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Abstract

Pulmonary artery acceleration time (PAT) and PAT: ejection time (PATET) ratio are 

echocardiographic measurements of pulmonary arterial hypertension (PAH). These non-invasive 

quantitative measurements are ideal to follow longitudinally through the clinical course of PAH, 

especially as it relates to need for and/or response to treatment. This review article focuses on the 

current literature of PATET measurement for infants and children as it relates to shortening of the 

PATET ratio in PAH. At the same time, further development of PATET as an outcome measure 

for PAH in pre-clinical models, particularly mice, such that the field can move forward to human 

clinical studies that are both safe and effective. Here we present what is known about PATET in 

infants and children and discuss what is known in pre-clinical models with particular emphasis on 

neonatal mouse models. In both animal models and human disease, PATET allows for longitudinal 

measurements in the same individual, leading to more precise determinations of disease/model 

progression and/or response to therapy.
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Introduction:

Pulmonary arterial hypertension (PAH) is a disease characterized by right heart catheter 

measurement of mean pulmonary arterial pressure (mPAP) greater than 20 mmHg at rest, 

according to the recent 6th World Symposium 1. Over time PAH can lead to right ventricular 

failure and death in any age group. In infants and children, PAH can occur as a result of the 

chronic lung disease of prematurity, bronchopulmonary dysplasia (BPD). The World Health 

Organization (WHO) PH classification system places PAH associated with BPD into group 

3 2, wherein the pulmonary vasculature is relatively contracted and/or remodeled, decreasing 

vessel diameter. Monitoring for PAH in high risk populations such as BPD patients is crucial 

for early PAH diagnosis and management. Catheter-based hemodynamic measurements are 

invasive, usually requiring anesthesia, and therefore not ideal in many clinical situations, 

such as a patient who is small (neonatal/infant), has poor vascular integrity, and/or requires 

long term right ventricular pressure (RVP) monitoring. Alternatively, RVP monitoring by 

pulsed-wave Doppler echocardiography using pulmonary artery acceleration time: ejection 

time (PATET) ratio is non-invasive, quantitative, and more easily assessed than tricuspid 

regurgitation measurement 3 with high intra- and inter-observer agreement 4. Since early 

diagnosis and treatment of PAH are vitally important to slow PAH development and prevent 

PAH-associated morbidity and mortality, PATET has evolved as a useful clinical predictor of 

PAH in many clinical settings in adults. However, its use is relatively new in small children 

particularly infants. Therefore, the aims of this review are to 1) examine the use of PATET as 

a quantitative clinical tool to assess PAH in the current pediatric literature, and 2) discuss the 

utility of PATET measurement in small animal models of PAH.

PAT and PATET ratio:

Pulmonary artery acceleration time (PAT), also known as PAAT, PAcT, or time to peak 

velocity (TPV), is the time (in msec) it takes for blood from the right ventricle to exit 

through the pulmonary valve and reach peak velocity after the pulmonary valve opens during 

systole. PAT is inversely related to HR 5–7, and adjustment for HR is made by dividing by 

the right ventricular ejection time ((RV)ET) to get the PATET 8. When PAP is elevated, 

as in the case of PAH, tachycardia has less of an effect on the PAT 9. The (RV)ET is 

the total time (in msec) it takes for blood from the right ventricle to exit through the 

pulmonary valve during one systolic cycle, from the opening to the closing of the pulmonary 

valve 10. The PATET then is the ratio of these two time intervals, which gives a unitless 

(msec/msec) proportion, whereby the smaller the proportion (shortening of the PATET) the 

less time per cycle is spent getting to peak velocity, indicative of higher mPAP. Stated 

another way, when mPAP is elevated, as measured by elevated right ventricular systolic 

pressure (RVSP), it will take a shorter time for blood flow from the pulmonary artery 

to reach maximum velocity (faster flow acceleration) 11,12, and the PATET ratio will be 

decreased/shortened. In summary, the shorter the PATET, the worse the PAH, reflecting the 

indirect relationship of PATET and measures of PAH including RVSP, PAP, and pulmonary 

vascular resistance (PVR), as well as the direct relationship of PATET and measures of PAH 

including pulmonary arterial compliance and RV mechanical performance 3,5,7.
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Adult PAT:

PAT research was first conducted in adults who normally have baseline HR <100bpm. The 

correction for HR with ET was therefore less of a concern and had not yet been introduced 

in the literature. The following studies are in adults and evaluated by transthoracic 

echocardiography unless otherwise noted. In 1983, Kitabatake et al. were the first to 

discover that PAT shortened as mPAP increased (mean PAT=137 msec when mPAP <20 

mmHg, mean PAT=97 msec when mPAP >20 mmHg) 12. Also, in the 1980’s, the linear, 

inverse relationship between PAT and mPAP was established, within a PAT range of 

74–170 msec 5,12–15. Currently, PAT is used either independently or in conjunction with 

tricuspid regurgitation velocity (TRV) to predict PAH 6,7,14,16,17, and PAT and TRVmax are 

inversely correlated 18. Granstam et al. 2013 confirmed that PAT is a clinically useful tool, 

especially in high risk patients, and reported that a PAT<100 msec is strongly associated 

with PAH 19. In 2015, Tousignant et al. studied patients undergoing elective cardiac surgery, 

where simultaneous hemodynamic measurements by trans-esophageal echocardiography and 

catheter-based pulmonary capillary wedge pressure (PCWP) showed that PAT correlated 

with invasive hemodynamic parameters 20. In 2016, Cowie et al. also studied cardiac 

surgical patients and found that PAT<107 msec predicted PAH 21. More recently, Zhan 

et al. utilized PAT to classify PAH severity (mild 70–90 msec, medium 50–70 msec, and 

severe <50 msec) 22. Interestingly, adults exposed to hyperoxia (100%O2) had modestly 

lengthened PAT, whereas hypoxia (17%O2) had minimal effect 23. PAT can also be used to 

predict cardiovascular events in young adults 24.

Children PAT and PATET:

For children, use of PAT to predict PAH can vary by age, body surface area, and HR. 

There is a positive correlation of PAT and age, PAT and body surface area, and a negative 

correlation of PAT and HR 7. Overall in children, detection of elevated PVR, decreased 

pulmonary arterial compliance, and RV dysfunction occurs at PAT <90 msec and PATET 

<0.3 3,10, and PATET<0.29 predicts PAH with 100% sensitivity and 96% specificity 6,7. In 

1984, Kosturakis et al. reported a range of PAT in children of 51–140 msec 25. In a cohort 

of both children and adults with cystic fibrosis, PAT<101 msec was proposed as a useful 

decision making tool for clinicians regarding timing of lung transplantation 26.

Infant PAT and PATET:

PATET and TRV are the major quantitative echocardiographic measurements in older 

children and adults to predict PAH. As patients become smaller, the TRV is more difficult to 

assess, thus the importance of measuring PAT and PATET. In both infants and children, 

PAT has been shown to predict PAP, PVR, and vascular compliance as measured by 

cardiac catheterization 3,6,10. In 2008, at a time when PATET was not yet routinely 

measured, Mourani et al. stated that the accurate estimate of catheter-based systolic PAP 

by echocardiographic quantitative measurements were much needed, especially in children 

< 2 years of age 27. In 2020, PAT was found to correlate with systolic PAP as estimated by 

TRV in neonates and young infants using the equation: sPAP = 82.6 – 0.58 x PAT + right 

atrial (RA) mean pressure 28.
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Preterm infant PAT and PATET:

A study by Carlton et al. in 2017 found that quantitative (PATET and TRV) 

echocardiographic measurements of PAH were more reliable among cardiologists than 

qualitative measurements in the assessment of pulmonary vascular disease in preterm 

neonates 29. Indeed, much of the PATET literature in infants has focused on preterm infants, 

with and without co-morbidities such as bronchopulmonary dysplasia.

In healthy preterm infants, PATET increases longitudinally from birth to 1 year of age 

indicative of the normal decrease in RV afterload that occurs postnatally 4. In the 1990’s, 

Gill et al. studied the natural history of PATET in a cohort of very low birthweight 

infants and found that the PATET becomes greater over the first three weeks of life, 

corresponding to the normal drop in PVR. Additionally those patients who continued to 

require supplemental oxygen after 36 weeks post menstrual age (PMA) had a lower PATET 

than room air controls 30,31, and PATET could be used to predict preterm patients that would 

develop chronic lung disease 32,33. Levy et al. published PATET values for a cohort of 

preterm patients at 1 year of age and found that PATET was lower in patients with PAH than 

in those without PAH 3,5. In patients ≤ 1 year of age, some of which were preterm with BPD 

and/or patent ductus arteriosus (PDA), infant PAT was inversely related to mPAP, systolic 

PAP, and PVR 5. Interestingly, when BPD-PH patients received either 100% O2 or 20ppm 

nitric oxide, PATET lengthened, indicative of improved PAP 34.

Prenatal PAT and PATET:

In 1987, Machado et al. reported the first human fetal (16–30 weeks gestation) PAT, as 

well as aortic AT, and found that PAT was shorter than aortic AT, consistent with the fetal 

circulatory pattern 35. In 2003, Fuke et al. predicted pulmonary hypoplasia using shorter 

fetal PATET obtained antenatally (20–39 weeks gestation). Normal values for mean PATET 

were also obtained in both right (0.17) and left (0.15) fetal pulmonary arteries 36. Additional 

antenatal human fetal studies have shown that mean PAT and PATET lengthen with 

increasing gestational age (18 weeks: PAT=24 msec, PATET=0.14; 38 weeks: PAT=36 msec, 

PATET=0.20), likely reflecting normal fetal pulmonary vascular development, decreasing 

PVR, and increasing pulmonary blood flow 37–39.

PAT and PATET in small animals:

PAH has been studied in canines, who, like humans, can develop PAH in response to 

underlying respiratory disease and left sided heart disease. Additionally, canine PAH is 

commonly associated with degenerative valve disease and parasites, such as heartworms. 

Veterinarians routinely use echocardiography clinically to diagnose and assess PAH, 

however, this can be challenging given the diverse number of species, and factors such as 

size, breed, and anatomical complexities 40,41. The American College of Veterinary Internal 

Medicine (ACVIM) recently published a consensus statement providing a guideline for 

diagnosis, classifying, treating, and monitoring canine PAH 40. One of the recommendations 

includes evaluating anatomical sites, such as the pulmonary artery using echocardiography. 

RV outflow doppler time (similar to PAT) <52–58 msec or PATET <0.30 has been shown 

Trittmann et al. Page 4

Pediatr Res. Author manuscript; available in PMC 2022 October 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



to suggest a higher probability of PAH in canines 40,42–44. Additionally, systolic notching of 

the Doppler RV outflow profile can assist in determining PAH in veterinary species 40.

Early studies in mice had difficulty visualizing the heart by echocardiography because of 

high heart rate (>400 bpm) and small size 45,46. However, recent advances in technology, 

as well as comprehensive protocols to assess the right heart in mice, have overcome 

these barriers with great potential to advance the study of PAH in mouse models 47–49. 

Echocardiographic probes are now miniaturized with frequencies >30 MHz designed for 

rodents 50–52. Echocardiographic landmarks in mice that are relevant to PAH include: right 

ventricle, right ventricular outflow tract (PAT measurement), and tricuspid valve (TRV 

measurement), 53. PAT and TRV can then be used to calculate PVR 54–56.

In a seminal article by Thibault et al. in 2010, mice underwent echocardiography and PATET 

was compared to pressures obtained from right ventricle catheterization at 3 months of age, 

which are currently the youngest mice studied using catheterization and echocardiography. It 

was determined that PATET<0.39 detected elevated RVSP (>32 mmHg) with sensitivity 

of 100% and specificity of 86%, while keeping both intra-observer and inter-observer 

variability at <6% 57. This demonstrated that PATET by echocardiography could be used 

to accurately assess PAH in mice greater than 3 months of age. However, the question still 

remains as to whether PATET by echocardiography can be utilized to assess PAH in mice 

less than 3 months of age.

Recently, PAT and PATET have been routinely measured in several PAH mouse models, 

adult and neonatal. Although the great strength of mouse models is the ability to interrogate 

genetic molecular targets causal to the disease phenotype of interest, many of the PAH 

mouse models are environmental exposures. A study in adult mice exposed to three weeks 

of hypoxia and repeated exposure to SU5416 (VEGF receptor inhibition) showed shortening 

of the PATET, as well as increases in RV wall thickness measured in diastole, compared to 

control 45. In a study by Zhu et al. 2019, an eight-week hypoxic mouse model and two rat 

models (hypoxia/sugen and MCT) showed shortening of the PATET compared to control 58. 

Adiponectin knockout mice have shortening of the PATET and evidence of PAH at one year 

of age 59. PATET has also been used to longitudinally evaluate adult mice with congenital 

diaphragmatic hernia for PAH 60. Reynolds et al. in 2016, evaluated newborn C57BL/6J 

mice in 70% O2 at 14 days and found evidence of shortening of the PATET, demonstrating 

PAH in the youngest cohort of mice to be reported at this time 61.

Experiment: PAT and PATET in a PAH hypoxic mouse model:

We recently evaluated PATET by echocardiography 56 in anesthetized 28-day old C57BL 

mice before, during an acute hypoxic exposure-induced PAH, and recovery in hyperoxia 

(50% O2) (Figure). We measured appreciable shortening (by 18%) of the PATET 

during acute hypoxic exposure (mean PATET=0.211) compared to pre-hypoxia (mean 

PATET=0.257), and recovery of PATET with hyperoxia at 1min, p=0.014). These data 

confirm that PATET can be reliably repeatedly measured in 28-day old mice and that 

shortening of the PATET, consistent with elevated PAP, can be observed in an acute exposure 

to hypoxia. These data confirm previous studies 57,61 that PAT and PATET measurements are 
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important tools to assess PAH even in very young mice. A mouse model such as this will be 

very useful in studying the progression of PAH disease, particularly in the context of models 

of human disease such as persistent pulmonary hypertension of the newborn or BPD.

PAT and PATET Limitations:

There are general limitations of small animal models, including the areas of studying 

breathing mechanics, gas exchange, and pulmonary hemodynamics 62, especially 

catheterization. Because of the difficulty to catheterize extremely small neonatal mice, we 

focus on developing PATET by echo as a potential solution. However, there are several 

limitations and/or considerations that need to be addressed when analyzing PAT and PATET 

data. Operator technique is important in acquiring data from Doppler echocardiography, 

including operator variation in determining the optimal angle between the transducer and 

pulmonary artery 63. This is an issue especially with smaller individuals, and it has been 

shown that the measurement of blood velocity decreases as the mis-alignment in the angle 

increases, and at >20% difference clinically the test is no longer considered accurate 
47,64. Another consideration is that PAT measurements when expressed as a range, are 

not continuous because the Doppler waveform is derived from intermittent Fourier analysis 
23. Some researchers have proposed MRI as a better modality to estimate PATET 63, and 

at least three studies in patients with bronchopulmonary dysplasia have determined that 

another quantitative measurement, eccentricity index, may be a better measure of right 

ventricular mechanics 65–67. Guidelines for measuring cardiopulmonary physiology by both 

echocardiography and MRI have been published and are an important step forward in 

the development of preclinical animal models 68,69. Despite superior imaging of MRI and 

micro-CT 70, the primary advantage of echo assessment is that the echo probe technique and 

PATET measurement can be 1) studied on a mouse prior to clinical use on a neonatal patient 

and 2) measure in real-time (functional echocardiography71), with relatively little anesthesia. 

Anesthesia can have negative impacts include hypercarbia, acidosis, hypothermia, alteration 

to ventilation/perfusion matching, tidal volume, and hypoxia resulting in pulmonary 

vasoconstriction 72–74. Any of these changes could alter PAT and PATET ratio but have 

so far not been studied. In addition, exploration of alternative anesthetic protocols to achieve 

reduction in minimum alveolar concentration for volatile agents and their negative impacts is 

needed.

It is important to note that PAP estimation by maximal TRV in the absence of pulmonary 

stenosis continues to be the gold standard echocardiographic measurement to estimate 

systolic PAP 5,11,75–77. However, TR envelope is not accessible much of the time 5,78,79, 

whereas PATET is accessible in >90% of patients 11,69. In mice, TR occurs only in 

severe PH and because of problems with flow alignment, measurements by echo are prone 

to inaccuracy 46,61. Additionally, studies in both children and adults have put the TRV 

under scrutiny, with some published data that TRV does not accurately predict right heart 

catheterization measurements 10,80.

In preterm neonates, PATET may not be useful in the context of patent ductus arteriosus 

(PDA) with left-to-right shunting. PDA causes turbulent flow in the pulmonary artery, 

potentially altering PATET measurement 5,6,10,81. Gaulton et al. studied 57 infants (77% 
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with PDA) who had both an echocardiogram and catheterization done within 10 days of 

each other and found that there was a correlation between PAT and PAP at catheterization, 

but no correlation between PATET and PAP at catheterization [7], highlighting the 

ambiguity of data interpretation in the context of PDA.

Discussion on the correction for HR made in the calculation of PATET was presented 

earlier under the heading “PAT and PATET ratio”. However, further adjustments have been 

proposed by correcting for the RR interval. Tossavainen et al. in 2013 corrected for HR 

by calculating a corrected PAT using the formula PAT/√RR interval, finding in adults that 

a corrected PAT <90 msec is a good predictor of PVR >3 Wood units 17. Interestingly, in 

neonatal patients, studies have not shown a correlation between PAT or PATET and RR 

interval 10,81,82.

Besides HR and large left-to-right shunts, RV dysfunction due to reasons other than 

PAH, can also confound the PATET, such that the PATET should routinely be interpreted 

in the context of measurements of RV systolic function and shunts 81. There are also 

considerations specific to the fetus including early RV and LV developmental effects on 

intrinsic contractile properties, vascular impedance, capacitance of the vascular bed, and 

ventricular preload, that should be taken into consideration while interpreting the fetal 

PATET 83.

Conclusions:

PAT and PATET are useful tools for the study of PAH in neonates, infants, and children 

although further studies are needed to determine optimal cut-off values that have robust 

correlation with PAH as diagnosed by catherization. Furthermore, studies are needed to 

differentiate normal developmental changes from changes that are attributable to disease 

progression. In terms of preclinical studies, the mouse model is of particular interest given 

its wide-spread use for studying neonatal diseases and developmental changes. Further 

study to establish PATET as a routine and accurate measure of PAH in small and large 

animal models is needed to provide a non-invasive, longitudinal measure of PAH. For 

pre-clinical studies in neonatal mice to study PAH in bronchopulmonary dysplasia, early 

time points (day of life 14–28), when catherization may be limited, validation of PATET 

against Fulton’s index and/or pulmonary vascular histology may be necessary. Consideration 

of neonatal functional echo studies 71 that include PATET as a real-time tool for a bedside 

PAH evaluation that is reliable and accurate would greatly advance assessment and treatment 

plans for these very sick infants.
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Abbreviations:

AT acceleration time

BPD bronchopulmonary dysplasia
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MCT monocrotaline

NO nitric oxide

mPAP mean pulmonary arterial pressure

PAH pulmonary arterial hypertension

PAT pulmonary artery acceleration time

PATET pulmonary artery acceleration time ejection time ratio

PCWP pulmonary capillary wedge pressure

PDA patent ductus arteriosus

PMA post menstrual age

PVR pulmonary vascular resistance

RA right atrial

RVET or ET right ventricular ejection time

RV(S)P right ventricular (systolic) pressure

TR(J)V tricuspid regurgitation (jet) velocity

VTIRVOT velocity time interval of the right ventricular outflow tract
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Impact:

• PATET ratio is a quantitative measurement by a non-invasive technique, 

Doppler echocardiography, providing clinicians a more precise/accurate, safe, 

and longitudinal assessment of pediatric pulmonary arterial hypertension 

(PAH).

• We present a brief history/ state-of-the-art of PATET ratio to predict PAH in 

adult, children, infants, and fetus, as well as in small animal models of PAH.

• In a preliminary study, PATET shortened by 18% during acute hypoxic 

exposure compared to pre-hypoxia.

• Studies are needed to establish PATET especially in mouse models of disease, 

such as bronchopulmonary, as a routine measure of PAH.
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Figure. PATET shortening in PAH hypoxic mouse model.
28-day old C57BL mice before (Pre-21% O2), during hypoxia (10% O2), and recovery 

with hyperoxia (50% O2). Mice were anesthetized with inhaled 1–3% isoflurane during 

the experiment. Each mouse (N=9) had 3–10 data points that were averaged prior to 

calculation of mean ± SE presented. Repeated measures one-way ANOVA with Tukey’s 

multiple comparisons test. *10%O2 vs. 50%O2−1min, p=0.014; 10%O2 vs. 50%O2−3min, 

p<0.001; 10%O2 vs. 50%O2−10min, p<0.01.
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