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The risk and benefits of gain- of- function studies on influenza A have been widely de-
bated since 2012 when the methods to create two respiratory transmissible H5N1 
mutant isolates were published. Opponents of gain- of- function studies argue the bios-
ecurity risk is unacceptable, while proponents cite potential uses for pandemic surveil-
lance, preparedness and mitigation. In this commentary, we provide an overview of 
the background and applications of gain- of- function research and argue that the an-
ticipated benefits have yet to materialize while the significant risks remain.
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1  | INTRODUCTION

Within the last century, humanity has faced three devastating human 
influenza pandemics: H1N1 in 1918, H2N2 in 1957 and H3N2 in 
1968.1 Collectively, these three pandemics are estimated to have re-
sulted in approximately 46 million deaths and over 500 million infec-
tions.2 In recent decades, the rate of emergence of zoonotic influenza 
A serotypes in humans has increased, supporting the consensus that 
a future influenza pandemic of zoonotic origin is on the horizon.3-5 
In 1996, a novel serotype, H5N1, was isolated from a goose in Hong 
Kong with the first human cases (n=18) being recorded following ex-
posure to poultry in 1997.6 Since official World Health Organization 

(WHO) reporting began in 2003, 859 human cases and 453 deaths 
have been recorded due to sporadic zoonotic transmission of H5N1 
from avian species.7 However, small clusters of un- sustained human- 
to- human transmission have been documented in rural areas with low 
population density.8-11 As a highly pathogenic avian influenza (HPAI) 
virus with unprecedented endemicity in birds and high mortality, many 
have postulated that H5N1 may be the source of the next human in-
fluenza pandemic.12-14

Unlike past pandemics, the ease of international travel in 
the modern age means that viruses can spread around the globe 
in a very rapid timeframe15,16; the 2009 pandemic of swine- 
origin H1N1(H1N1pdm09) is a testament to the ongoing risk of 
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emerging infections in a globalized world. While the total burden of 
H1N1pdm09 was similar to a severe seasonal influenza epidemic, ad-
vances in medicine such as extra- corporeal membrane oxygenation 
and antibiotics for secondary bacterial infection have vastly improved 
survival compared to 1918 making relative pandemic predictions of 
disease burden difficult.17,18 However, modelling studies have shown 
that a highly contagious H5N1 virus could infect up to 50% of the 
population globally19: 3.57 billion people as of 2013.20 Recognizing 
this increasing vulnerability, significant work has been conducted to- 
date in an attempt to identify influenza lineages at high risk of pan-
demic emergence. It is widely accepted that the pandemic potential 
of H5N1 is largely dependent on mutations that enable sustainable 
human- to- human transmission,21 and gain- of- function studies have 
offered a novel means to identify the relationship between mutant 
genotypes and potentially transmissible phenotypes. Using H5N1 as 
a case study, we review the role of gain- of- function (GOF) research 
as a tool for surveillance of pre- pandemic influenza A. We also con-
sider alternative approaches for pre- pandemic influenza surveillance 
as well as the acceptability and risk of GOF research, which has been 
debated extensively in the past,22-28 from a surveillance and prepared-
ness context.

2  | HEMAGGLUTININ RECEPTOR 
SPECIFICITY—A CRITICAL RISK FACTOR FOR 
PANDEMIC EMERGENCE

It is understood that the host range of avian influenza viruses is 
partially determined by the binding specificity of the hemagglu-
tinin (HA) protein on the virus’ surface to either human or avian 
cell receptors.29-33 Most functional interactions between surface 
cell receptors and influenza A viruses occur via the receptor bind-
ing site (RBS) of HA: a structural domain formed by the 190- helix, 
220- loop and the 130- loop. For human respiratory colonization, it 
is necessary that mutations alter the specificity from avian α2,3- 
linked sialic acid (α2,3- SA) receptors found in the avian intestinal 
tract,34,35 to mammalian α2,6- linked (α2,6- SA) receptors located 
on the epithelial cells of the human upper respiratory tract.36-41 
Crystal structure studies have revealed a widening of the RBS in 
mammalian- adapted HA to facilitate binding to the larger α2,6- SA 
cis- linked receptors.42,43

HA receptor specificity is considered the third- most import-
ant predictor of pandemic emergence following (i) human infection 
and (ii) airborne transmission in animal models according to the 
Centers for Disease Control and Prevention’s (CDC) Influenza Risk 
Assessment Tool (IRAT), which also incorporates the results of GOF 
research.44 Other viral factors such as improved polymerase ef-
ficiency and HA pH activation are similarly necessary for efficient 
human- to- human transmission, but are not alone sufficient for colo-
nization and therefore considered less significant. Therefore, focus-
ing research efforts towards potentially pandemic H5- HA mutations 
appears justified.45,46

3  | GOF RESEARCH—THE RELATIONSHIP 
BETWEEN TRANSMISSION GENOTYPE 
AND PHENOTYPE

In 2012, two groups successfully demonstrated a H5N1 transmissible 
phenotype in ferrets, the best surrogate animal model for human in-
fluenza research.47,48 Using reverse genetics, they identified mutant 
genotypes responsible for mammalian adaptation. Many of these 
mutations have been previously shown to increase the binding of 
HA to mammalian α2,6- SA receptors albeit in isolation and without 
demonstrated ferret transmission.49-52 These mutant genotypes have 
been partially identified in natural H5N1 variants currently circulat-
ing in avian species and cases of human H5N1 infection today.53,54 
Numerous GOF studies have identified additional mutants of pan-
demic concern, a summary of which is aggregated by the CDC55 and 
others.21 Translation of these mutants of concern into predictors of 
pandemic emergence has since been upheld as an informative tool for 
current public health surveillance and preparedness efforts: to- date, 
the results of GOF research have been used to inform pandemic in-
fluenza surveillance activities as well as efforts in pandemic prepared-
ness planning and response in parts of Asia and the Middle East.56,57

4  | APPLICATIONS, LIMITATIONS AND 
RISK IN GOF RESEARCH

Following an outbreak of H5N1 in Cambodia in 2013 that totalled 26 
human cases and 14 deaths,58 the CDC rapidly deployed a response 
team to conduct control measures and epidemiological investigations. 
Here it was determined that many cases had become infected with 
strains naturally possessing GOF genotypes partially matched to the 
laboratory transmissible strain.59 Following the initial CDC investiga-
tion, the WHO coordinated the development of a candidate vaccine. 
However, as the roll out of a matched vaccine is 3- 6 months at a mini-
mum using current technology in embryonated eggs,60 there could not 
have been enough time to materially impact the epidemic peak. Other 
mitigation measures such as antivirals, personal protective equipment 
(PPE) and non- pharmaceutical interventions are more critical in the 
early pandemic phase. However, the rapid response in Cambodia is 
thought to have reduced the possible time- to- market by at least a 
month notwithstanding the impact of immediate control measures 
employed.56 It was later determined that no human- to- human trans-
mission had occurred, and that the mutant strains had arisen following 
human infection rather than a precursor virus in poultry. Yet at the 
time, the precautionary principle was invoked to prevent a potential 
pandemic. Whether the intervention prevented a pandemic, however, 
cannot be proven. Beyond this specific case, the results of H5N1 GOF 
studies have been supported as one method to improve our under-
standing of other avian influenza viruses in the wild such as H7N9, 
considering many of the experimental GOF mutants identified are cur-
rently circulating in nature.53,54
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However, the predictive value of GOF mutants is not without its 
limitations. Due to the variable effect of mutations in strains with dif-
ferent genetic backgrounds, mutations in one strain may not confer 
the same transmissible phenotype in another. Studies have demon-
strated that when applied to more recent strains, such as A/Chicken/
Vietnam/093/2008, the same ferret transmissible genotype experi-
mentally determined in vivo using A/Vietnam/1194/2004 and A/
Indonesia/5/2005 did not confer the transmissible phenotype previ-
ously demonstrated.61 This evidence undermines the value and gen-
eralizability of molecular surveillance activities based on the results of 
GOF studies to currently circulating strains.

Gain- of- function research also poses significant risk to the greater 
global community as dual- use research of concern (DURC), that 
is, research that is intended for good, but either through accidental 
or intentional misuse can cause significant harm to human health. 
Opponents of GOF research argue the threat of potential laboratory 
accidents sparking an unnatural pandemic or bioterrorism arising from 
the publication and replication of GOF methodologies is unaccept-
able. Specifically, GOF research cannot materially impact epidemic 
control such as through the development of a pre- pandemic vaccine,62 
nor does it increase the certainty of risk estimates for molecular sur-
veillance purposes in which it has been proposed as shown above. 
A further point is the difficulty many experts have in distinguishing 
between natural vs unnatural disease events meaning accidental or 
deliberate outbreaks may go unrecognized.60 Some suggestions to 
mitigate the risk of GOF research have included limiting the number of 
laboratories allowed to do GOF research while increasing government 
oversight63; however, the European Union64 and the United States65 
have both conducted risk- benefit analyses on GOF research yet nei-
ther have been conclusive on the matter.

5  | CONCLUSION

In conclusion, the net- benefit argument supporting GOF research can 
be considered unjustified because the utility of GOF studies as a tool 
for pandemic risk assessment and surveillance activities is uncertain, 
while the overwhelming health risks to the greater global community 
due to the threat of unnatural pandemics and bioterrorism remain. 
Better risk assessment needs to be done. GOF research has proven 
useful in its purely scientific achievement of identifying the relation-
ship between genotype and phenotype in vivo. Yet the limited gener-
alizability of GOF research to the surveillance of currently circulating 
strains supports the need for further research into universal predic-
tors of pandemic emergence. Alternative approaches to pandemic 
risk modelling have been proposed which are worth exploring, such 
as identifying molecular determinants of HA evolution.66 For example, 
studies have shown the protein structure of avian HA partially deter-
mines the mutation rate within the RBS and thus, greater opportuni-
ties for selection towards human respiratory cells, increasing risk.67,68 
Additionally, investing in greater diagnostic capacity to support sur-
veillance systems, improving response plans for non- pharmaceutical 
interventions and stockpiling antivirals and PPE are equally important 

during both the pre-  and early pandemic phases.69 Our inability to 
accurately predict which subtype will emerge as the next pandemic 
demonstrates the need to research methods that are generalizable to 
other more recent emerging avian influenza A viruses such as H7N9 
and H5N6 to which have high human exposure. Such methods could 
potentially increase the accuracy and certainty of pandemic risk esti-
mates and more effectively direct surveillance preparedness activities 
to prevent and manage the next pandemic.
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