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Abstract

Protein language modeling is a fast-emerging deep learning method in bioinformatics with diverse applications such as structure
prediction and protein design. However, application toward estimating sequence conservation for functional site prediction has not
been systematically explored. Here, we present a method for the alignment-free estimation of sequence conservation using sequence
embeddings generated from protein language models. Comprehensive benchmarks across publicly available protein language models
reveal that ESM2 models provide the best performance to computational cost ratio for conservation estimation. Applying our method to
full-length protein sequences, we demonstrate that embedding-based methods are not sensitive to the order of conserved elements—
conservation scores can be calculated for multidomain proteins in a single run, without the need to separate individual domains.
Our method can also identify conserved functional sites within fast-evolving sequence regions (such as domain inserts), which we
demonstrate through the identification of conserved phosphorylation motifs in variable insert segments in protein kinases. Overall,
embedding-based conservation analysis is a broadly applicable method for identifying potential functional sites in any full-length
protein sequence and estimating conservation in an alignment-free manner. To run this on your protein sequence of interest, try our
scripts at https://github.com/esbgkannan/kibby.
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Introduction
Recent advances in natural language processing have yielded
deep learning models capable of parsing and understanding
human language [1]. Adapting these methods toward biological
data, protein language models (pLM) are trained on millions
of biologically observed protein sequences in a self-supervised
manner, without annotations [2]. Despite being trained on
sequences alone, these models are capable of learning pro-
tein representations which encode structural, functional and
evolutionary features [3]. These representations are stored in
the hidden states—typically referred to as embedding vectors,
a representation of raw protein sequences as large numerical
matrices. Protein sequence embeddings are further made up of
individual residue embeddings which encode the unique context
of each residue. Utilizing this context-rich information, previous
studies have shown that embeddings can be used to predict long-
range residue contacts [4], variant effects [5], and evolutionary
relationships. However, applications toward estimating protein
sequence conservation for functional site prediction have not
been systematically explored and benchmarked.

In the context of protein evolution, conservation is the measure
of how likely a given sequence residue is to be maintained by
natural selection. Through evolution, residues that play important
roles in protein structure and function tend to be more conserved
than residues that do not. Consequently, sequence conservation
is a good indicator for identifying functionally important residues
[6]. Most methods for estimating sequence conservation rely on
multiple sequence alignments. However, alignment-based meth-
ods are highly dependent on scoring parameters and the order
in which conserved segments appear in primary sequence [7].
For instance, an alignment of a sequence composed of motif A
followed by motif B would be difficult to align with a sequence
in which the motifs appear in a different order (motif B fol-
lowed by motif A). The order of conserved sequence elements
can change throughout evolution due to events such as domain
swapping, domain duplication or the insertion/deletion of pep-
tide motifs [8]. As a solution to this issue, we propose that a
sequence-embedding-based approach would not be sensitive to
the order of conserved elements and would be robust to genomic
rearrangements.
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Figure 1. A graphical overview of our overall workflow. (A) The flowchart describes our strategy for curating a training/testing dataset for predicting
sequence conservation using protein sequence embeddings. The outer box indicates that all steps within the enclosure are repeated for each alignment
sampled. Similarly, the inner box indicates that all steps within the enclosure are repeated for each sequence sampled. A more detailed version of
this flowchart is provided in Supplemental Figure S1. (B) The traditional strategy for quantifying sequence conservation requires a multiple sequence
alignment. Conservation scores can only be calculated at aligned residue positions. (C) Our strategy for quantifying sequence conservation utilizes
sequence embedding vectors generated from protein language models. The sequence embedding is shown as a two-dimensional numerical matrix
where each vertical column corresponds to a residue position-residue embeddings. Conservation scores can be calculated for each residue position
using regression.

Here, we develop a method for estimating protein sequence
conservation using embedding vectors generated from protein
language models. Upon benchmarking publicly available protein
language models from the ESM1, ESM1b [9], ESM2 [10] and Prot-
Trans [11] families, we found that embedding vectors generated
from the ESM2 family of protein language models provide the best
performance to computational cost ratio. Additional benchmarks
indicate that our embedding-based method predicts a similar
global distribution of sequence conservation scores compared
with alignment-based methods. Finally, we demonstrate practical
applications of our method in estimating sequence conservation
for full length proteins and fast-evolving domain inserts.

Materials and methods
Dataset curation
We gathered a dataset of multiple sequence alignments from the
Pfam database (retrieved on 10 April 2022) [12] which was used
to train a model for predicting sequence conservation (Figure 1A).
First, we downloaded all unfiltered UniProt [13] sequence align-
ments which were labeled as either ‘Domain’ or ‘Family’. Then we
reduced redundancy by filtering each alignment at 70% similar-
ity using hhfilter [14] and removing sequences which contained
more than 30% gaps. We also removed small alignments con-
taining less than 100 sequences. A total of 11 957 high-quality
alignments remained after filtering. We randomly sampled three
sequences from each alignment for a total of 35 871 sequences. All
alignments were stored in A3M format which represents aligned
residues in uppercase, while unaligned residues are retained in
lowercase.

For each protein sequence, conservation is calculated using a
multiple sequence alignment which provides conservation scores
for aligned residues [6]. We generate an embedding of the same

sequence using a protein language model. Each sequence embed-
ding is composed of individual residue embeddings which corre-
spond to each residue of the embedded protein sequence. Because
conservation values cannot be generated for unaligned residues,
we remove embeddings positions that correspond to unaligned
residues. This leaves us with a series of conservation scores
for each aligned residue and a corresponding series of residue
embedding vectors for the same aligned residues. By repeating
this process for all 35 871 sequences, we curated a total of 5543
729 aligned residues and discarded a total of 283 591 unaligned
residues. It is important to note that each testing/training exam-
ple corresponds to a single residue within a larger sequence
context.

Sequence conservation
Typically, sequence conservation is quantified using multiple
sequence alignments. Sequence conservation measures the
degree to which each residue in a sequence is evolutionarily
constrained across millions of years of evolution (Figure 1B).
Residues that play important roles in protein structure or function
tend to be evolutionarily conserved. There are many methods for
quantifying conservation—most of which are based on statistical
entropy or divergence. For instance, WebLogo [15], one of the most
popular methods for quantifying sequence conservation, uses
the Shannon entropy by default [16]. In addition to the metric,
the conservation score also depends on the multiple sequence
alignment. Our dataset curation procedure, described in the
previous section, ensures that our alignments are diverse, deep
and well-aligned.

Although there are multiple strategies for quantifying con-
servation from multiple sequence alignments, benchmarks show
that the Jensen–Shannon divergence provides the best heuristic
for identifying functional sites [6]. Jensen–Shannon divergence

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac599#supplementary-data
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measures the similarity between two probability distributions and
is bounded to a range of zero to one. We calculate the conservation
of an aligned sequence residue by taking the amino acid distribu-
tion in the corresponding alignment column and calculating the
Jensen–Shannon divergence against the BLOSUM62 background
distribution of amino acids [17]. The score is further weighted by
the proportion of gaps observed at the aligned column.

Protein sequence embeddings
Protein language models learn the underlying grammar of biolog-
ical sequences by training on large, universal proteome databases.
These models are trained by masked language modeling in which
a random subset of residues in each sequence is replaced with
blanks and the model is trained to fill in these blanks using
contextual information. Given a protein sequence, protein lan-
guage models generate an embedding vector of size (t, e) where
each amino acid is represented by a single token and contextual
information learned by the model is stored in (e) dimensions. In
addition to amino acid tokens, most models add additional special
tokens which may denote the beginning or end of the sequence.
For the given protein sequence embedding, (t) corresponds to
the total number of amino acid tokens and special tokens. We
generate sequence embeddings from a wide variety of pre-trained
protein language models [9–11]. All special tokens are removed
such that the number of tokens in a given embedding matches the
number of residues in its corresponding protein sequence. This
allows us to map each residue in the protein sequence to a residue
embedding vector in the protein sequence embedding.

Regression model
We fit our regression model using 35 000 examples selected by
stratified random sampling, sourced from Pfam ‘Domain’ align-
ments (0.6% of the total data). Samples were stratified by their
conservation scores in order to account for the relative abundance
of non-conserved residues versus conserved residues. Model per-
formance was evaluated using the remaining 5508 729 examples
(99.4% of the total data). We tried various regression methods
including ordinary least squares linear regression, ridge regres-
sion which applies an L2 penalty, LASSO regression which applies
an L1 penalty and elastic net [18] which applies both penalties.
Regression methods were evaluated based on their performance
on the testing set. Final predictions from all linear models were
clipped to a range of zero to one; values lower than zero were set
to zero, while values higher than one were set to one.

Results
Comparison of protein language models for
predicting sequence conservation
Our overall goal is to predict sequence conservation using
sequence embedding vectors. Here, we benchmark a diverse
range of protein language models in order to assess their
ability to generate sequence embeddings vectors that capture
sequence conservation. Although all protein language models
utilize the Transformer-like architecture, there are important
technical differences such as the attention module design, the
self-supervised training dataset, the number of self-attention
layers, the size of the embedding dimension and the method
of encoding residue positions. Consequently, the quality of a
sequence embedding will differ depending on the model.

We curated a dataset of protein sequences with residue con-
servation scores, calculated using curated alignments from the
Pfam database. For each sequence, we generated embeddings

using a wide range of protein language models. Embedding vectors
were fit to residue conservation scores using a training set of 35
000 examples, accounting for 0.6% of the total data, while the
remaining 99.4% was reserved to test the model. Performance was
evaluated by the Pearson correlation of the predicted versus the
actual conservation scores on per residue and per sequence level.

Our benchmarks indicate that ESM2 protein language mod-
els offer the best overall performance to computational cost
ratio (Figure 2). While larger models perform better, they also
require more computational resources. Across the ESM2 models,
we observe that the exponential increase of model size corre-
sponds to a linear increase in performance. This relationship
plateaus at 3B parameters which exhibit similar performance
to the 15B parameter models. Based on these benchmarks, we
decided to utilize the ESM2 model containing 3B parameters,
which offers good performance for a reasonable computational
cost. Predicted conservation scores in the following sections will
utilize this model unless stated otherwise.

Our regression models also outperform VESPA (Table 1), a
convolutional neural network classifier that predicts nine discrete
levels of sequence conservation using embeddings generated
from a ProtTrans protein language model [5]. To note a difference
in methodology, VESPA used conservation scores calculated
using Rate4Site [19], while we calculated conservation scores
using Jensen–Shannon divergence. Although benchmark studies
indicate that both metrics are equally effective at identifying
functional sites, Rate4Site is several orders of magnitude slower
[6]. Accounting for potential differences in conservation metric,
our regression models also outperform VESPA when scored by
Spearman correlation (Supplementary Table S1).

Finally, we benchmark the computational time needed for
performing embedding-based sequence conservation estimation
(Table 2). Specifically, we benchmark the time it takes to generate
an embedding from various language models, then benchmark
the time it takes to estimate sequence conservation. Given
embeddings from the same language model, our regression-
based method outperforms VESPA by a significant margin. Overall
results indicate that our regression-based approach is more
accurate as well as more computationally efficient as it only
requires a single matrix multiplication, followed by addition.

Protein residue embeddings encode sequence
context
A protein sequence embedding can be broken down into individ-
ual residue embeddings which includes contextual information
about each residue. Given that the conservation of a residue is
dependent on its sequence context—the functional units which
the residue takes part in—the ability to encode contextual infor-
mation is highly important for embedding-based conservation
prediction. In order to benchmark how much contextual informa-
tion is encoded, we quantify the ability for an individual sequence
embedding to predict the conservation of neighboring residues.

In the previous section, we trained regression models to predict
the conservation of a given residue position based on the equiva-
lent position in the sequence embedding vector. In this section, we
train and test regression models that predict residue conservation
using residue embeddings that are a fixed number of positions
away from the prediction target which we refer to as the offset.
For example, a regression model trained with a fixed offset of
+2 would predict the conservation of residue 100 based on the
embedding vector of residue 102 (Figure 3A). Separate regression
models were trained for each offset.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac599#supplementary-data
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Figure 2. We compare the performance of various protein language models in generating embedding vectors for predicting sequence conservation. These
plots depict the tradeoff between the accuracy of conservation score predictions (measured by Pearson correlation) and the required computational
resources for each protein language model (measured by the number of model parameters). The left plot shows an individual residue level comparison,
while the right plot is normalized by sequence. Each data point represents a distinct protein language model and the color indicates models from the
same family where six ESM2 [10] models are shown in green, four ProtTrans [11] models in red, one ESM1b [9] model in gold and three ESM1 [9] models
in blue. Protein language models from the same family are connected by dotted lines.

Table 1. We benchmark the performance of all protein language models in generating embedding vectors for predicting sequence
conservation. For each model, we indicate the best method for solving linear coefficients based on testing set performance. Scores for
all methods are provided in Supplemental Table S1. On the next-to-last row, we benchmark VESPA, a neural network classifier for
predicting sequence conservation using embeddings from a ProtTrans model with 3B parameters [11].

Language model Model parameters Conservation estimator Pearson (by residue) Pearson (by sequence)

ESM1 85M linear regression 0.39 0.39
670M linear regression 0.47 0.46
43M linear regression 0.34 0.35

ESM1b 650M linear regression 0.62 0.64
ESM2 8M linear regression 0.36 0.37

35M linear regression 0.46 0.46
150M linear regression 0.57 0.60
650M linear regression 0.67 0.71
3B elastic net regression 0.71 0.74
15B LASSO regression 0.72 0.75

ProtTrans 224M elastic net regression 0.52 0.51
420M linear regression 0.57 0.61
3B linear regression 0.69 0.72

VESPA (neural net) 0.56 0.61
11B linear regression 0.67 0.71

Table 2. We benchmark the runtime of our method. Indicated on the top row, our method is divided into two steps which are
‘generating embeddings’ and ‘estimating conservation’. Benchmarks were performed using an average workstation with an NVIDIA
RTX 2080 GPU and an Intel Xeon Gold 5118 CPU using a 254 residue protein sequence. GPU benchmarks are unavailable for some
models which were too large to fit within GPU memory.

Generating embeddings Estimating conservation

Language model Model parameters GPU runtime (RTX 2080) CPU runtime (16 threads) Conservation estimator CPU runtime (1 thread)

ESM2 8M 9 ms 116 ms linear regression 30 μs
35M 14 ms 186 ms linear regression 67 μs
150M 29 ms 433 ms linear regression 71 μs
650M 177 ms 1371 ms linear regression 54 μs
3B n/a 4911 ms elastic net regression 61 μs

ProtTrans 3B 79 ms 2271 ms linear regression 147 μs
VESPA (neural net) 4666 μs

We conduct benchmarks on embeddings generated for all
ESM2 models (Figure 3B). Across all ESM2 models, no offset
yields the best performance which is expected because most
of the information encoded by a residue embedding pertains

to its corresponding sequence residue. We observe decreasing
performance as the offset increases, which indicates that residue
embeddings tend to contain more information on its immediate
context. Although performance plateaus at 3B parameters

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac599#supplementary-data
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Figure 3. Benchmarks for the amount of contextual information encoded by residue embeddings. (A) The diagram on the left shows our method for
predicting sequence conservation based on the individual residue embeddings of the corresponding residues. The diagram on the right shows the same
method, except residue embeddings are used to predict conservation of residues 2 positions away. (B) The line graph shows the performance in separate
regression models in predicting the sequence conservation (x-axis) of residues that are a fixed number of positions from the equivalent residue position
on the sequence embedding (y-axis). Each labeled line corresponds to an ESM2 model with varying number of parameters, also indicated on the legend
(top-right).

Figure 4. Histograms show the distribution of residue conservation scores calculated from (A) multiple sequence alignments and (B) sequence embedding
vectors. We empirically define (non)conserved sites using a cutoff at 0.5 where conserved sites (greater than 0.5) are colored red, while nonconserved
sites (less than 0.5) are colored blue. Percentages for conserved and nonconserved sites are provided at the bottom.

(Figure 2), these benchmarks indicate that the 15B parameter
model encodes more context than the 3B model (Figure 3B). For
more general applications, this strategy can also be used as a
highly informative benchmark for any protein language model to
evaluate the amount of learned positional information.

Predicting conservation scores for unaligned
sequence regions
The major advantage of our embedding-based method is
the ability to assign conservation scores to all residues in a
sequence. In comparison, alignment-based methods can only
assign conservation scores to aligned residues. For further
investigation, we compare the distribution of conservation scores
calculated from alignments (Figure 4A) with the distribution of
conservation scores calculated from embeddings (Figure 4B).
We further separated embedding-based conservation scores
based on whether the residue was aligned relative to our Pfam
alignments.

A comparison of aligned residues reveals that our embedding-
based method predicts a similar ratio of conserved to non-
conserved residues as the traditional alignment-based method—
about five non-conserved residues for every one conserved
residue. Our regression model further predicts the majority of
unaligned residues are not conserved, however approximately
6% of these residues may be part of a functional site which is not
typically found in a given protein domain context. Given that each
Pfam alignment represents a distinct protein domain, our method
has potential applications toward identifying novel functional
sites that exist in non-conserved insert regions within protein
domains. This will be demonstrated in the following section.

Embedding-based conservation analysis for full
length proteins
Our embeddings-based method can be used to assign conser-
vation scores to all residues in any full length, multi-domain
protein sequence. Interestingly, benchmarks indicates that using
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Table 3. We benchmark the effect of using full length, multi-domain protein sequences versus single domain sequence. From our
curated dataset of 35 871 sequences, we retrieved all full length sequences and identified 9382 multi-domain sequences based on the
NCBI Conserved Domain Database (CDD) [20]. We performed embedding-based conservation prediction for all full length sequences,
compared with their corresponding domain sequences. In order to facilitate a fair comparison, we evaluated the performance of both
groups using the domain sequence region.

Using full sequence Using domain sequence

Language model Model parameters Pearson (by residue) Pearson (by sequence) Pearson (by residue) Pearson (by sequence)

ESM2 8M 0.36 0.38 0.36 0.38
35M 0.46 0.49 0.45 0.46
150M 0.59 0.66 0.55 0.58
650M 0.69 0.74 0.65 0.69
3B 0.71 0.76 0.68 0.73

Figure 5. We compare conservation scores generated from our regression-based method versus alignments. (A) Sequence conservation scores for full
length human BTK (Uniprot Q06187). Shown on the upper histogram, alignment-based conservation scores were calculated from five separate multiple
sequence alignments of PH domains (Pfam PF00169), zinc finger motifs (Pfam PF00779), SH3 domains (Pfam PF00018), SH2 domains (Pfam PF00017)
and protein kinase domains (Pfam PF07714). Sequence regions covered by each alignment are highlighted gray, while aligned residues are indicated
by the black bar at the top of the highlighted box. Shown on the lower histogram are predicted conservation scores calculated from our regression-
based method. For all plots, the y-axis shows conservation scores in the range of 0.35 to 1.00. At the bottom, we provide residue numbers as well as
the secondary structure where helices are shown in red, while sheets are shown in blue. All secondary structures were defined by DSSP using the
AlphaFold2 [22] model prediction database [23]. A more detailed comparison plot for BTK is provided in Supplemental Figure S2. (B) We show a similar
plot for human PDGFRB (Uniprot P09619). In the lower histogram, we label five conserved residues located in the disordered insertion segment which
occurs in the middle of the kinase domain. A more detailed comparison plot for PDGFRB is provided in Supplemental Figure S3.

full length sequences offers betters performance compared with
using domain sequence (Table 3). This can likely be attributed to
the additional context that is available in full length sequences.

We perform a case study on a full-length, multi-domain protein
using human Bruton’s tyrosine kinase (BTK) which is composed
of a Pleckstrin homology (PH) domain, a zinc finger motif, a Src
homology 3 (SH3) domain, a Src homology (SH2) domain and a
protein kinase domain [21]. We predicted the conservation of each
residue by applying our regression model on a protein sequence
embedding of full length BTK (Figure 5A). We compare this to the
residue conservation score calculated from five separate Pfam
alignments corresponding to the individually conserved sequence
segments. Our predicted conservation scores are very similar to
conservation scores calculated from multiple sequence align-
ments. Our regression method also predicts a conserved region
between the zinc finger and SH3 domains which corresponds to
two proline-rich repeat segments.

We perform another case study on another protein containing
a long, disordered insertion segments which can occur between
or within distinct protein domains. We demonstrate this using
human-platelet-derived growth factor receptor beta (PDGFRB)
(Figure 5B). Human PDGFRB contains a disordered, fast-evolving
segment in the middle of the protein kinase domain spanning
over 100 residues. Furthermore, this insert segment is not covered
by the Pfam alignment. While our method predicts most residues

in the insert segment to have low conservation, it identifies five
conserved residues Y716, Y740, Y751, Y763 and Y771—all of which
are tyrosine phosphorylation sites [24–26]. Overall results indi-
cate that our embedding-based method can identify important
functional sites and functionally conserved sequence segments,
irrespective of the order in which they appear in the sequence.

Discussion
Here, we find that sequence embeddings generated from protein
language models are directly correlated with sequence conser-
vation. This allows us to estimate sequence conservation using
simple linear models which are both more accurate and faster
than the previous neural network-based approach (Tables 1, 2,
Supplementary Table S1). However, why does our method work;
why are sequence embeddings so correlated with sequence con-
servation? To provide a bit of background, language models are
typically evaluated based on perplexity which measures the cer-
tainty of all possible words appearing at a position, given the
available context. From an evolutionary biology perspective, we
reason that residue positions with lower perplexity are more
constrained by natural selection, while residue positions with
higher perplexity are less constrained by natural selection. Thus,
the concept of perplexity in natural language processing is very
similar to the concept of conservation in evolutionary biology.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac599#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac599#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac599#supplementary-data
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Figure 6. Conservation scores can be mapped onto AlphaFold models. The
structure shown here is human BTK (Uniprot Q06187).

From a more technical standpoint, calculating perplexity requires
a full language model containing both an encoder and decoder,
however decoders are not available for some pre-trained protein
language models. In comparison, our regression-based approach
is faster and more computationally efficient as it only requires the
encoder half.

Embedding-based sequence conservation analysis offers
many practical advantages over traditional alignment-based
approaches. Given a protein sequence of interest, traditional
methods require a database search in order to find similar
sequences to define an alignment. If the protein contains multiple
domains, it may also be necessary to define separate alignments
for each, further increasing the computational cost and labor.
After defining alignments, it is also necessary to map the aligned
residues back to the original sequence of interest. In comparison,
the most computationally intensive step of our method is
generating the protein sequence embedding which takes seconds
on an average computer and can be accelerated by several orders
of magnitude with GPUs (Table 2). From the sequence embedding,
estimating the sequence conservation by regression would take
virtually no time at all. Mapping conservation scores back to
the original sequence is also trivially easy because scores are
generated for all residues, while alignment-based methods would
need to account for gaps and unaligned residues.

Although embedding-based conservation analysis can identify
conserved sites, the method does not explain why the site is
conserved—a disadvantage that is also shared by alignment-
based methods. Given the recent emergence of embedding-based
sequence analysis, we are optimistic for the development of
potential embedding-based solutions. Because our regression-
based method for estimating conservation is compatible with all
language models, the performance of our method is expected
to improve alongside the release of updated protein language
models. To propose a potential alternative, it would be interesting
to directly characterize the relationship of perplexity and
sequence conservation. Furthermore, estimating the perplexity
of each residue using a similar regression-based approach would
potentially facilitate a more unsupervised and equally fast
method of estimating sequence conservation.

Overall, conservation analysis is highly informative for iden-
tifying functionally important residues for further experimental

or computational characterization. For instance, residue conser-
vation values can be mapped onto experimentally solved protein
structures [27]. For even more context, our all-residue conserva-
tion scores can also be mapped onto any full length protein using
AlphaFold models [22] (Figure 6) or Uniprot sequence annotations
[13]. We provide easy-to-use scripts for implementing these anal-
yses in our GitHub repository. These tools are expected to promote
the discovery of novel functional sites, especially in fast-evolving
or disordered sequence regions.

Key Points

• Embedding-based sequence conservation analysis is an
alignment-free method capable of assigning conserva-
tion scores for all residues in any given protein sequence.

• Embedding-based conservation analysis is useful for
identifying conserved functional sites that exist within
fast-evolving sequence regions (such as domain inserts
or linker regions) which would typically be excluded
from multiple sequence alignments.

• Compared with traditional alignment-based methods,
embedding-based conservation analysis (1) does not
require a genomic database search, (2) can parse mul-
tiple protein domains in the same run and (3) can be
accelerated by GPU.

Data availability
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this GitHub repository https://github.com/esbgkannan/kibby.
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