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Abstract

The recent identification of noncoding variants with pathogenic effects suggests that

these variations could underlie a significant number of undiagnosed cases. Several

computational methods have been developed to predict the functional impact of

noncoding variants, but they exhibit only partial concordance and are not integrated with

functional annotation resources, making the interpretation of these variants still

challenging. MicroRNAs (miRNAs) are small noncoding RNA molecules that act as fine

regulators of gene expression and play crucial functions in several biological processes,

such as cell proliferation and differentiation. An increasing number of studies demonstrate

a significant impact of miRNA single nucleotide variants (SNVs) both in Mendelian

diseases and complex traits. To predict the functional effect of miRNA SNVs, we

implemented a new meta‐predictor, MiRLog, and we integrated it into a comprehensive

database, dbmiR, which includes a precompiled list of all possible miRNA allelic SNVs,

providing their biological annotations at nucleotide and miRNA levels. MiRLog and dbmiR

were used to explore the genetic variability of miRNAs in 15,708 human genomes

included in the gnomAD project, finding several ultra‐rare SNVs with a potentially

deleterious effect on miRNA biogenesis and function representing putative contributors

to human phenotypes.
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1 | INTRODUCTION

In the past 20 years, many human genetic variations have been

detected thanks to projects aimed at sequencing large datasets using

next‐generation sequencing (NGS) approaches. The combined use of

whole‐exome sequencing (WES), which focuses on the protein‐

coding regions of the genome (about 2%), and computational

methods to identify, annotate, and classify protein‐coding variants,

has elucidated the molecular bases of several rare genetic diseases

and complex traits (Bamshad et al., 2011; Chong et al., 2015).
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Notwithstanding these achievements, a significant portion (i.e., 50%

for Mendelian diseases) still lacks the identification of the genetic

cause (Chong et al., 2015).

The recent identification of noncoding variants with pathogenic

effects (Spielmann & Mundlos, 2016) or modulating the penetrance

of pathogenic protein‐coding variants (Castel et al., 2018), suggests

that this class of variations could, at least in part, underlie a

proportion of currently undiagnosed cases (Spielmann &

Mundlos, 2016). Despite these findings, the functional impact of

noncoding variants remains largely uncharacterized. Several compu-

tational methods have been developed to address this issue

(Nishizaki & Boyle, 2017), exploiting machine learning models built

on mixed genomic features, including epigenomic profiles, expression

data, and evolutionary measures (L. Liu et al., 2019; Nishizaki &

Boyle, 2017). They exhibit only partial concordance (L. Liu et al., 2019)

and are not integrated with functional annotation resources, making

the interpretation of noncoding variants still challenging. In particular,

an integrated system to annotate variants of a specific class of

noncoding RNAs, that is, microRNAs (miRNAs), and supporting their

classification, is currently lacking.

To date, 1918 human miRNAs have been identified and

annotated in miRBase, the miRNA reference database (v22.1;

Kozomara et al., 2019). Changes in miRNA expression levels have

been extensively studied through several approaches in different cell

and tissue types (Mjelle et al., 2019; Nishida et al., 2012; Pérez‐

Sánchez et al., 2018), disclosing their role in the pathogenesis of

several human phenotypes through the dysregulation of crucial cell

pathways (Abdellatif, 2012; Bogucka‐Kocka et al., 2019; Rizzuti

et al., 2018). Conversely, miRNA genetic variability and its functional

effect are still poorly characterized. An increasing number of studies

demonstrate a significant impact of single nucleotide variants (SNVs)

on the biogenesis of mature miRNAs and on the strength and

specificity of target binding, both in cases of Mendelian diseases, as

nonsyndromic hearing loss (Mencía et al., 2009), spondyloepiphyseal

dysplasia (Grigelioniene et al., 2019), and in complex traits, as

amyotrophic lateral sclerosis (Reichenstein et al., 2019), schizophre-

nia (Duan et al., 2014), and autism (Williams et al., 2019), among

others.

Current knowledge of miRNA sequence variation and its

significance is highly affected by the paucity of dedicated tools and

the scattered annotation resources. Moreover, the restricted number

of established pathogenic miRNA SNVs and small sample sizes of

whole‐genome sequencing (WGS) reference cohorts largely limited

studies to assess intraspecies human variation in these noncoding

regions and its interpretation in terms of pathogenic effect of

variants.

To address the issue of interpreting the functional effect of

miRNA SNVs, we implemented MiRLog (miRNA Logistic regression),

the first scoring approach to support the classification of miRNA

variants. MiRLog is a meta‐predictor that integrates multiple scoring

systems for noncoding elements, based on a supervised learning

approach. We integrated MiRLog in a comprehensive database,

dbmiR, which includes a precompiled list of all possible allelic SNVs at

each nucleotide position of human miRNAs, and relative annotations

based on several data sources, that add biological information at

nucleotide and miRNA levels.

We used MiRLog and the functional annotations integrated into

dbmiR to explore the genetic variability of miRNAs in human

genomes, analyzing WGS data included in the gnomAD project

(Karczewski et al., 2020) and we found several ultra‐rare SNVs with a

potentially deleterious effect on miRNA biogenesis and function

representing putative contributors to human phenotypes.

2 | METHODS

2.1 | Noncoding variants scoring systems

We selected tools that predict the deleterious effect of noncoding

variants, including eight deleteriousness scoring systems (CADD v1.4,

Rentzsch et al., 2019; ReMM 0.3.1, Smedley et al., 2016; Eigen‐PC,

Ionita‐Laza et al., 2016; FunSeq 2.1.6, Fu et al., 2014; ncER, Wells

et al., 2019; FATHMM‐XF, Rogers et al., 2018; DANN, Quang

et al., 2015; LINSIGHT, Huang et al., 2017) and two conservation

scores (phyloP, Pollard et al., 2010; phastCons, Siepel et al., 2005),

and we scored all the 458,925 possible allelic SNVs occurring in the

152,975 nucleotides of 1869 miRNAs annotated in miRBase v20

(Kozomara et al., 2019). Those methods differ in statistical

approaches, training data, and data sources but rely on the

assumption that SNVs that are evolutionarily conserved are likely

to be deleterious. Since several SNVs (11%) showed missing values

from at least one of the scoring systems considered, we imputed

missing scores. The imputation was carried out on all the 458,925

possible allelic miRNA SNVs, by an Extremely Randomized Trees

(Extra‐Trees) Iterative Imputer (sklearn Python library, Pedregosa

et al., 2011), composed of 126 base decision trees. We repeated it 10

times using default iterative imputer parameters. We then applied a

principal component analysis (PCA) to evaluate the extent of

collinearity among the 10 tools.

2.2 | miRNA variants datasets

To train and test our meta‐predictor MiRLog, we collected two datasets

of reference miRNA SNVs (Supporting Information: Tables S1 and S2),

“data set 1” and “data set 2.” Data set 1 consists of deleterious and

neutral miRNA SNVs. To collect the first class of SNVs, we retrieved

variants from HGMD 2020.2 (Stenson et al., 2003) and miRVaS

(Cammaerts et al., 2016), selecting SNVs reported as “disease‐causing

mutations,” “likely disease‐causing mutations,” “disease‐associated

polymorphisms,” and “functional polymorphisms” in HGMD, and

functionally validated genetic variants in miRVaS test set. We manually

revised the relevant literature to ensure that the deleterious effect was

experimentally supported by functional validation assays, retaining only

SNVs not reported in gnomAD v2.1 genomes (N = 24). As neutral SNVs,

we selected miRNA SNVs showing an allele frequency (AF) > 10%
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(in gnomAD genomes) and neither reported in HGMD 2020.2 nor in

miRVaS (N = 219). Overall, data set 1 contains 243 SNVs.

Data set 2 is a less stringent data set, consisting of likely

deleterious and likely benign miRNA SNVs, not contained in the data

set 1. We collected likely deleterious SNVs from HGMD 2020.2 and

miRVaS, following the same searching criteria reported for data set 1.

In this case, we only considered likely deleterious SNVs already

observed (according to gnomAD genomes, N = 33). As likely benign

miRNA SNVs, we considered SNVs showing an AF <10% in gnomAD

genomes, N = 10,757), neither reported in HGMD 2020.2 nor in

miRVaS. Data set 2 contains 10,790 SNVs.

2.3 | MiRLog model

We implemented MiRLog, a meta‐predictor based on a supervised

machine learning model, to provide deleteriousness scores for all

possible miRNA SNVs (except those localizing on theY chromosome).

MiRLog was built as a classification pipeline. A nested cross‐

validation approach was applied to perform two main steps: tuning/

training and testing. Both steps were performed on data set 1. As not

all the scoring systems considered included scores for SNVs localized

on the X chromosome, we added an additional boolean feature that

indicated whether the SNV was autosomal or not, to ensure that

MiRLog could give different importance to the scoring systems that

defined SNVs localized on the X chromosome.

In the tuning/training step, SNVs' scores were firstly standard-

ized through StandardScaler (sklearn library); then, to reduce the

multicollinearity observed among them, SNVs scores were trans-

formed into orthogonal features through a PCA. Next, to add

complexity to the model, a quadratic polynomial transformation was

applied to features; finally, a bootstrap aggregation (bagging,

Breiman, 1996) classifier learned how to discriminate deleterious

SNVs starting from the new derived features (i.e., transformed

principal components). Both SNVs and derived features were

bootstrapped to reduce variance (preventing the overfitting) and

ensure that the classifier did not focus only on the most important

derived features. Due to the class imbalance of the data set 1, only

neutral SNVs were bootstrapped while all the deleterious ones were

involved in the training of each base estimator so that each base

learner was trained on the same number of SNVs with the same ratio

(composition in terms of deleterious/neutral SNVs). As a base

estimator, we chose logistic regression, applying L2 regularization

to the loss function, to further reduce the possibility of overfitting.

We set the number of estimators to 200, as the higher the number of

weak learners, the less likely the bagging classifier will overfit.

The overall classification pipeline was implemented in Python,

exploiting the sklearn and imblearn libraries (Lemaître et al., 2017). To

tune the L2 regularization power and the bootstrap hyperparameters

(deleterious/neutral SNVs ratio and number of derived features

randomly extracted), we performed a grid search with a four‐

repeated 12‐fold cross‐validation on data set 1, equally distributing

the deleterious SNVs in the various folds. Once the best

hyperparameters were defined, the same data set (data set 1) was

used for the model training. The hyperparameters explored in the grid

search process and the best hyperparameters we found for MiRLog

are described in Supporting Information: Table S3.

In the testing step of the model performance, we performed 12‐

fold cross‐validation on data set 1, and we repeated it four times,

with 4 different data set splits. The deleterious SNVs were equally

distributed among the folds even in this cross‐validation phase. The

model performance was evaluated through a receiver operating

characteristic (ROC) curve, and the full performance details are

described in Supporting Information: Table S4.

MiRLog approach was then applied on data set 2, to test its

predictive performance on an additional data set including a wider

spectrum of likely deleterious and likely neutral SNVs. We finally

used the MiRLog approach to score all the 458,925 possible allelic

miRNA SNVs.

2.4 | dbmiR database

We developed a manually curated database (dbmiR) that includes all

the 458,925 possible allelic SNVs at 152,975 nucleotides in 1869

human miRNAs. As a reference database, we used miRBase v20

(Kozomara et al., 2019), referring to the GRCh37/hg19 assembly,

since most of the used databases were built on this assembly. All the

functional annotations were retrieved from their repositories

(Supporting Information: Table S5), except for Eigen‐PC scores

retrieved from regBase (Zhang et al., 2019).

SNVs were annotated following the Human Genome Variation

Society (HGVS, den Dunnen et al., 2016) guidelines for variants in

noncoding RNAs. miRNA SNVs genomic coordinates were provided

for both hg19 and hg38 assemblies (hg38 coordinates were

generated through UCSC liftOver tool, Hinrichs et al., 2006).

miRNA sequences were retrieved from miRBase and miRNA

regions were defined accordingly. miRNA sequences had an extended

predicted hairpin precursor, which we defined as “pre‐miRNA,” including

a mature region. The mature region was further divided into “seed”

(from the first to the eighth nucleotide of the mature sequence), and the

“rest of the mature” (from the ninth to the last nucleotide of the mature

miRNA) subregions. When a miRNA was annotated in miRBase

including two mature miRNAs, we further divided the rest of the pre‐

miRNA into a “loop” subregion, between the two mature sequences, and

an “out of loop” subregion. This was possible for 923 miRNAs.

Allele frequencies were retrieved from gnomAD v2.1, consider-

ing only high‐quality variants, that is, those passing all gnomAD

quality filters. Reference variants' identifiers were based on

dbSNP152 (Sherry et al., 2001).

SNVs occurring in seeds were annotated using the PolymiRTS

database to predict the impact on target binding (Bhattacharya

et al., 2014). Information on somatic variations (i.e., tumor, primary

tissue, mutation somatic status) was added using COSMIC v89 data

set (Tate et al., 2019). SNVs were annotated using the information on

associated phenotypes, as reported in ClinVar (version March 2019;
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Landrum et al., 2018) and based on literature. miRNA disease‐causing

SNVs were annotated using data from HGMD 2017.4, retrieved from

VEP v100 (McLaren et al., 2016), and manually revised.

SNVs were annotated with multiple scoring systems, including

deleteriousness and conservation scores: CADD v1.4, ReMM 0.3.1,

Eigen‐PC, FunSeq 2.1.6, ncER, FATHMM‐XF, DANN, LINSIGHT,

phyloP, phastCons. We also integrated the score developed in this

study, MiRLog. Finally, to evaluate the predicted effect of SNVs on

miRNAs secondary structures, miRVaS scores were also computed

and integrated.

Official gene symbols were retrieved from the HUGO Gene

Nomenclature Committee (HGNC, Braschi et al., 2019). Genomic

localization was reported for each miRNA, that is, exonic, intronic, or

intergenic region (based on NCBI RefSeq release 105.20190906;

O'Leary et al., 2016). In addition, the predicted localization in a

putative cluster was estimated based on the occurrence of another

miRNA in 200 nucleotide flanking regions.

miRNAs intolerance to variation was evaluated using the Orion

(Gussow et al., 2017) and CDTS (di Iulio et al., 2018) systems. miRNA

CDTS scores were reported both for bins of 10 bp (as provided by

CDTS system) and also as a mean calculated across each pre‐miRNA.

miRNAs expression data were obtained from miRmine (Panwar

et al., 2017), containing data on miRNA‐seq in several tissues and cell

lines. Transcription factors‐miRNAs regulations were downloaded

from TransmiR v2.0 (Tong et al., 2019). Predicted targets were

evaluated using TargetScan V7.2 (Agarwal et al., 2015). Experimen-

tally validated targets were retrieved from DIANA‐TarBase V7.0

(Vlachos et al., 2015) and miRTarBase V7.0 (Chou et al., 2018).

miRNAs associations with human phenotypes were retrieved from

HMDD V3.2 (Huang et al., 2019), PhenomiR 2.0 (Ruepp et al., 2010),

and HPO (Köhler et al., 2019) databases. Associations of miRNAs

with Mendelian diseases were identified by querying PubMed (Sayers

et al., 2021) and a manual revision of selected papers. Information on

phenotypes of model organisms was obtained using the Monarch

Initiative (McMurry et al., 2016), an integrative database connecting

phenotypes to genotypes across species.

2.5 | miRNA genetic variability

To evaluate miRNA coverage in publicly available data, we analyzed

the coverage data of gnomAD v2.1, using the WGS (15,708 cases)

and WES (125,748 cases) datasets separately.

Per‐base coverage data corresponding to miRNA sequences was

calculated using tabix (from HTSlib 1.9, SamtoolsV; Bonfield

et al., 2021) and bedtools intersect tools (v2.26; Quinlan & Hall, 2010).

Coverage was evaluated as the fraction of miRNA bases covered at a

defined depth, calculated as the inverse cumulative relative fre-

quency. We considered a miRNA as “properly covered” if at least 20

reads covered at least 80% of its bases in at least 80% of the

sequenced individuals.

miRNA high‐quality SNVs (i.e., those passing all gnomAD quality

filters) annotated in the gnomAD genomes were furtherly analyzed, in

terms of AF, density, distribution along different regions and

nucleotide changes (Transitions/Transversions, Ts/Tv).

We plotted and evaluated miRNA SNVs' AF distribution using

the R ggplot2 package.

We compared SNVs density in miRNA sequences to different

genomic regions (i.e., exonic, intronic, and intergenic regions). To this

aim, we identified 5,245,679 SNVs in exonic, 79,784,840 in intronic,

and 119,764,961 in intergenic regions, from NCBI RefSeq

(105.20190906), excluding those overlapping gaps, centromeres,

telomeres, and noncoding genes. SNVs density was calculated as the

ratio between the number of SNVs in each region and its

corresponding length, in kb. SNVs densities were compared using

the χ2 test, considering as significant a p < 0.05.

We analyzed miRNA SNVs density compared to three flanking

nonoverlapping, ~100 bp in length, upstream and downstream

regions (Saunders et al., 2007). This analysis includes all the 1871

pre‐miRNA regions. SNVs density was also evaluated at the miRNA

subregion level, considering miRNAs with two mature miRNAs

annotated in miRBase. χ2 test was used to compare SNVs densities

values (p < 0.05). We also analyzed miRNA SNVs distribution along

miRNA main regions (i.e., mature miRNAs and the rest of the pre‐

miRNAs). A per‐base SNVs density along mature miRNAs was also

calculated, as the number of SNVs at each site per 1000 miRNAs

(Gong et al., 2012). To evaluate Ts/Tv ratio, VCFtools (Danecek

et al., 2011) were used. As genome Ts/Tv ratio, we considered the

204,052,492 high‐quality SNVs detected in gnomAD genomes and

localizing outside miRNA sequences. Ts/Tv ratio values were

compared using the χ2 test, considering as significant a p < 0.05.

We analyzed the distribution of MiRLog score for all the 458,925

possible allelic miRNA SNVs at 152,975 nucleotide positions in 1869

miRNAs contained in dbmiR, and for 11,010 miRNA SNVs annotated

in gnomAD (genomes), using ggplot2 package for R. For gnomAD and

dbmiR retrieved SNVs, we evaluated MiRLog scores and we

compared the distributions using Mann–Whitney test, considering

as significant a p < 0.05. We also assessed the distribution of MiRLog

scores for miRNA subregions for gnomAD and dbmiR SNVs (for the

923 miRNAs with two mature miRNAs annotated in miRBase), and

we compared the distributions using the Mann–Whitney test.

We tested the extent of a relationship among miRNAs associated

with diseases, their MiRLog average score, and the SNVs density

observed. To this aim, we selected gnomAD SNVs localizing in miRNAs

associated with at least one disease according to HMDD, calculating, for

each miRNA, the number of associated diseases, the average MiRLog

predicted score, and the SNVs density. We calculated the Spearman

correlation using the Hmsic package for R. We also evaluated the extent

of a relationship between MiRLog average score and SNVs density

observed for miRNAs not associated with diseases, using the Spearman

correlation (as described above). We compared distributions of SNVs

densities and MiRLog average scores, obtained on both miRNA classes

(associated or not associated with phenotypes), using the Mann–Whitney

test (considering as significant a p<0.05).

Finally, we evaluated the occurrence of potentially highly

deleterious miRNA SNVs in dbmiR. To this aim, we selected miRNA
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SNVs in the 99th MiRLog percentile (which corresponds to a MiRLog

score > 0.98).

3 | RESULTS

3.1 | MiRLog: A tool to predict deleteriousness of
miRNA SNVs

To assess the deleterious effect of miRNA SNVs, we implemented a

meta‐predictor, MiRLog, by integrating 10 scoring systems of

noncoding variants, including eight deleteriousness scoring systems

and two conservation scores (see Section 2). We firstly scored all the

possible allelic miRNA SNVs (N = 458,925) at 152,975 nucleotide

positions in 1869 miRNAs as annotated in miRBase v20 (Kozomara

et al., 2019). To evaluate the extent of redundancy among scoring

systems, we performed a PCA, which disclosed that half of the

principal components described ~90% of the total variance, thereby

revealing nonnegligible multicollinearity among SNVs' prediction

scores (Supporting Information: Figure S1).

To implement our meta‐predictor MiRLog, we firstly collected a

“data set 1” composed of deleterious and neutral miRNA SNVs (N = 243,

Supporting Information: Table S1; Figure 1a). MiRLog is a bagging

classifier based on a logistic regression model (Breiman, 1996). MiRLog

probabilistic scores range from 0 (neutral SNVs) to 1 (deleterious SNVs),

where 0.5 represents the threshold for likely deleterious SNVs.

MiRLog was trained and tested through a cross‐validation

approach on “data set 1,” achieving a 0.99 test AUC (Figure 1b),

and resulting in the most performant scoring system for miRNA

SNVs, followed by FATHMM‐XF (AUC = 0.97). Moreover, we built a

second data set (“data set 2,” N = 10,790, Supporting Information:

Table S2) using more relaxed AF thresholds (see Section 2) and

consisting of likely deleterious and likely neutral SNVs, on which we

tested MiRLog. Despite the reduction of observed AUC (AUC = 0.72,

Figure 1c), MiRLog was found to have better performances than the

other single scoring systems on which it is based, also in the case of

this data set.

3.2 | Generation of dbmiR and comparison with
other functional annotation tools

We generated dbmiR (Figure 2), an integrated database, providing

information on all the 458,925 allelic SNVs at 152,975 nucleotide

positions of 1869 miRNAs. Annotations include: SNVs localization in

miRNA regions, population AF (gnomAD), variants identifiers

(dbSNP), predicted impact on target binding (PolymiRTS), association

with diseases (COSMIC, ClinVar, HGMD, literature), predicted

deleterious effect and conservation scores (CADD, DANN, ReMM,

ncER, FunSeq2, FATHMM‐XF, Eigen‐PC, LINSIGHT, phastCons,

phyloP, and the meta‐predictor implemented in this study, MiRLog),

and effect on secondary structure predicted based on the evaluation

of the structural impact (miRVaS).

At the miRNA level, dbmiR provides miRNAs genome localization

(i.e., exons, introns, intergenic regions, and miRNA clusters),

intolerance to variations (Orion, CDTS), tissue/cell expression data

(miRmine), interaction with transcription factors (TransmiR), pre-

dicted or validated target binding (TargetScan, DIANA‐TarBase,

miRTarBase), and the association with human and model organisms'

phenotypes (HMDD, PhenomiR, HPO, Monarch Initiative, literature)

(Figure 2; Supporting Information: Table S5).

To compare dbmiR to other available databases, we chose those

which annotate miRNA variants, adding functional information. To

this aim, we analyzed several (~70) available miRNA databases

(Tools4miRs database; Lukasik et al., 2016; and literature), selecting

specifically those that provide at least one of the following

information on SNVs: localization in miRNAs, association with human

diseases, effect on miRNAs secondary structure. We retrieved four

databases, that is, ADmiRE (Oak et al., 2019), miRNASNP‐v3 (C. J. Liu

et al., 2021), MSDD (Yue et al., 2018), and miR2GO (Bhattacharya &

Cui, 2015; Table 1). The web‐based platforms, miRNASNP‐v3,

MSDD, and miR2GO, allow searching only for miRNA variants

already annotated in publicly available databases, such as dbSNP,

ClinVar or COSMIC, with miRNASNP‐v3 also providing functional

annotation of miRNAs. ADmiRE allows to search also for new miRNA

variants but performs a position‐based (and not allele‐specific)

functional annotation. This tool provides variants' localization in

miRNA sequence motifs and annotates those localized in the

proximity of miRNA sequences (up to 100 bp). Differently, dbmiR,

not only provides information on both already known and new

variants, but also adds annotation based on the specific allele variant.

Moreover, unlike the other annotation tools, dbmiR includes several

deleteriousness prediction scores, effect on miRNA secondary

structure, and association with model organism phenotypes. Finally,

it can be easily integrated into a workflow of analysis.

3.3 | miRNA genetic variability in the human
genome

We evaluated miRNA coverage in publicly available data, that is,

gnomAD 2.1. For miRNA sequences' definition, we considered the

extended hairpin sequences defined in miRBase (Figure 3a).

miRNAs had an average length of ~80 bp (41 bp min and 180 bp

max) in miRBase and mature miRNAs of 22 bp (min 16 bp and max

28 bp). Seeds were 8 bp long. When possible (see Section 2), we

further classified the rest of the pre‐miRNA region into a “loop”

subregion and “out of loop” subregion. Those subregions had an

average length of ~18 bp (4 bp min and 116 bp max) and ~21 bp (1 bp

min and 88 bp max), respectively.

A preliminary coverage evaluation of gnomAD data (see

Supporting Information: Figure S2) confirmed that theWGS approach

could sequence almost all the miRNAs while WES could capture only

a fraction (Oak et al., 2019). Overall, gnomAD SNVs represented

2.4% (11,010 variants) of all the possible miRNA SNVs (458,925). The

AF values of SNVs localizing in miRNAs (Figure 3b) were mostly
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(73%) very rare (AF ≤ 0.01%). SNVs density in miRNAs was 71.9

SNVs/kb, higher (p < 0.05; Figure 3c) than exonic regions (70 SNVs/

kb), and comparable to intronic (71 SNVs/kb) and intergenic (71.5

SNVs/kb) regions, in accordance with previous studies (Telenti

et al., 2016).

miRNAs showed a lower SNVs density (71.9 SNVs/kb) compared

to flanking regions (75.7 SNVs/kb, 74.3 SNVs/kb, and 74 SNVs/kb

for flanking upstream regions 1, 2, 3, and 74.2 SNVs/kb, 72.8 SNVs/

kb, and 73.5 SNVs/kb for flanking downstream regions 1, 2, 3,

respectively) (Figure 3d), confirming recently reported data

(Torruella‐Loran et al., 2016).

At the miRNA subregions level, we did not observe any

significant difference in SNVs density (Supporting Information:

Figure S3). This result was not influenced by the AF (>5% and >1%)

(Supporting Information: Figure S3).

We then focused on miRNA SNVs distribution in the mature and

in the rest of the pre‐miRNA regions (Figure 4a), revealing that 30%

(847) of mature miRNAs harbor no SNVs. In mature miRNAs with at

F IGURE 1 Design and predictive performance of MiRLog. (a) To implement MiRLog meta‐predictor, we collected a data set (“data set
1,” Supporting Information: Table S1) consisting of deleterious and neutral microRNA (miRNA) single nucleotide variants (SNVs) (N = 24 and
N = 219, respectively). SNVs' prediction scores (from f1 to fm, upper table) were transformed into principal components (from PC1 to PCm, lower
table) through a principal component analysis (PCA). We used bagging approach to obtain random undersampled datasets, all coming from the
“data set 1.” Each generated data set was used to train a logistic regression model. (b) We evaluated MiRLog predictive performance on the “data
set 1” (through cross‐validation), (c) and on the “data set 2” (Supporting Information: Table S2), a data set consisting of likely deleterious and
likely neutral miRNA SNVs (N = 33 and N = 10,757, respectively).
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least one variant, a median of two SNVs (1–12 SNVs) occurred. Most

mature miRNAs (85%, 1664) contained up to three SNVs, while the

remaining had up to 12 SNVs. Regarding the rest of the pre‐miRNA,

12% (233) did not have any reported SNV. 6762 variants (61%)

occurred in 1638 rest of the pre‐miRNAs, with a median of 3 (1–38),

with most of the rest of the pre‐miRNAs (1252, 76%) showing up to

five variants. 381 rest of the pre‐miRNAs (~23%) had from 6 to 16

SNVs. The remaining five rest of the pre‐miRNA showed 17, 19, 20,

25, and 38 variants, respectively. The per‐base SNVs distribution

along the mature miRNAs (Figure 4b) showed that sites 8 and 13

F IGURE 2 dbmiR database structure. Summary of the functional annotations provided by dbmiR at microRNA (miRNA) and variant levels,
classified into categories. For details on resources included in each category, see Supporting Information: Table S5.

TABLE 1 Comparison of the main features of dbmiR with other microRNA (miRNA) variants' functional annotation tools.

dbmiR ADmiRE miRNASNP‐v3 MSDD miR2GO

miRNA variants search ▪ Genomic coordinate

▪ dbSNP id

Genomic coordinate dbSNP id dbSNP id dbSNP id

New miRNA variants Yes Yes No No No

Localization in a miRNA

region

Yes Yes Yes Yes No

miRNA allelic variants Yes No Yes Yes Yes

Functional annotation

provided on miRNA

variants

▪ Allele frequency

▪ Variants' effect on miRNA

secondary structure

▪ Disease‐related variants

▪ Deleteriousness

▪ Conservation

▪ Allele frequency

▪ Conservation

▪ Variants effect on miRNA

secondary structure

▪ Variants' effect on targets

prediction

▪ Disease‐related variants

Disease‐
related

variants

Variants effect on

targets

prediction

Functional annotation

provided on

miRNAs

▪ Target prediction

▪ Disease associations

▪ Model organisms' phenotypes

▪ Transcription factors

▪ Conservation

▪ Cluster prediction

▪ Expression

▪ Target prediction

▪ Disease associations

▪ Transcription factors

▪ Host gene locus

▪ Biological function

▪ Cluster prediction

▪ Diseases associations

▪ Drug sensitivity

▪ Expression

NA NA

Availability Can be implemented in a pipeline Can be implemented in a

pipeline

Web‐based platform Web‐based
platform

Web‐based
platform

Year of update 2021 2018 2020 2017 2015
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contained more than 210 variants (215 and 225, respectively), while

other sites (1, 3, 12, 14, 15, 17, and 18) showed a reduced variability

(less than 190 variants).

Transitions (Ts) in miRNAs (67%; Figure 4c; Supporting Informa-

tion: Table S6) were much more frequent than transversion (Tv)

(33%). Tv values were lower in miRNAs than what observed on

average in the genome (35%, p < 0.05). Overall, Ts/Tv ratio was

higher in miRNAs (2.03) than in the rest of the genome (1.90)

(p < 0.05). For Ts, miRNA substitutions levels were similar (34% A/

T>G/C and 33% G/C>A/T) and comparable to the genome (33% for

both changes). Among Tv, miRNAs substitutions G/C>C/G were

higher (12%) than those observed in the genome (9%, p < 0.05).

Differently, G/C>T/A (8% in miRNAs and 9% in the genome), A/T>T/

A (5% in miRNAs and 7% in the genome), and A/T>C/G (8% in

miRNAs and 9% in the genome) levels were lower in miRNAs than in

the rest of the genome (p < 0.05).

F IGURE 3 MicroRNA (miRNA) subregions, single nucleotide variant (SNV) allele frequency and density in 15,708 gnomAD genomes.
(a) Definition of miRNA subregions. miRNA extended hairpin sequences, as retrieved in miRBase (“pre‐miRNAs”), were divided into mature and
rest of the pre‐miRNA regions (i.e., the sequence outside the mature). Mature regions were further divided into “seed” (from the first to the
eighth nucleotide of the mature sequence) and the “rest of the mature” (from the ninth to the last nucleotide of the mature miRNA) subregions.
The rest of the pre‐miRNA regions were further divided into “loop” (the sequence between the two mature miRNAs), and the “out of loop”
subregions. (b) Density distribution of miRNA SNVs allele frequency. (c) SNVs density of miRNAs, exonic, intronic, and intergenic regions.
miRNAs had a statistically higher SNVs density compared to exonic regions (indicated with a “*”), and comparable to intronic and intergenic
regions. (d) SNVs density distribution in miRNAs compared to three genomic flanking upstream and downstream regions. Flanking regions
showing a statistically higher SNVs density than miRNAs are indicated with a “*.” To evaluate statistical differences, we used χ2 test (p < 0.05).
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We analyzed the MiRLog score distribution (Figure 5a) of all the

458,925 SNVs at 152,975 nucleotide positions of 1869 miRNAs

annotated in dbmiR disclosing that 125,667 SNVs had a MiRLog

score > 0.5 (73rd percentile, Figure 5a). For gnomAD SNVs, we

observed that 2235 variants had a score >0.5 (80th percentile). The

occurrence of potentially highly deleterious SNVs in the reference

gnomAD cohort cannot be ruled out as this data set is not enriched

for individuals with severe pediatric disorders, but individuals with

severe, eventually adult‐onset diseases, may be included (Karczewski

et al., 2020).

The average MiRLog score of observed SNVs (i.e., gnomAD) was

lower than the predicted SNVs' (i.e., dbmiR) average score (0.20

versus 0.26, respectively; Figure 5a). The distribution profile of

MiRLog scores for all the possible SNVs was consistently higher

(Mann–Whitney, p < 0.05) compared to the distribution of observed

SNVs' scores, with observed SNVs showing a greater proportion of

nondeleterious variants (MiRLog scores closer to 0) and, conversely,

fewer highly deleterious SNVs than expected (Figure 5a). The same

results were obtained at subregion levels (Figure 5b, Mann–Whitney,

p < 0.05). Moreover, we found that the distribution of MiRLog scores

of observed SNVs was higher in the out of loop subregions than

those in the other ones (Mann–Whitney, p < 0.05; Figure 5c).

Then, we considered miRNAs associated with at least one

disease (according to HMDD), for which at least one SNV has been

reported in gnomAD. For these 908 miRNAs (Supporting Information:

Table S7), we evaluated the extent of collinearity among the

observed SNVs density, the number of miRNAs' associated diseases,

and their average deleteriousness MiRLog score (Supporting Infor-

mation: Figure S4a, see Section 2). We observed that the SNVs

density and miRNAs' associated phenotypes showed an anti‐

correlation (Spearman correlation = −0.20, p < 0.05, Supporting Infor-

mation: Figure S4a), confirming previous results on smaller cohorts

(Han & Zheng, 2013). Moreover, miRNAs average MiRLog scores

were negatively correlated to the observed SNVs density (Spearman

F IGURE 4 Sequence variability of
microRNAs (miRNAs) observed in 15,708
gnomAD genomes. (a) Percentage of mature
miRNAs and rest of the pre‐miRNAs
showing a defined number of variants.
(b) Single nucleotide variant (SNV) density
along mature miRNAs. Seed subregion (from
the first to the eighth base of mature
miRNA) is indicated. (c) Transitions and
transversions observed in miRNAs and
genome. Transitions were comparable
between miRNA and genome. Statistically
significant differences in transversions are
indicated with a “*.” For details, see
Supporting Information: Table S6. To
evaluate statistical differences, we used χ2

test (p < 0.05).
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correlation = −0.27, p < 0.05, Supporting Information: Figure S4a,b),

while they were positively correlated to the number of associated

diseases (Spearman correlation = 0.61, p < 0.05, Supporting Informa-

tion: Figure S4a). Overall, these findings suggested that the higher the

number of diseases a miRNA is associated with, the lower the SNVs

density it tends to accumulate, and the higher the deleterious effect

the SNVs exhibit.

Moreover, we compared results obtained on miRNAs associated

with phenotypes to those not yet associated (i.e., 890). We found

that, although miRNAs not associated showed a significantly higher

SNVs density compared to miRNAs associated with phenotypes

(Supporting Information: Figure S4c), they showed significantly lower

MiRLog average scores (Figure 5d), not correlated in any direction

with SNVs density (Supporting Information: Figure S4d).

F IGURE 5 MiRLog score distribution analyses. (a) MiRLog score distributions for microRNA (miRNA) single nucleotide variants (SNVs) in
gnomAD and in dbmiR. (b) MiRLog score distributions for miRNA subregions for gnomAD and dbmiR SNVs, localizing in miRNA with two mature
miRNAs annotated in miRBase. (c) MiRLog score density distribution for gnomAD SNVs (localizing in miRNA with two mature miRNAs annotated
in miRBase) at subregions level. (d) MiRLog score distributions comparison between miRNAs associated with at least one phenotype (light blue)
and those not yet reported in association with a disease (according to HMDD, orange). To evaluate statistical differences, we used
Mann–Whitney test (p < 0.05).
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Finally, we evaluated miRNA SNVs predicted to have a high

deleterious effect according to MiRLog (>0.98). Of the 4590 SNVs

identified in dbmiR (Supporting Information: Table S8), 39 were ultra‐

rare (AF < 0.01%) and 4540 not annotated in gnomAD, with 24% of

them localizing in 22 miRNAs, for which at least one abnormal

phenotype has been observed in model organisms (i.e., Monarch

Initiative), suggesting them as candidate miRNAs contributors to

human phenotypes.

4 | DISCUSSION

In this study, we implemented a functional scoring tool, MiRLog, a

supervised learning approach to prioritize miRNA SNVs with a

potentially deleterious effect, and dbmiR, a database to functionally

annotate miRNAs, two resources that could support the interpreta-

tion and classification process of miRNA variations.

Recently, the accurate prediction, prioritization, and classification

of the noncoding variants' effect on the regulatory architecture of the

human genome have emerged as crucial issues. Several methods have

been developed to address them, primarily based on functional

annotations and cross‐species conservation. Those approaches

predict the functional effect of variants localizing in different

regulatory regions, and they are usually trained on datasets consisting

of a relevant number of noncoding mutations. However, those

algorithms predict the functional effect of heterogeneous noncoding

elements (i.e., promoter, enhancer, noncoding RNAs, etc.), affecting

different molecular mechanisms at transcriptional and post-

transcriptional levels, without considering any specific class of

noncoding elements. Moreover, the many approaches to evaluating

noncoding variants often result in discordant predictions that are

difficult to integrate and reconcile (L. Liu et al., 2019).

Regarding functional annotation, currently available tools to

localize and annotate miRNA SNVs (e.g., VEP, ANNOVAR, SnpEff)

usually fail in this task, due to the lack of a reference sequence

database or to the misinterpretation of the functional effect

compared to protein‐coding genes (Oak et al., 2019). Then, once

localized in a miRNA, biological annotation at variant and miRNA

levels is affected by a limited number of available annotation tools

and the scattered annotation resources.

To address these issues, we developed dbmiR, a database

providing information on all the possible allelic SNVs at each

nucleotide position of 1869 miRNAs, which represents a compre-

hensive resource of biological miRNA‐related knowledge, that can be

integrated into a workflow of NGS data analysis. dbmiR integrates

data on population AF, impact on target binding, association with

diseases, predicted deleterious effect, conservation scores, and effect

on secondary structure. At the miRNA level, several biological

annotations have been included, such as intolerance to variations,

tissue/cell expression data, target binding, and association with

human and model organisms' phenotypes. Furthermore, to predict

the potential deleterious effect of miRNA SNVs, we implemented

MiRLog, a miRNA‐specific meta‐predictor. The major limitation of our

approach is represented by the small number of deleterious SNVs

included in the data set used to train and test MiRLog. To date, only a

limited number of confirmed deleterious miRNA variants have been

reported, which can be the consequence of a strong bias due to the

historical focus on protein‐coding variations and the challenge to

understand and interpret a variant in a noncoding region.

For this reason, MiRLog could not quite effectively generalize its

predictive performances, when applied to a wider spectrum of likely

deleterious and likely neutral SNVs. Moreover, as MiRLog is a meta‐

predictor, the AUC reduction is in line with the reduction of the AUCs

of the scoring systems on which our approach is based. We expect

that the use of MiRLog could support the identification of new

potentially deleterious miRNA SNVs that, once validated and

functionally tested, could be used to integrate the datasets and,

therefore, increase our approach's performances.

We used the resources developed in this study to explore human

miRNA variability, through the analysis of one of the broadest, to our

knowledge, cohorts of human subjects (i.e., gnomAD genomes cohort).

The ratio between transitions versus transversions was lower than

previously reported (Wang et al., 2015), maybe due to the higher number

of analyzed variants. Interestingly, human miRNA transversions were

statistically less represented than those observed in the rest of the

genome. This result could reflect a specific functional role for this type of

nucleotide substitution that can introduce DNA structure alterations,

transcription factor binding disruptions, and changes in regulatory

elements' activity (Guo et al., 2017).

SNVs were mostly ultra‐rare and their average density was

slightly higher than previously observed (Telenti et al., 2016). miRNA

density was lower than those of flanking regions, confirming reported

data on smaller cohorts (Gong et al., 2012; Saunders et al., 2007;

Torruella‐Loran et al., 2016).

We did not find any statistical difference in SNV density in miRNA

subregions, that is, seed, mature, loop, and out of loop subregions, even if

a trend could be observed, with fewer variants in seed compared to

mature, and fewer in mature compared to the rest of the pre‐miRNAs.

The AF did not influence this result, suggesting that variants in different

regions of hairpin precursor could equally affect miRNA function, likely

through the perturbation of biogenesis and targeting.

We found that observed variants were fewer than predicted and

with a lower deleteriousness score, suggesting that variations that

could exert a functional effect are less represented in control

subjects. Interestingly, this applies to all subregions of miRNA, that is,

seed, rest of the mature, loop, and out of loop. For the latter region,

we observed a higher MiRLog score on average than the other

regions, suggesting that it may accumulate more variants with mildly

deleterious effects and is, therefore, more tolerant to variations with

a lower impact on miRNA biogenesis and targeting.

Our observation that miRNAs associated with diseases tend to

accumulate SNVs, which generally have a higher deleterious effect, is

in accordance with this hypothesis and was demonstrated in several

cases of both monogenic (Grigelioniene et al., 2019; Mencía

et al., 2009) and complex traits (Duan et al., 2014; Reichenstein

et al., 2019; Williams et al., 2019).
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In conclusion, we developed a functional scoring tool,

MiRLog, and a database, dbmiR, to perform functional annotation

of miRNAs. dbmiR, which can be integrated into a workflow of

NGS data analysis, potentially maximizes the power of biological

annotations, showing an increased efficacy to accurately charac-

terize miRNA variations at a base‐wise resolution. Our composite

strategy significantly improved the prediction accuracy that could

provide relevant insight into disease mechanisms, underlying

both Mendelian and complex traits, and allowed us to further

suggest that SNVs in miRNA sequences likely affect their

regulatory function, potentially underlying pathogenic mecha-

nisms of human diseases.

WEB RESOURCES

miRBase: https://www.mirbase.org/

gnomAD: https://gnomad.broadinstitute.org/

HGMD: http://www.hgmd.cf.ac.uk/

Tools4miRs: https://tools4mirs.org/
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