, performed with the ‘compare_means’
function in the ‘ggpubr’ package for R [65].

To determine if bacterial beta diversity was different between samples, unweighted
Unifrac distance matrices were created and used to compare community samples. To
visualize and explain differences among bacterial communities, we used non-metric mul-
tidimensional scaling (NMDS) plots of the unweighted Unifrac distances. Unweighted
Unifrac distance matrices were also used for PERMANOVA analyses of microbial commu-
nity data using the adonis function in the vegan package of R [64,66]. A PERMANOVA
was used to compare bacterial community structures across all treatment groups based
on the OTU composition and examine the relationship between relative abundances of
the most abundant phyla or classes, as well as diet, rearing, and sterility variables. Int
total, 9,516,032 raw reads were obtained and raw OTU counts were used to calculate the
Shannon Diversity and species richness. Then, the species richness and Shannon diversity
were compared across treatment sources and treatment conditions [67].

2.6. Indicator Species Analysis

We applied an indicator species analysis to detect bacterial families significantly asso-
ciated (p < 0.05) with the two groups, sterile/non-sterile, as well as between garden/lab-
reared. We calculated the indicator values using the ‘multiplatt’ function with 9999 per-
mutations in the ‘indicspecies’ R package [68]. Indicator value indices were used for
assessing the predictive values of taxa as indicators of conditions present within the differ-
ent groups [68].



Insects 2021, 12, 575 5 of 14

3. Results

Our PERMANOVA analyses revealed that the structure of the slug bacterial communi-
ties was significantly different between dietary treatments, as well as between environments
(p < 0.001, p < 0.001; Figure 1). Both lab-reared and the garden slug’s bacterial commu-
nities adapted similarly after combined sterile diet and sterile environmental exposure.
Prior to sterile diet and sterile environmental exposure, the lab-reared and garden slug
microbiomes mostly did not overlap. These results support our first hypothesis that the
bacterial microbiome of A. valentianus can be manipulated via changes in their environment
and diet.
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Figure 1. A non-metric multidimensional scaling (NMDS) depiction of unweighted Unifrac distances
values illustrates how bacterial communities of Ambigolimax valentianus vary by environmental
and dietary treatments. Samples of slugs raised under sterile conditions are represented by red,
while slugs in unsterile conditions are symbolized by blue; slugs reared in the lab are represented
by triangles and slugs from the garden outside of the laboratory are indicated by circles. Garden
Unsterile N = 4, Garden Sterile N =14, Lab Unsterile N = 4, Lab Sterile N = 5.

Despite differences observed in the bacterial microbiome between groups, we de-
tected a likely core microbiome for A. valentianus slugs. There were several slug bacterial
OTUs conserved across all slug samples (Table 1), which is consistent with our second
hypothesis, that a core bacterial microbiome is present and not changed due to experi-
mental perturbations. While some bacterial taxa were shared across all treatments, both
sterility (p < 0.015) and environment (p < 0.007) explained the variation among the total
slug bacterial microbiomes.

Table 1. The Core Bacterial Microbiome—taxa present in all Ambigolimax valentianus samples.

Bacterial Genus Bacterial Family

Citrobacter Enterobacteriaceae
Delftia Comamonadaceae
Erwinia Enterobacteriaceae

Arthrobacter Micrococcaceae
Stenotrophomonas Xanthomonadaceae

Pseudomonas Pseudomonadaceae
Rhodococcus Nocardiaceae

Bacillus Bacillaceae
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The indicator species analysis yielded a total of 54 significant taxa (Table S1) across
all groups. The sterile slug group produced four significant bacterial species (p < 0.01)
as well as seven significant bacterial species (p < 0.01) for the non-sterile slug group.
Propionibacteriuma acnes was the most significant (p < 0.01) indicator for the garden slug
group. Highly significant (p < 0.001) indicators for the lab-reared slug group included
the bacterial genera Pigmentiphaga, Ochrobactrum, Leucobacter, Candidatus Solibacter, and
Luteolibacter and the bacterial families Rhodobacteraceae and Rhodocyclaceae.

Proteobacteria have a higher relative abundance in slugs fed the unsterile diet com-
pared to the sterile diet, yet garden slugs appear to contain a higher relative abundance of
proteobacteria altogether (Figure 2).
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Figure 2. Relative abundances of taxa composing slug bacterial microbiomes among treatment groups, shown at the
phylogenetic level of microbial phylum. The relative abundances of microbial phyla in associated treatment groups shifted
after exposure to sterile conditions. Garden Unsterile N = 4, Garden Sterile N = 14, Lab Unsterile N = 4, Lab Sterile N = 5.

We detected greater species richness in slugs which were reared in the lab that were
fed an unsterile diet compared to what was found in slugs reared in the garden, which
were fed an unsterile diet (Figure 3). For slugs fed an unsterile diet, we found that bacterial
species richness was greater in the lab group than the garden slug group; however, no
differences were detected in slug bacterial diversity in these same slug groups. Similarly,
slugs reared in the lab that were fed an unsterile diet contained a greater bacterial species
richness than slugs reared in the garden and fed a sterile diet (Figure 3). Yet, Shannon
diversity values were equivalent across all treatment groups, regardless of where they were
reared, or the sterility associated with their dietary inputs (Figure 3).
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Figure 3. Box plot representation of species richness and Shannon diversity among treatment groups,
compared using Wilcoxon tests. Treatments with individual A or B letters are significantly different
from one another across treatment groups (p < 0.05). Treatments sharing A or B letters are not
significantly different from on another across treatment groups. Lab-reared slugs fed an unsterile diet
harbored significantly more bacterial taxa in their microbiome than garden-reared slugs. Shannon
diversity values were equivalent across all treatment groups. Garden Unsterile N = 4, Garden Sterile
N = 14, Lab Unsterile N = 4, Lab Sterile N = 5.

4. Discussion

In this present study, we investigated the impact of diet and environment on the
composition and diversity of A. valentianus’s bacterial microbiome. We found that bacterial
communities of slugs differed between source groups, ostensibly resulting from differences
in both diet and environment. Sterility treatments in diet and environment subsequently
led to similar shifts in the slug bacterial microbiome regardless of source location. However,
we did detect some overlap in bacterial communities across these treatments.

The patterns of overlap in microbial community members across the treatments were
more evident in the sterile slug samples. This may indicate that the structure of the
bacterial microbiomes of slugs in unsterile habitats may be retained within and from their
environment. A large proportion of the environmental bacteria, including those that may
be incidental and not specific to the slugs, may have been lost when the slugs were put into
similar sterile environments, as evident by the overlap in the core bacterial microbiome.

Previous studies have shown that diet and environment play a role in determining
the bacterial microbiome of a variety of invertebrates. A study from Cavalcante et al. [18]
showed that a diet of only sugarcane produced a shift on the gut microbial communities
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of Achatina fulica, a land snail. Landry et al. [69] presented evidence that environment,
including diet, has a significant effect on the microbial species diversity in the midgut of
Choristoneura fumiferana, the spruce budworm. Our findings were comparable to the results
reported in these and other studies of invertebrate microbiomes. Ambigolimax valentianus
bacterial microbiomes from groups reared in either the garden or laboratory environments
differed initially. Moreover, the microbial communities of these slugs raised in these
different environments shifted similarly after exposure to sterile food and environment.
Our study provides evidence that slug bacterial microbiomes are malleable and may
depend substantially on both diet and environment. Additionally, the shift in the microbial
community from these conditions supports our first hypothesis that diet and environment
may have an impact on the bacterial microbiome of A. valentianus.

Research indicates that the bacterial microbiome of many organisms can be altered
by reducing certain key nutrients in their diet [18,21]. Some ingredients in the nutrient
agar (peptone, beef/yeast extract) used for the sterile diet possibly provided the slugs with
some nutritional value [70,71]; however, it may not have been adequate. It is likely that
this dietary restriction may have played a role in the shift of their bacterial microbiome.
However, slugs feed on a wide diversity of material varying in nutrient content, which can
partially compensate for reduced nutrient intake by adjusting their ingestion and utilization
of proteins and carbohydrates [49,50]. This might allow the slug gut bacterial community
to be less sensitive to nutritional changes, therefore remaining somewhat balanced despite
varying levels of nutritional intake. The variations in the structure of the bacterial micro-
biome of A. valentianus could be attributed to a range of factors. Nonetheless, this research,
as well as many other snail and slug studies, has demonstrated that Proteobacteria are the
dominant species found among these gastropod microbiomes, regardless of feeding condi-
tions or nutrient uptake (sterile diet, starved, complete diet) [12–26]. Further investigation
into the nutritional and digestive roles of the bacterial microbiome of A. valentianus would
provide more insight into the specificity of their associated bacteria.

Some insects that feed on nutrient-deficient diets are associated with endosymbionts
that provide them with key nutrients and aid in their overall survival [72–75]. Slugs do
not have a long life expectancy (6 months–2 years) and shorter under laboratory-reared
conditions [47,54]. In the field, A. valentianus live up to approximately one year [52], but in
a separate laboratory experiment, adult A. valentianus slugs subsisted on the sterile diet for
five months before collection [76], suggesting that (1) the sterile diet provided adequate
nutrients or (2) slugs can survive while consuming minimal nutrients. Endosymbionts
involved in such relationships with other organisms are within the Proteobacteria phy-
lum [77–81]. Slugs may harbor endosymbionts that aid in the nutrient synthesis critical
for their survival. These endosymbionts may also protect the herbivorous slug from chem-
ically defended plants [74,75,82,83]. Further research on the consequences of slug host
nutrition and the bacteria involved would be an important step in the development of
endosymbiont-based control strategies.

The diet and environment of invertebrates directly or indirectly play substantial roles
in shaping their microbiome, such as environmental pressures on resident microbiota and
overall survival in the invertebrate gut [1,2]. Slugs are known vehicles of microorganism
dispersal, yet the impact of these transient microorganisms on the slug host microbiome
is unknown. Future research aimed at determining whether microorganisms acquired by
slugs can influence their microbiome or affect their capacity to disperse microorganisms
to novel environments—as well as examining if the core bacterial microbiome of slugs
develop via vertical transmission—would be especially valuable.

Although there was a core microbiome of shared bacterial taxa isolated from
A. valentianus slugs across all sequenced slug microbiome samples, all but one of the
core bacterial taxa found in A. valentianus, Rhodococcus fascians, were not identified at the
species level. To clarify, unique sequences identified as OTUs were found in all slugs, but
those sequences were only identifiable to genera. We discovered eight bacterial families in
the core bacterial microbiome of A. valentianus, which included bacterial species found in
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previous studies of gastropod microbiomes. One genus detected across all of our sequenced
samples, Citrobacter, has not only been found in fecal samples of the slug Geomalacus macu-
losus, but also in the gut of another slug species Arion ater [15,17]. Geomalacus maculosus
also consisted of similar core bacteria, including such genera as Aeromonas, Buttiauxella,
Citrobacter, Kluyvera, and Pseudomonas [15]. We have previously found Pseudomonas in the
microbiome of A. valentianus and Arion sp. slugs in our unpublished preliminary work.
These findings support our hypotheses that a core microbiome is present in A. valentianus.

Similar to our study, Joynson et al. [25] also determined that the majority of the gut
microbial community of Arion ater corresponded to members of the Enterobacteriaceae
and Pseudomonadaceae families [25]. Additionally, the bacterial family Comamonadacea
was detected within the core bacterial microbiome of A. valentianus; previous research
illustrated that taxa from Comamonadacea can be recovered from the gut of the giant African
land snail Achatina fulica [24]. Other studies detected genes linked to lignocellulose degra-
dation within the microbiota from the crops of the giant African land snail [16,18]. Some
genera in the family Comamonadaceae have been directly linked to the degradation of ligno-
cellulose [84], which could have implications for host nutritional status or for amplifying
economic crop losses. Determining the extent of bacterial genes associated with lignocellu-
lose degradation in A. valentianus could be economically significant and relevant for food
security. The diversity of the core bacterial microbiome of A. valentianus slugs in this study
is slightly more diverse than slug microbiomes analyzed in previous studies [15,17,85].
This could be due to our use of whole slugs in this study, whereas other studies limited
their microbiome analyses to specific regions of the slug’s anatomy [15,17,85].

Some of the bacterial taxa found across the A. valentianus core bacterial microbiome
are putative plant pathogens. For instance, Erwinia is a genus containing mostly plant
pathogenic species [86,87], and Rhodococcus fascians is a plant pathogen which causes leafy
gall disease in a variety of plants. Additionally, a subset of other plant pathogens, such as
Pseudomonas viridiflava, were found in some of our slug samples, but were otherwise absent
in others [88].

The indicator species analyses revealed families, genera, and species of bacteria, char-
acteristic of each treatment group individually. In fact, according to our indicator species
analyses, the most significant taxon in the sterile groups (slugs fed a sterile diet in a sterile
environment) included the families Aeromonadaceae and Cerasicoccaceae as well as genera
Flavobacterium and Mycobacterium; this could indicate that these taxa may be poor competi-
tors with other members of the non-sterile group. The most highly significant bacterial
species found in the non-sterile slug group, Paracoccus marcusii, is known to produce as-
taxanthin, a carotenoid that produces a red/orange pigment which not only provides a
variety of plants and animals with their red/orange color but has also been linked to having
beneficial (photoprotective, antioxidant, and anti-inflammatory) effects on the skin [89–91].
Additionally, Paracoccus marcusii was isolated from the white grub, a serious pest of pota-
toes, in a study that attempted to find entomopathogenic bacteria associated with the
grub [92]. In the garden slug group, six bacterial families were identified as indicators.
Overall, Propionibacterium acnes was the most significant bacterial indicator of the garden
group. Although this taxon has been reported as a member of the skin microbiome and is
associated with acne pathogenesis [93], previous studies have not identified Propionibac-
terium acnes as a common garden taxon associated with slug’s microbiomes. Many bacterial
taxa, across seven bacterial families, were indicative of the lab-reared slug group. Across
these seven bacterial families, many taxa, which were previously isolated from a variety
of organisms, have been found to be linked to either gut health or gut microbiome. Of
these taxa, Pigmentiphaga has been isolated from nematodes [94], Ochrobactrum from bees,
spiders, nematodes, and sand flies [94–97], and Rhodocyclaceae from termites and beetle
larvae [98,99]. Often detected within woody plant parts, Leucobacter has been found to
exhibit mutualistic relationships with keystone soil invertebrates, ostensibly due to its
ability to degrade lignocellulose into more labile components and bioavailable nutrient
sources [100]. Likewise, Candidatus Solibacter has also been associated with decomposing
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dead wood and peat moss [101,102]. Luteolibacter, in the family Verrucomicrobiaceae, was
identified as part of the core microbiome within fecal samples of Geomalacus maculosus, a
European protected slug [15]. Thus, based on their ecological roles, interactions with plant
or animal hosts, or their physiological adaptations to particular environments or diets, the
occurrence of the bacterial indicators may be characteristic of each group; for instance, the
presence of particular taxa may correspond with either changes in slug diets (sterile vs
non-sterile) or changes in response to their environment (garden and lab-reared).

5. Conclusions

Our study provides evidence that bacteria associated with slugs are not only ecologi-
cally significant but may also be manipulated by both dietary and environmental changes.
Several microorganisms found within our slug bacterial microbiomes have been detected in
the guts or feces of other slugs, which could have functional implications for host processes
and dietary parameters. Given that invasive slugs can harbor a variety of plant pathogenic
microorganisms within their microbiome, their dispersal could have environmental and
agricultural implications for both crop health and plant science. The findings from our
study suggest that although a small core microbiome remains consistent, the establishment
of the slug bacterial microbiome not only varies among individuals but may also be manip-
ulated by dietary and environmental changes. Nevertheless, a better understanding of the
slug bacterial microbiome may provide valuable information regarding biotic threats posed
by invasive slugs, as well as insight into potential techniques for holistically managing
slug populations.
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