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Purpose: To investigate the diagnostic ability of radiomics-based machine learning in
differentiating atypical low-grade astrocytoma (LGA) from anaplastic astrocytoma (AA).

Methods: The current study involved 175 patients diagnosed with LGA (n = 95) or AA (n =
80) and treated in the Neurosurgery Department of West China Hospital from April 2010 to
December 2019. Radiomics features were extracted from pre-treatment contrast-
enhanced T1 weighted imaging (T1C). Nine diagnostic models were established with
three selection methods [Distance Correlation, least absolute shrinkage, and selection
operator (LASSO), and Gradient Boosting Decision Tree (GBDT)] and three classification
algorithms [Linear Discriminant Analysis (LDA), Support Vector Machine (SVM), and
random forest (RF)]. The sensitivity, specificity, accuracy, and areas under receiver
operating characteristic curve (AUC) of each model were calculated. Diagnostic ability
of each model was evaluated based on these indexes.

Results: Nine radiomics-based machine learning models with promising diagnostic
performances were established. For LDA-based models, the optimal one was the
combination of LASSO + LDA with AUC of 0.825. For SVM-based modes, Distance
Correlation + SVM represented the most promising diagnostic performance with AUC of
0.808. And for RF-based models, Distance Correlation + RF were observed to be the
optimal model with AUC of 0.821.

Conclusion: Radiomic-based machine-learning has the potential to be utilized in
differentiating atypical LGA from AA with reliable diagnostic performance.

Keywords: machine learning, glioma, astrocytoma, texture analysis, radiomics
INTRODUCTION

Astrocytoma is one of the most common intracranial tumors characterized by rapid evolvement
emphasizing the challenge for early diagnosis and intervention (1). Based on the 2016World Health
Organization (WHO) Classification of Tumors of the Central Nervous System, astrocytoma could
be classified into low-grade astrocytoma (LGA, WHO II) and anaplastic astrocytoma (AA, also
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known as high-grade astrocytoma, WHO III) (2). The treatment
and prognosis of these two subtypes are dramatically different.
LGA is recognized as the subtype with good prognosis for most
patients, while AA is the one with poor prognosis that the 5-year
overall survival only reaches 28% when receiving conventional
treatments (3–6).

The serummarker for the grading of astrocytoma has not been
identified yet. As for radiological examination, brain magnetic
resonance imaging (MRI) has been highly recommended with the
ability to sensitively detect small lesions and accurately localize
lesions. A common differentiator on the contrast-enhanced T1
weight imaging (T1C) is the presence of enhancement of AA and
the absence of enhancement of LGA. However, high-grade gliomas
can sometimes mimic the appearance of low-grade gliomas, and
enhancement can also be seen in some cases of low-grade gliomas
which indicates aggressive behavior (7–10). The meta-analysis by
Abrigo and colleagues included seven studies with 115 solid and
non-enhancing glioma patients, and evaluated the diagnostic
capability of cerebral blood volume (CBV), which was expressed
as ratio of tumoral CBV to normal white matter CBV (rCBV), in
differentiating low-grade gliomas and high-grade gliomas (11).
Results of this meta-analysis indicated that 7% to 34% low-grade
glioma cases may be misdiagnosed as high-grade gliomas, and
around half of high-grade glioma cases may be misdiagnosed as
low-grade gliomas by a rCBV threshold of 1.75 (11). The
interpretation of MRI may be challenging and must take into
account the timing of surgery, previous radiation, corticosteroid
use, and chemotherapy (12). Additionally, three quarters of AA are
the consequences of LGA transformation, which leads to the
similarity on images and makes the presurgical distinctiveness of
LGA fromAA difficult in some cases (13). Thus, this highlights the
urgent requirement of novel technology to make the interpretation
of MRI more accurate and reliable.

Radiomics is the method which can provide non-visual
information by extracting quantitative texture features with
mathematical formulas. Moreover, with quantitative statistics
extracted from images, machine learning algorithms could be
introduced in assisting clinical practitioners in their work, such as
diagnostic differentiation, clinical grading, and prognosis prediction
(14–16). Thus, in the current study, we introduced the radiomics-
based machine learning algorithms in distinguishing atypical LGA
from AA. The discriminative models were established with a set of
texture parameters extracted from conventional MR images, and
their diagnostic performances were evaluated for direct comparison.
METHODS

Patient Selection
This study was performed in the Department of Neurosurgery and
the Cancer Centre ofWest China Hospital.We initially reviewed the
electronicmedical records fromApril 2010 toDecember 2019 in our
institution. The inclusion criteria of patients were as follows:
1) pathologically confirmation of LGA or AA by intraoperative
frozen-section reports; 2) available high-quality pre-treatment MR
images performed in theDepartment ofRadiology. Exclusion criteria
were: 1) recorded history of other types of intracranial diseases, such
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as head trauma, brain tumor, subarachnoid hemorrhage, cerebral
apoplexy, and ischemic infarction; 2) incomplete electronic medical
records; 3) patients had underwent treatment, such as surgery,
radiotherapy and chemotherapy, prior to available MR images. The
clinical parameters were also recorded, including age, gender, and
pathology reports; and the presurgical MR images were exported
from Picture Archiving and Communication Systems (PACS). The
workflow of the current research is shown in Figure 1.

MR Image Acquisition
Radiomics parameters should be extracted from the optimal MR
sequence, defined as routine radiology examination which can
provide precise segmentation of tumor tissue boundary.
Therefore, T1C on the conventional MR sequence was selected.
Other sequences like T1 weighted image (T1WI), T2 weighted
image (T2WI), and fluid-attenuated inversion recovery (FLAIR)
image were abandoned due to vague segmentation.

All patients underwent pre-treatment MR scan in the
Department of Radiology in our institution with the 3.0T
Siemens Trio Scanners before surgery. MPRAGE sequence was
chosen to obtain high-resolution three-dimensional T1- weighted
images. The parameters of scanners were: TR/TE/TI = 1900/2.26/
900 ms, slice thickness = 1 mm, axial FOV = 25.6 × 25.6 cm2, Flip
angle = 9°, and data matrix = 256 × 256. Gadopentetate
dimeglumine (0.1 mmol/kg) was used as the contrast agent for
contrast-enhanced images. The multi-directional data of T1C
were collected during the continuous interval time of 90 to 250 s.
Figure 2 shows two examples of T1C sequence.

Radiomics Analysis of MR Images
Two neurosurgeons participated in the texture features extraction
using LifeX package (http://www.lifexsoft.org) and following the
instructions on thewebsite (17). The regions of interest (ROI) along
the boundary of lesions in each layer were drown by these two
neurosurgeons to obtain the 3D-based texture features. Necrosis
and vessels within tissue were also included in ROI. The separation
between adjacent structure invasion and peritumoral edema band
was carefully identified from the primary tumor with the different
pattern in contrast enhancement. The texture features were
calculated automatically from two orders with default software
protocol settings. In the first order, the calculation was based on
shape- and histogram-based matrices; and in the second order, the
calculationwas based on grey-level co-occurrencematrix (GLCM),
grey-level zone length matrix (GLZLM), neighborhood grey-level
dependence matrix (NGLDM), and grey-level run length matrix
(GLRLM), which plays a major role in the quantification of
radiomic features. Finally, a total number of 40 features were
extracted for further deployment in machine learning algorithms.

Human Reader Assessment
To evaluated the diagnostic performance of human readers with
naked eyes, two researchers independently made diagnosis of AA
or LGA based on the contrast-enhancement pattern on T1C
images and their experience. The human readers were blinded to
the patient characteristics and the pathological reports.
The diagnostic accuracy of LGA and AA and the overall
diagnostic accuracy were calculated for further analysis.
June 2021 | Volume 11 | Article 521313
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Classification Model Establishment
The selection of proper features for algorithms was necessary due
to the reason that excessive features could lead to inevitable
overfitting. Moreover, the selected features could directly affect
the diagnostic performance of the algorithms. Thus, we adopted
three selection methods, including Distance Correlation, least
absolute shrinkage, and selection operator (LASSO), and
Gradient Boosting Decision Tree (GBDT). In the current
Frontiers in Oncology | www.frontiersin.org 3
study, the classification models were established based on three
algorithms, including Linear Discriminant Analysis (LDA, also
known as Fisher Linear Discriminant), Support Vector Machine
(SVM), and Random Forest (RF). Then nine models were
established with varied combinations of three selection
methods and three classification algorithms.

For the deployment of classification algorithms, patients were
divided into the training group and the validation group at a
FIGURE 1 | The workflow for texture features extraction and machine learning classification. ROI, region of interest; GLCM, grey-level co-occurrence matrix; GLZLM,
grey-level zone length matrix; NGLDM, neighborhood grey-level dependence matrix; GLRLM, grey-level run length matrix; LASSO, least absolute shrinkage and
selection operator; GBDT, gradient correlation decision tree; LDA, linear discriminant analysis; SVM, support vector machine; RF, random forest.
A

B

FIGURE 2 | The examples of contrast-enhanced T1 magnetic resonance images of patients with (A) LGA; (B) AA. LGA, low grade astrocytoma; AA, anaplastic astrocytoma.
June 2021 | Volume 11 | Article 521313
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ratio of 4:1. For each model, sensitivity, specificity, accuracy, and
area under the receiver operating characteristic curve (AUC) of
the training group and the validation group were calculated to
evaluate their discriminative performance. This progress was
repeated 100 times to obtain the realistic distribution of
accuracies. The feature selection and classification procedures
were applied using Scikit-learn 0.22, a Python module for
machine leaning, with parameters suggested by the developers.
RESULTS

Patient Selection
A total number of 175 patients were enrolled in the current study
according to the inclusion and exclusion criteria. For patients
diagnosed before 2016, we made corrections on their diagnosis
based on their pathology reports according to the new WHO
criteria. Ninety-five patients were diagnosed with LGA, and 80
patients were diagnosed with AA. Baseline characteristics of
patients and diagnostic accuracy of human readers are shown
in Table 1. For LGA patients, the median age was 32 years
(range, 1–64 years), and the male ratio was 42/95 (44.2%). And
for AA patients, the median age was 39 years (range, 6–69 years),
and the male ratio was 43/80 (53.8%). The mean time between
the MR scan and surgery was 6.7 and 7.2 days for LGA and AA
Frontiers in Oncology | www.frontiersin.org 4
patients, respectively. The mean diagnostic accuracy of the two
human readers for LGA was 75.2%, and that for AA was 62.5%.
The mean overall accuracy of human readers was 69.5%.

Discriminative Ability of Models
Among the nine models we evaluated, LASSO + LDA was chosen
as the optimal one with the highest AUC in the validation group.
In the training group, the sensitivity, specificity, accuracy, and
AUC of LASSO + LDA were 0.782, 0.717, 0.752, and 0.835,
respectively; and in the validation group, the sensitivity,
specificity, accuracy, and AUC were 0.751, 0.703, 0.729, and
0.825, respectively (Table 2). Results showed that the diagnostic
performance of LASSO + LDA was superior to human readers.
The canonical discriminant functions of LASSO + LDA model
for LGA, AA groups, and the group centroids are presented in
Figure 3. Figure 4 is one example of the 100 validation cycles of
LASSO + LDA model, which shows the distribution of the direct
LDA canonical function determined for LGA and AA.

Detailed performance in the training group and validation
group of all the nine models is shown in Table 2. Actually, the
results suggested that all of the three algorithm-base models
represented similar feasible performance when combined with a
suitable selection method except for the GBDT + SVM model.
The optimal SVM-based and RF-based models represented
similar diagnostic performance with LDA-based models that
the highest AUC of SVM-based models in the validation group
was 0.808 (Table 2), and that of RF-based models was 0.821
(Table 2). However, overfitting was observed in the classification
algorithm of SVM when it was combined with GBDT.

DISCUSSION

In the current study, we investigated the ability of pattern
recognition techniques with radiomics features extracted from
conventional MRI in discriminating atypical LGA from AA. Nine
models were evaluated based on three classification algorithms
and three selection methods. The results suggested that the
machine learning technology could be potentially utilized in
presurgical astrocytoma grading with promising ability.
TABLE 1 | Baseline characteristics of patients and diagnostic accuracy of
human readers.

Characteristics LGA (n=95) AA (n=80) All (n=175)

Age (y, range) 32 (1–64) 39 (6–69) 35 (1–69)
Sex (%)
Male 42 (44.2) 43 (53.8) 85 (48.6)
Female 53 (55.8) 37 (46.2) 90 (51.4)

Time between MR scan and surgery (d) 6.7 7.2 6.9
Diagnostic accuracy (%)
Human reader 1 75.8 60.0 68.6
Human reader 2 74.7 65.0 70.3
LGA, low grade astrocytoma; AA, anaplastic astrocytoma.
TABLE 2 | Results of the discriminative models in distinguishing LGA (low grade astrocytoma) From AA (anaplastic astrocytoma) in the the training and the validation
group.

Model Training Group Validation Group

Sensitivity Specificity Accuracy AUC Sensitivity Specificity Accuracy AUC

Distance Correlation + LDA 0.745 0.705 0.727 0.801 0.746 0.654 0.700 0.799
Distance Correlation + SVM 0.659 0.765 0.707 0.771 0.721 0.821 0.766 0.808
Distance Correlation + RF 0.761 0.717 0.741 0.825 0.770 0.720 0.740 0.821
LASSO + LDA 0.782 0.717 0.752 0.835 0.751 0.703 0.729 0.825
LASSO + SVM 0.713 0.626 0.673 0.743 0.756 0.640 0.706 0.761
LASSO + RF 0.756 0.788 0.771 0.859 0.719 0.783 0.746 0.817
GBDT + LDA 0.767 0.749 0.759 0.833 0.707 0.730 0.714 0.773
GBDT + SVM 1 1 1 1 Error 0.537 0.537 0.5
GBDT + RF 0.754 0.769 0.761 0.855 0.751 0.789 0.766 0.815
June 2021 | Volu
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boosting decision tree.
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Astrocytoma is one of the traditional basic subtypes of diffuse
grade II and III gliomas. The accurate diagnosis is clinically
important because the surgical planning and therapeutic strategy
are significantly different between LGA and AA. The
descriptions of their characteristics on MR images are as
follows: the classic LGA tumor tissues do not show
enhancement after contrast administration; while AA tissues
are also not usually contrast enhanced, and if they are, they
represent as a focal, nodular, or patchy appearance (18).
However, the enhancement pattern can also be seen on images
of atypical LGA as a suggestive signal of malignant
transformation and high growth rate of the tumor diameter
(19). This special transforming status makes the astrocytoma
grading disturbing and vulnerable when interpreting the
conventional MRI, even for experienced radiologists (20).
Frontiers in Oncology | www.frontiersin.org 5
Radiomics analysis can provide non-visual information by
statistically calculating the voxels of images reflecting the tumor
pathology process and abnormal microenvironment (21). It is
able to transform the images into analyzable statistics with
mathematical calculation, which could be further applied in
machine learning technology. This set of methods has been
widely explored in clinical diagnosis, tumor grading, treatment
prediction, and survival prediction by previous researchers (16,
22–27). For example, the study applying RF classifier in the
discrimination between primary central nervous system
lymphoma and atypical glioblastoma represented satisfactory
diagnostic ability with AUC of 0.921 (27). Another study
applied SVM-based algorithm in glioma grading, concluding
that SVM classifier feasibly achieves multiclass glioma grading as
well as low classification error for intermediate (16).

However, the pervasive limitation for these studies was that
the establishment of the models was seemingly arbitrary. Most
studies focused on only one type of algorithms, and the adoption
of feature selection method was not persuasive enough due to the
lack of direct comparison. The current study established a set of
machine learning-based models to discriminate LGA and AA
with a relatively large number of radiomics features extracted
from T1C images. The three algorithms we used in
discrimination were LDA, SVM, and RF. These classification
algorithms represented different types of classifiers. LDA is the
classic linear classifier, which separates two or more classes by a
linear combination of features (28). SVM is the classic non-linear
classifier, which constructs a decision hyperplane and separates
classes by maximizing the distance between the training samples
of classes and the hyperplane (28). And RF is the ensemble
learning classifier, which is realized by performing a weighted
integration of the predictive probabilities of de-correlated trees
(29, 30). Moreover, both LDA and SVM represent the state-of-
the-art in pattern recognition classifier applications (31). The
choice of suitable algorithms is complicated. In general, as
performance improves, the complexity and computational time
would increase at the same time. Therefore, the researchers
FIGURE 3 | Relationship between the canonical discriminant functions of
LASSO + LDA model for LGA and AA groups and the group centroids. LASSO,
least absolute shrinkage and selection operator; LDA, linear discriminant analysis;
LGA, low grade astrocytoma; AA, anaplastic astrocytoma.
A B

FIGURE 4 | Example of the distribution of the direct LDA canonical function determined for (A) LGA and (B) AA in one cycle. LDA, linear discriminant analysis; LGA,
low grade astrocytoma; AA, anaplastic astrocytoma.
June 2021 | Volume 11 | Article 521313
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should choose the classification algorithm based on a trade-off
between performance and computational burden, especially in
embedded systems (28). Based on this point, we chose three
classification algorithms to make an evaluation. The results
represented that the performance of all three classifiers could
have similar, promising diagnostic ability when combined with
suitable selection method.

As mentioned above, the selection method also played an
important role in the performance of classifiers. The relatively
large number of parameters made it more likely to find the
optimal parameters but also increased the difficulty in feature
selection. Previous studies performed feature selection with
varied methods, including Student’s t test with recursive
feature elimination, Mann-Whitney U test with AUC of ROC,
entropy-based discretization, or random forest (27, 32–34). We
adopted three feature-selection methods (Distance Correlation,
LASSO, and GBDT) in the current study.

The results of this study suggested that LASSO + LDA was the
optimal discriminative model with the best performance. LASSO
was recommended due to the ability of producing interpretable
models when exhibiting the stability of ridge regression
simultaneously. It was regarded as the nonlinear variable selection
method for neural network with the advantage of minimizing the
common sum of squared errors and the superior performance over
other state-of-the-art variable selection methods (35). This might
provide a potential underlyingmechanism for our results. The LDA
and RF classification algorithms both presented with consistent
diagnostic performance when combining with different feature
selection methods. While overfitting was observed in the model of
GBDT + SVM, we suspect that the overfitting of this model was
caused by the over-dependence of SVM on its kernel functions and
support vectors. However, our results must be interpreted
cautiously that the additional information from comparison of
machine learning techniques was limited given that variance in
AUC maybe partially attributed to the statistical group and all
classifier/feature selectionmethods investigated seemperformquite
comparably. Our study should be regarded as the hypothesis
generation for future studies with large study population.

There were some limitations in our study. First, the study was
a single-institution, retrospective study with limited patients
enrolled. A research with a larger study population would be
required to validate our results in the future. Second, texture
features extraction was only performed on T1C images, while
other conventional sequences (like T1WI, T2WI, and FLAIR)
and advanced MR techniques were not investigated. Third, there
was no independent validation group in our study selected from
other institution. This point was not performed because that
Frontiers in Oncology | www.frontiersin.org 6
texture features could be unpredictable when extracted from
images acquired with various scanners and/or protocols.
Considering the analysis protocol and image processing
procedure were open-source packages, the results should be
validated and reproduced in a future study.
CONCLUSION

Evidence of this study indicated that radiomics-based machine
learning has the potential to be utilized in the preoperative
differential diagnosis between atypical LGA and AA with reliable
diagnostic performance. We established high-performance
prediction models based on selection methods and classification
algorithms, indicating that this non-invasive approach has the
potential to assist image diagnosis and aid clinical decision-making.
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