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Abstract: The emergence of specific drug–device combination products in the inhalable pharma-
ceutical industry demands more sophistication of device functionality in the form of an embedded
sensing platform to increase patient safety and extend patent coverage. Controlling the nebuliser
function at a miniaturised, integrated electrochemical sensing platform with rapid response time and
supporting novel algorithms could deliver such a technology offering. Development of a nanoporous
gold (NPG) electrochemical sensor capable of creating a unique fingerprint signal generated by
inhalable pharmaceuticals provided the impetus for our study of the electrooxidation of salbutamol,
which is the active bronchodilatory ingredient in VentolinTM formulations. It was demonstrated
that, at NPG-modified microdisc electrode arrays, salbutamol is distinguishable from the chloride
excipient present at 0.0154 M using linear sweep voltammetry and can be detected amperometrically.
In contrast, bare gold microdisc electrode arrays cannot afford such discrimination, as the potential
for salbutamol oxidation and chloride adsorption reactions overlap. The discriminative power of
NPG originates from the nanoconfinement effect for chloride in the internal pores of NPG, which
selectively enhances the electron transfer kinetics of this more sluggish reaction relative to that of
the faster, diffusion-controlled salbutamol oxidation. Sensing was performed at a fully integrated
three-electrode cell-on-chip using Pt as a quasi-reference electrode.

Keywords: nanoporous gold; electrochemical sensor; inhalable pharmaceutical; salbutamol; nanocon-
finement effect; selective discriminative amplification; excipient

1. Introduction

Salbutamol, 2-(tert-butylamino)-1-[4-hydroxy-3-(hydroxymethyl)phenyl] ethanol (also
known as Albuterol), is a β2-adrenergic bronchodilator widely used in treating respira-
tory conditions including bronchial asthma, emphysema, allergen asthma and chronic
obstructive pulmonary disease (COPD) [1–3]. It is amongst the top ten prescribed drugs in
the United States [4] and is usually administered by pressurized metered dose inhaler or
nebulizer. It is also an important tool in the development and validation of respiratory drug
delivery systems [5–8] and surrogate tracer aerosol for expensive and hard-to-quantify
pharmaceuticals. In vivo, the inhaled dose is absorbed in the lung, with the free drug
and its metabolite being eliminated by renal excretion [9]. Unsurprisingly, residues of
salbutamol and its metabolites have been found in natural bodies of water, which poses
a threat to human health and the environment [10]. Most recently, Palacios-Arreola et al.
reported an electrochemical degradation method seeking to address problems incurred by
the persistence of salbutamol residues in water bodies [11]. Although salbutamol was orig-
inally developed for the treatment of respiratory illness, it has also been used to improve
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lean meat yield in animals by enhancing growth rate and reducing carcass fat [12]. Conse-
quently, it may accumulate in animal tissues and persist in meat products, with human
ingestion of such contaminated foods potentially resulting in acute toxic responses, such as
cardiac palpitation, muscle tremors, tachycardia and elevated blood sugar levels [13,14].
All β-agonists, including salbutamol, are banned in the European Union as feed additives
for growth promotion in animals, but the illegal use of salbutamol still occurs in many areas
across the world. There is a clear need to establish rapid, portable and accurate methods to
monitor salbutamol, primarily for its treatment of lung disease but also due to its illicit use
in animal husbandry and subsequent accumulation in water bodies.

Salbutamol is usually manufactured and distributed as salbutamol sulphate, which
constitutes the active pharmaceutical ingredient (API) in a number of commercially avail-
able, quick-relief drug formulations and is marketed as VentolinTM, amongst other brand
names. Salbutamol-based drugs are available in inhalable, oral and injectable formula-
tions. Administration using inhalers, or, more frequently, using nebulisers, is most widely
adopted, as it is more effective, acts faster, causes fewer side effects and requires lower
doses while lasting about as long as the other forms. More recently, the release of fugitive
medical aerosol emissions to the local environment and the consequent risk to bystanders
in the home and in clinical settings has come into focus [15–19]. With the reported low
acceptable occupational exposure limits [20,21] (inhalation and dermal exposure), detection
of fugitive pharmaceutical agents may have applications.

Upon administration for respiratory conditions, salbutamol rapidly activates β2-
adrenoreceptors, stimulating relaxation of bronchial tubes and dilation of the airways.
However, there is a risk to the patient for overuse of salbutamol-based medication, which
may induce harmful effects such as reducing its future efficacy. Moreover, salbutamol can
induce side effects, particularly at high doses, including headache, anxiety, dry mouth,
tachycardia and cardiac arrhythmia [22]. Treatment depends on a patient’s age, their type
of respiratory condition and efficacy. It is important to monitor both dosage levels and
regimen to ensure patients’ safety. In this regard, drug regulators worldwide indicate
that specific drug–device combination nebulisers are preferred over the more common
open-label nebulisers for increased control over dosing reproducibility and reliability in
order to enhance patients’ safety [23,24]. Desirable features include a lock-out system
control to prevent overdosing and signals to confirm dose delivery to the patient. Globally,
the drug–device combination products market was valued in 2017 at $81,374 million and
is projected to reach $139,193 million by 2025 [25]. However, current technology fails to
provide this crucial sensing/monitoring, and achieving sensor compatibility with existing
nebuliser settings may be challenging.

Several analytical methods have been successfully applied to the determination of
salbutamol, in particular high performance liquid chromatography [26,27] and liquid
chromatography [28,29] but also spectrophotometry [30,31], thin layer chromatography [32]
and immunoassay [10,33]. Some methods did not achieve sufficient limit of detection or
selectivity, yet liquid chromatography can determine trace levels quantitatively with high
precision. However, these methods mostly require expensive and bulky instrumentation
that is confined to lab-based use, feature complex sample pretreatment procedures, involve
long analysis time and are practically impossible to integrate within the controller in a
specific drug–device combination that regulates nebuliser function.

Electrochemical sensors operate on the premise that, when an analyte comes in contact
with an electrode surface, it undergoes a redox reaction, which, in turn, produces an electri-
cal signal that can then be attributed to the specific analyte. The response of salbutamol on
conventional working electrodes is weak, and the sensitivity is low for direct analysis in
biological matrices. To this end, nanomaterial-based sensors have attracted considerable
interest due to their enlarged electrode surface area and ability to enhance electron transfer.
Detection of salbutamol at several electrochemical sensors [1,34–43] has been reported
and is summarized in Table 1. A significant drawback of these is that most are based on
modified electrodes, which use expensive modifiers and involve lengthy modification
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steps. The nanoparticle instability in the case of several modified electrodes leads to their
coalescence, making it difficult to achieve a stable and reproducible electrochemical surface
area. Moreover, the contribution of the chloride excipient in VentolinTM formulations to the
salbutamol signal was not, to the best of our knowledge, evaluated at the electrochemical
sensors developed to date.

Table 1. This table gives an overview of electrochemical sensors applied to the voltammetric detection of salbutamol.

Electrode Linear Range/µM Detection Limit References

Single-walled carbon nanotube-modified pyrolytic graphite 0.15–7.5 0.129 µM [34]

Gold nanoparticle–polythionine-modified electrode 0.2–200 0.6 pM [35]

Graphene–Au nanocomposite 0.05–200 Not specified [36]

Iron titanate-modified carbon paste electrode 0.0002–0.025 90 pM [37]

Ag/N-doped reduced graphene oxide incorporated with
molecularly imprinted polymer 0.03–20 7 nM [38]

Graphene/PEDOT:PSS-modified screen printed carbon electrode 0.01–1.20 100 pM [39]

Cathodically pretreated boron-doped diamond 17.3–347 5 µM [40]

Poly(4-amino-3-hydroxynaphthalene sulfonic acid)-modified glassy
carbon electrode 0.2–8.0 0.6 pM [41]

MnO2 nanoflowers-modified 3D RGO/Ni foam 0.042–1.463 23 nM [42]

Gold nanoparticle-modified indium tin oxide electrode 0.15–6.0 0.225 µM [43]

Graphene–ionic liquid silver
nanoparticle composite 0.079–2.9 13 nM [44]

Multiwalled carbon nanotubes and poly(pivalic acid)-modified
glassy carbon electrode 0.05–70 12 nM [45]

Interestingly, although electrochemical sensors offer high sensitivity, portable screen-
ing with low sample/reagent consumption, rapid response time and, crucially, have the
potential to be embedded in a nebuliser, they have not yet been exploited in increasing
the functionality of inhalable drug–device combination products. However, given that
the use of wearable electrochemical sensors for monitoring therapeutic and illicit drugs is
well established, it is plausible that their integration could ensue in such products [46–48].
The development of an electrochemical-based controller capable of accurately detecting
whether or not the appropriate medication has been placed into a nebuliser’s medication
reservoir must meet certain criteria. Some of the key challenges include (i) the ability of an
electrode surface to distinguish API(s) in a pharmaceutical formulation from its excipients,
(ii) developing a fabrication procedure that reliably and repeatedly produces the desired
electrochemically active surface and (iii) devising novel algorithms to define functionality.

Herein, we demonstrate the application of NPG to salbutamol determination in
VentolinTM formulations with successful discrimination of the two signals associated
with salbutamol oxidation and chloride adsorption. NPG is a promising electrochemical
sensing platform candidate primarily due to its high specific surface area, originating
from its large internal surface area, coupled to its superior catalytic properties [49–54] and
excellent conductivity [55]. NPG is characterised by a sponge-like 3D network composed
of interconnecting nanopores and nanoligaments and was shown to be as strong as bulk
gold [56]. Its bicontinuous structure with a unique, highly curved morphology has a high
density of steps, holes and kinks, which are populated by low coordination atoms (in
contrast to higher coordination atoms present in a close-packed surface of bulk metal).
Lower coordination gold atoms interact more strongly with target molecules due to a
narrower d-band and local upshift, which are typically involved in Au bonding [57,58] and
constitute the active sites in NPG. Recently, Welch et al. [59] identified the stepped sites
and grain boundaries inherent in NPG’s highly curved ligaments as the active sites in the
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electrochemical reduction of CO2. Furthermore, NPG is also chemically inert, corrosion
resistant and biocompatible [60,61].

NPG is easier to prepare and is more stable than nanoparticle-based catalysts, which
are prone to undergo aggregation, causing subsequent loss of available surface area and
catalytic activity. Moreover, the effective utilization of nanoparticles requires the addi-
tional step of their immobilization on an electrode surface, which in turn may be ham-
pered by delamination and surface area loss. Based on its aforementioned attractive
characteristics, NPG is an ideal candidate as an electrochemical sensor [62,63]. It has
been successfully exploited in sensing several important gas-phase (e.g., oxygen, carbon
monoxide, carbon dioxide, hydrogen peroxide, nitric oxide, hydrazine) and liquid-phase
analytes (e.g., glucose and other saccharides, ascorbic acid, dopamine, nitrite, sulphite,
heavy metals, BPA, ammonia borane and borohydride), which are of particular relevance
in medical [64–67], environmental [68,69], food safety [70,71] and energy applications,
including fuel cells [54,72–78].

Herein, we report on the fabrication of fully integrated three-electrode cell-on-chip
with arrays of recessed gold microdiscs as the working electrode and platinum as the
on-chip counter and pseudo-reference electrodes. The reproducible fabrication of NPG
overlayers by electrodeposition of a silver–gold alloy in the array electrodes, followed
by selective etching of the less noble silver component in nitric acid to create NPG is
demonstrated. Finally, we show that such NPG-modified microdisc array electrodes can be
applied to selectively detect and quantify salbutamol in VentolinTM formulations without
interference from the chloride excipient, which is not achievable at unmodified bare gold
microdisc array electrodes. The single peak in the linear sweep voltammogram observed
at bare gold microdisc array electrodes emanates from the overlap in potential for salbuta-
mol oxidation and chloride adsorption reactions; however, the unique nanogeometrical
architecture of NPG offers increased selectivity in differentiation of two peaks through (i)
exploitation of the nanoconfinement effect at NPG and (ii) the differing electron transfer
kinetics of the two reactions. To the best our knowledge, this is the first example of an elec-
trochemical sensor that successfully detected and discriminated salbutamol and chloride
signals in VentolinTM formulations.

2. Materials and Methods
2.1. Fabrication of Recessed Gold Microdisc Electrode Arrays

Recessed gold microdisc array working electrodes, platinum counter and pseudo-
reference electrodes were fabricated using standard photolithographic techniques on four-
inch silicon wafer substrates with a 1 µm layer of thermally grown silicon dioxide insulator
(Si/SiO2) to avoid short circuiting in the metal layers. In this approach, Si/SiO2 wafers
were spin-coated with a bilayer photoresist process (LORA3A and S1805) to facilitate metal
lift-off and exposed to UV light for 4 s through a mask containing the pattern for the
counter and pseudo-reference electrodes. A 20 nm thick titanium adhesion layer, followed
by a 100 nm thick platinum layer, was then deposited by evaporation, followed by a wet
lift-off process (immersion in 1165 resist remover at 90 ◦C) to remove the photoresist from
unpatterned areas so as to obtain the desired platinum structures (about 3.3 cm2 each).
Alignment marks were patterned along with this first metal layer in order to allow accurate
positioning of subsequent masks. Gold microdisc array working electrodes, interconnec-
tion tracks and peripheral electrical contact pads (about 1.5 mm in diameter) were then
fabricated in a second photolithographic process, whereby a subsequent photoresist layer
was patterned by photolithography using a second mask, followed by metal evapora-
tion (titanium/gold 20/100 nm) and the same wet lift-off procedure. Finally, to prevent
unwanted electrochemical reactions occurring between metal interconnection tracks and
electrochemically active species, ca. 730 nm thick silicon nitride passivation layer was
deposited by low pressure chemical vapour deposition onto the wafer surface.

A third photolithographic process, consisting of another photoresist layer patterned
by photolithography using a third mask, followed by dry etching (in a CF4 plasma), was
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then carried out to selectively open windows so as to only expose gold microdisc array
electrodes, platinum counter and pseudo-reference electrodes to allow exclusive contact
between them and a solution of interest. Openings were also patterned above peripheral
contact pads to permit electrical contact. Finally, the photoresist was stripped in 1165 resist
remover. Following fabrication, wafers were diced into 10.1 × 10.1 mm2 chips. Each chip
contained an array of 56 contacted gold microdisc working electrodes (23 µm in diameter
and separated by 500 µm). Each chip also included a platinum counter electrode and
platinum pseudo-reference electrode, located on either side of the array. Figure 1a is a
schematic representation overview of the chip design, and Figure 1b shows a cross-sectional
representation of a fully integrated gold microdisc electrode in contact with a solution.
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Figure 1. (a) Schematic representation of the chip design comprising gold microdisc array working
electrodes, platinum counter and pseudo-reference electrodes; micron scale gold interconnection
tracks and contact pads; (b) cross-sectional representation of a gold microdisc electrode on a chip;
(c) photograph of a fully fabricated chip mounted in the aluminium base of the custom-designed cell
(the cell’s upper PTFE housing includes spring-loaded probes enabling electrical contact between
on-chip electrodes and a potentiostat); (d,e) photographs of a fully assembled chip using on-chip
platinum pseudo-reference electrode and an external reference electrode, respectively.

2.2. Structural and Elemental Characterisation

The dimensions and morphologies of gold microdisc array electrodes and NPG-
modified arrays were characterised using a calibrated scanning electron microscope (FEI
Quanta FEG 650 SEM) at accelerating voltage of 30 kV. The topography and the surface
roughness of gold microdiscs were investigated using a calibrated atomic force microscope
(AFM; Dimension 3100, Veeco Instruments Inc., Oyster Bay, NY, USA) in tapping-mode
with commercial tapping mode probes (MP-11100, Veeco Instruments Inc.; typical radius
of curvature ~10 nm and front/side cone angles of 15◦/17.5◦, respectively).

2.3. Three-Electrodes Electrochemical Cell

To allow electrochemical analysis and to complete device packaging, chips were
mounted in a custom-built electrochemical cell made of two parts; see Figure 1c. The lower
section is composed of an aluminium base supported on a polytetrafluoroethylene (PTFE)
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base. It contains a central square that is recessed and ca. 0.1 mm larger than the chip
dimensions in which it would sit securely during measurements. The upper PTFE cap
comprises a sample reservoir and apertures to mount three spring-loaded probes (PM4J
micro probe and RM4T-W700 terminal, Coda Systems Ltd. Essex, UK) directly above the
contact pads to electrically contact the electrodes to a potentiostat. The sample reservoir can
accommodate up to 8 mL of solution and was sealed using a chemically resistant O-ring
(Radionics Ltd. Dublin, Ireland.), which is large enough (4.5 mm in diameter) to ensure
that all electrodes on the chip have equivalent access to the analyte solution. When fully
assembled, the chips were sandwiched between the PTFE sections, which were screwed
together, enabling the use of either the on-chip Pt pseudo-reference electrode (see Figure 1d)
or an external reference electrode such as standard calomel electrode (SCE) (see Figure 1e).

2.4. Nanoporous Gold Modification

NPG modification experiments were performed at gold microdisc array working
electrodes vs. an external SCE reference electrode (Dublin Analytical Instruments, Dublin,
Ireland) and an on-chip platinum counter electrode. Au0.18Ag0.82 alloy thin films were
electrodeposited onto clean substrates at −1.19 V for 3 s in solutions containing 100 mM
KAg(CN)2 (99.9%, Alfa Aesar), 20 mM KAu(CN)2 (99.99%, Alfa Aesar) and 250 mM
Na2CO3 (99.5%, ACS grade) at pH 13. Following Au0.18Ag0.82 alloy electrodeposition, NPG
structures were obtained by selectively etching the Ag component from the alloy in 25%
nitric acid for 2 min. This approach is based on the work of Searson et al. [79,80], who
demonstrated that this particular composition of KAu(CN)2 and KAg(CN)2 resulted in
deposition of the particular alloy composition of Au0.18Ag0.82, which in turn yielded the
largest NPG surface area following etching. Cyclic voltammograms (CVs) in 1 M NaOH
from −0.90 to 0.88 V vs. SCE at 10 mV s−1 were recorded prior and subsequent to alloy
deposition and post-etching to estimate the electrochemically active surface area (and also
for quality control purposes).

2.5. Electrochemical Analysis

All electrochemical experiments were performed at room temperature (17–20 ◦C) using
a CHI660B potentiostat (CH Instruments, IJ Cambria, Llanelli, United Kingdom.), supplied
by IJ Cambria, connected to a personal computer. All experiments employed a standard
three-electrode cell configuration using gold- or NPG-modified microdisc arrays as the
working electrode and an on-chip platinum counter electrode with an on-chip platinum
pseudo-reference electrode or an off-chip SCE reference electrode. CV measurements were
performed vs. Pt in 10 mM phosphate buffer saline (PBS, pH 7.4) solution and in 1 mM
ferrocene monocarboxylic acid (FCA) in 10 mM PBS solution in an appropriate potential
window at 10 mVs−1. Cyclic and linear sweep voltammetry studies were performed
vs. Pt or vs. SCE in as-received commercial VentolinTM formulation in an appropriate
potential window.

2.6. Chemicals and Glassware

Prior to electrochemical experiments, on-chip electrodes were cleaned by sequential
immersion for 10 min in acetone and isopropyl alcohol, followed by thorough rinsing with
deionised water and drying in a filtered stream of nitrogen, and oxygen plasma-etched for
10 min at 200 W. Unless otherwise stated, all chemicals were purchased from SigmaAldrich
and were used as received. Solutions were prepared using deionised water.

3. Results and Discussion
3.1. Microscopical Characterisation of Gold Microdisc Array Electrode

Following device fabrication, structural characterisation using SEM demonstrated
that no residual silicon nitride remained on the microdisc electrodes, i.e., the selective
removal of the silicon nitride overlayer to expose the underlying gold surface was complete.
Figure 2a shows a characteristic top plan view SEM micrograph of an individual microdisc.
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Figure 2b is a typical tilted SEM image at higher magnification highlighting the recess
depth. Statistical analysis of the SEM data of across 19 wafers representative of 5 separate
fabrication runs, several months apart, yielded an average diameter of 23.04 ± 0.34 µm
(n = 30) and an average recess depth of 720 ± 109 nm (n = 30), thereby demonstrating the
high reproducibility of the fabrication process.
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Figure 2. (a) Plan view SEM image; (b) tilted side view SEM image of an individual gold microdisc;
(c) AFM micrograph and corresponding topographical section analysis; (d) AFM micrograph for
roughness analysis.

Following the selective removal of the silicon nitride overlayer, topographical analysis
was also undertaken by AFM on a few devices (n = 3). An AFM micrograph obtained at a
gold microdisc electrode with details of the section analysis is depicted in Figure 2c. The
microdisc recess depth was estimated from line scans in the height data to be ~798 nm,
which correlates well with the average obtained for multiple microdiscs using SEM analysis.
Moreover, AFM studies also yielded topographical information permitting analysis of the
roughness of microdisc surface. These studies were conducted in a 1 µm2 square area
within a 2.5 µm2 square scan area, as shown in Figure 2d. The typical RMS roughness of
the microdisc surfaces was ca. 1.5 nm. An experimental total surface area of the microdisc
was extracted from this topographical analysis. To this end, the roughness factor, ρ, of the
microdisc was determined using Equation (1):

ρ = AM/AG (1)

where AM is the measured surface area of the microdisc (~1.5 × 1.5 = 2.25 µm2), and AG is
the two-dimensional area occupied by a microdisc in a 1 µm2 AFM micrograph.

In this manner, the microdisc roughness factor, ρ, was determined to be 2.25. The
increased size of the surface area may be attributed to surface roughening of the microdisc
electrodes during the etching process to remove the silicon nitride layer. From this analysis,
the average electrochemically active area of a typical array of gold microdisc electrode
was estimated to be ~5.23 × 10−4 cm2 (geometric area × roughness factor), taking the
geometric area as the surface area of 56 discs of 23.04 µm diameter.

3.2. NPG Modification of Microdisc Arrays with High Reproducibility

As described in the experimental section, NPG modification experiments were per-
formed at gold microdisc array working electrodes by electrodeposition at −1.19 V vs. SCE
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for 3 s in a solution of 100 mM KAg(CN)2 and 20 mM KAu(CN)2 in 250 mM Na2CO3 at
pH 13 to yield Au0.18Ag0.82, followed by etching of the silver component in 25% nitric acid
for 2 min and was based on a process described earlier for modification of arrays of gold
microbands and gold microdiscs [66,67]. CVs in 1 M NaOH over the range −0.90 to 0.90 V
at 10 mVs−1 were recorded vs. SCE in between each step, as shown in Figure 3a.
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Figure 3. (a) CVs in 1 M NaOH at 10 mV s−1 recorded at a gold microdisc array (blue), after
Au0.18Ag0.82 electrodeposition (black) and at an NPG-modified one (grey). Insets show gold oxide
reduction peaks at bare gold- and NPG microdisc array electrodes (left and right, respectively);
(b) plan view SEM image; (c) tilted SEM image of NPG microdisc; (d) high magnification SEM image
of NPG structure.

The CV at the gold microdisc array electrode (blue line) shows that negligible current
flows over the potential range from −0.90 to 0.15 V prior to the onset of gold oxide
monolayer formation, while, on the reverse scan, the corresponding reduction peak is
observed at around −0.03 V. The magnitude of the reduction peak current was found to
be highly reproducible across 19 wafers representative of five separate fabrication runs,
fabricated several months apart: −30.3 ± 6.4 nA (n = 76). An average electrochemically
active area of 1.06 ± 0.71 × 10−3 cm2 was estimated from the charge associated with the
gold oxide reduction peak. This estimation is about twice that obtained previously from
AFM characterisation, probably because this technique is based on the assumption of a
monolayer oxide formation only with 1:1 stoichiometric conditions, which are difficult to
achieve practically at the micron scale; the estimated value may be due to formation of
oxide multilayers.

The electrodeposition of Au0.18Ag0.82 alloys was also found to be highly reproducible,
as demonstrated in the chronoamperometric data shown in Figure S1. The shape and the
current magnitude of the recorded signal was very consistent from chip to chip and wafer
to wafer. Electrodeposition of Au0.18Ag0.82 involves the reduction of gold and silver ions
present in the plating bath at the gold microdisc electrode surface. In its simplest form, it
may be described by the following reaction:

Au+ (aq) + Ag+ (aq) + 2 e−→AuAg (s) (2)

The thickness T of the electrodeposited layer may be calculated using Equation (3):

T =
Q Mwt

nFAd
(3)

where Q is the total charge associated with the electrodeposition, Mwt is the molecular
weight of the resulting Au0.18Ag0.82 alloy (123.91 g.mol−1), n is the number of electrons
involved in the reaction, F is Faraday’s constant, A is the area of the deposit (given as the
electrode geometric area, 2.324 × 10−4 cm2) and d is density of the alloy (12.076 g cm−3).
An average thickness of 200 ± 42 nm (n = 60) was measured. Based on the average charge
associated with the obtained chronoamperograms, the alloy thickness was estimated to be
about 188 nm. The CV of the Au0.18Ag0.82 alloy (Figure 3a) clearly indicated the presence of
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Au and Ag from the characteristic metal oxide peaks seen at 0.42 V and 0.55 V, respectively,
in the anodic region and from the corresponding reduction peaks seen at 0.03 V and 0.32 V,
respectively, in the cathodic region. The alloy deposition was highly reproducible, as
the current magnitude of the oxidation and reduction peaks were found to be consistent
across 19 gold microdisc arrays representative of five separate fabrication runs several
months apart (n = 60): 0.92 ± 0.15 µA for Au oxidation, 2.71 ± 0.51 µA for Ag oxidation,
−5.08 ± 0.80 µA for Au reduction and −1.33 ± 0.27 µA for Ag reduction. Following
immersion of the alloyed microdisc array in 25% nitric acid for 2 minutes, the resulting
de-alloyed electrode yields a CV response in 1 M NaOH (shown in grey) that is typical
of gold and shows the absence of silver oxidation and reduction peaks, indicating the
selective removal of almost all of the silver component. The gold oxide reduction peak
current has increased by an order of magnitude, which is associated with a high increase
in electrochemical active surface area. This peak current was also found to be highly
reproducible across 19 NPG-modified disc arrays representative of five separate fabrication
runs several months apart: −296± 69 nA (n = 30). An average electrochemically active area
of 8.98 ± 0.85 × 10−3 cm2 was estimated from the charge associated with the gold oxide
reduction peak, which is ca. nine times higher than the unmodified gold microdisc array.

SEM characterisation of the modified microdisc array revealed the presence of an NPG
layer in thin film format that partially filled the recessed discs. A high magnification image
of an individual NPG-modified microdisc shown in Figure 3b highlights that the NPG film
has the same diameter as the underlying gold disc. Figure 3c is a high magnification SEM
image of a tilted substrate indicating that the NPG film is about 220 nm high, which is in
good agreement with the estimation of the film’s height in Figure S1. The sponge-like 3D
structure with interconnecting pores of 20–30 nm and ligaments of 30–50 nm that typifies
NPG is shown in Figure 3d.

3.3. Functionality of Microdisc Array Electrodes
3.3.1. Bare Gold Microdisc Array Electrodes

Following fabrication, CV studies were undertaken by applying an appropriate po-
tential sweep range to the gold microdisc array working electrodes. FCA was selected as
the model redox probe molecule for electrochemical assessment of the functionality of the
gold microdisc array electrodes. Figure 4a shows typical CVs for 1 mM FCA in 10 mM PBS
(shown in blue) and in 10 mM PBS (shown in grey) at 10 mV s−1.
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Figure 4. Typical CVs obtained for 1 mM FCA in 10 mM PBS (blue line) and in 10 mM PBS (grey line)
at 10 mVs−1 at (a) gold microdisc array electrode and (b) NPG-modified microdisc array electrode.

In the presence of 1 mM FCA, the measured CVs at 10 mV s−1 displayed sigmoidal
responses reaching a steady-state current, typical of a single electron oxidation occurring
at a micron-scale electrode and consistent with comparable array types previously re-
ported [67]. This confirmed that the performance of the on-chip three-electrode cell was
not compromised by the reduced cell volume (~200 µL when using the on-chip pseudo-
reference electrode), the on-chip counter electrode dimensions or by electrical contact using
spring-loaded probes. The steady-state current was found to be highly reproducible across
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19 wafers representative of five separate fabrication runs performed several months apart:
0.141 ± 0.042 µA (n = 24). This further demonstrates the highly reproducible nature of the
fabrication process; variations may be associated with the small variations observed in
electrodes dimensions. Furthermore, the steady-state current was benchmarked against a
theoretical model for recessed microdisc array electrodes that expresses the relationship
between the limiting current, Ilim, and the number of microdiscs in Equation (4)

Ilim = N
4πnFCDr2

4L + πr
(4)

where n is the number of electrons involved in the reaction, F is Faraday’s constant
(96,485 C mol−1), C* is the bulk concentration of the FCA (10−6 mol cm−3), DO is the
diffusion coefficient (5.4 × 10–6 cm2 s–1), r is the disc radius (11.52 × 10–4 cm), L is the
recess depth (720 × 10–7 cm) and N is the number of microdiscs in an array.

The FCA limiting current was estimated to be 0.157 µA using Equation (2), which
is similar to that found experimentally and confirms that individual radial diffusion lay-
ers occur at each microdisc in the array. Essentially, the diffusion layers at individual
microdiscs are unperturbed by the diffusion layers of the neighbouring electrodes, result-
ing in enhanced voltammetric performance. Control CV experiments in the absence of
FCA were performed in PBS buffer, only, at 10 mV s−1 (grey response in Figure 4a). No
faradaic current was observed, but a negligible background current (typically 1–2 nA)
was measured.

3.3.2. NPG-Modified Gold Microdisc Array Electrodes

Comparable CV studies were undertaken at NPG-modified microdisc arrays; see
Figure 4b. The CV in PBS buffer, only, showed that the magnitude of the nonfaradaic
current at 10 mV s−1 was negligible (ca. 2–3 nA). Similar results were obtained to those at
bare gold microdisc arrays; in the presence of 1 mM FCA (blue response), NPG electrodes
displayed highly reproducible sigmoidal responses reaching a steady-state current on
the order of 0.170 µA. However, despite the significantly enhanced surface area of NPG
compared to bare gold, the current magnitude is only ca. 11% higher than that at the bare
gold microdisc arrays. The relatively small increase in current, relative to what could be
expected for the higher surface area NPG, can be attributed to the fast electron transfer
kinetics of the diffusion-controlled reaction of the ferri-/ferrocyanide redox probe. This
results in the reaction occurring primarily on the outermost surface of NPG due to only
partial penetration of the redox probe into the nanoporous channels. Thus, the peak current
is dependent on the diffusion coefficient of the redox probe: the overlapping diffusion zones
between adjacent nanopores creates a limiting semi-infinite linear diffusion field, and the
current density is established predominantly by the geometric surface area [81]. Estimation
of the electrochemically addressable electrode surface area of NPG is better achieved
using the charge required to strip a gold oxide layer, as this is a kinetically-controlled,
surface-confined redox reaction, rather than using the FCA redox probe.

3.4. Detection of Salbutamol API and Chloride Excipient in VentolinTM at Bare Gold and
NPG Electrodes

3.4.1. CV of VentolinTM at NPG Electrodes

The CV response of an as-received VentolinTM formulation containing 6.94 mM
(2 mg/mL) salbutamol (as sulphate) in 15.4 mM NaCl and 0.05 mM H2SO4 solution at
pH 4 recorded at an NPG-modified microdisc electrode using the on-chip Pt reference
electrode is shown in Figure 5. Two well-defined peaks were identified in the initial anodic
scan at 0.41 and 0.61 V, but no corresponding cathodic peaks were observed on the reverse
scans, which would suggest that an irreversible reaction, or an electrochemical reaction
followed by a chemical step (EC), was associated with each peak. The minor peak at ca.
0.15 V was most likely related to the reduction of gold oxide formed at potentials above
0.70 V. The peaks at 0.41 V and 0.61 V are assigned to chloride and salbutamol oxidation, re-
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spectively, with the peak separation of 0.20 V being sufficiently large enough to distinguish
the presence of these two species. Second and subsequent CVs demonstrated significant
decay in current (blue response). This is in agreement with studies of salbutamol oxidation
reported in the literature, which describe an irreversible one electron, one proton oxidation
reaction coupled to subsequent fouling of the electrode surface by salbutamol’s oxidation
product [34].
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Figure 5. First and second CVs of VentolinTM formulation at NPG-modified microdisc array electrode
recorded from −0.55 to 0.85 V vs. Pt at 10 mV s−1.

However, it was observed in the linear sweep voltammogram (LSV) for a higher
salbutamol concentration of 4 mg/ml performed at a thicker NPG modification layer
that the peak associated with salbutamol oxidation could be partially resolved into two
peaks at 0.59 V and 0.67 V, as is evident in Figure 6a. The SEM image of a typical NPG-
modified disc in the associated electrode array is shown in Figure 6b, wherein the NPG
deposit height in the centre of the microdisc is 795 nm (vs. 200 nm in Figure 5). This
suggests that the resolution of two stages in salbutamol’s oxidation at NPG is possible
under optimized conditions. A more in-depth investigation of salbutamol oxidation in the
future using square wave voltammetry (SWV) could yield greater resolution but was not
performed herein.
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The mechanism of salbutamol electrooxidation, and its associated electron transfer
kinetics, has been the subject of intense investigation at a range of electrodes listed earlier
in Table 1 [1,34–44]. Most groups reported the appearance of a single peak in the oxidation
of salbutamol, which was shown to be indicative of an adsorption-controlled process at
some electrodes [1,35,36,41] but as a diffusion-controlled process at a smaller number of
electrodes [34,39,44], as substantiated by the linear plots of peak current versus scan rate
for the adsorption-controlled processes and peak current versus the square root of scan
rate for the diffusion-controlled processes.

Interestingly, Goyal et al. [34] also identified two peaks in the oxidation of salbutamol
at indium tin oxide-modified with 4 nm gold nanoparticles in both SWV and differential
pulse voltammetry analysis (although LSV failed to detect oxidation peaks at this electrode).
The first peak at lower potential was attributed to oxidation of salbutamol in a diffusion-
controlled electrode reaction, and the plot of the peak current function (ip/υ1/2) versus
υ1/2 was constant. The second peak, at higher potential, exhibited different behaviour and
was attributed to the adsorption of the product formed in the first peak; initially, its peak
current function increased with increasing υ1/2 but then decreased, and such behaviour
is suggestive of strong adsorption of the oxidation product [82]. These assertions were
substantiated in their GC–MS data, which confirmed that the first peak originates from
oxidation of the phenolic hydroxyl group in salbutamol and the second to the strong
adsorption of the product formed in this reaction. The oxidation of the phenolic hydroxyl
group via a single electron, single proton reaction is well reported in the literature for
several compounds, including phenol and 4,4′-biphenol [83,84]. The formation of a C–
C linked dimer observed in the GC–MS data can be attributed to the oxidation of the
phenolic hydroxyl group to a free radical species, which can subsequently dimerise and
adsorb on the electrode. The formation of a similar dimer has also been suggested by
Karuwan et al. [85] during oxidation of salbutamol at boron-doped diamond electrode. In
a square wave adsorptive stripping voltammetric study, they determined a single oxidation
peak over the pH range 3–6, which could be resolved into two peaks at pH between 6–10.
The less anodic peak was ascribed to the oxidation of salbutamol, and the more anodic one
to the adsorption of its oxidation product.

3.4.2. LSV of Excipients in VentolinTM at Bare Gold and NPG Electrodes

LSV studies in the background solution (i.e., 0.0154 M NaCl and 0.05 mM H2SO4) at
bare gold- and NPG-modified microdisc array electrodes were performed vs. SCE over a
suitable potential range at 10 mV s−1. As can be seen in Figure 7, a single peak tentatively
assigned to the adsorption of chloride ions was recorded in the background solution at
1.005 V and 0.88 V at bare gold and at NPG electrodes, respectively.
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It has been well established that chloride ions form a polar chemisorption bond with
gold [86–88]. Baker et al. reported theoretical evidence from first-principles density func-
tional theory (DFT) calculations that the bonding between a Au(111) surface and chlorine
is primarily covalent in character [87]. Although generally the interaction of chlorine
with metals is ionic in nature, the Au/Cl system appears to form an exception. Chlorine
adsorption on gold is unusual, because gold has the highest Pauling electronegativity of
all the transition metals, increasing the likelihood of covalent bond formation with highly
electronegative chlorine. The electronegativity difference between Au and Cl of 0.76 is
small enough to result in the formation of covalent bonds.

Moreover, the nature of the chloride interaction at gold depends on the nature of
the metal’s surface structure. The possible binding sites for chlorine on a gold surface
include both flat terrace sites and defect sites. It was shown in a DFT study of the chlorine
interaction with Au(111) [88] that chlorine preferentially binds on vacancies, steps and gold
adatoms. The binding energy per chlorine atom increased relative to that on a defect-free,
flat surface by 0.19 eV when adjacent to a surface vacancy, 0.29 eV at a gold adatom and
0.38 eV at the edge of a step. The release of gold upon chloride adsorption originates from
stabilization of adatoms and vacancies.

The 13-fold increase in current for chloride adsorption at NPG (3.4 nA) over bare gold
(0.26 nA) noted in Figure 7 cannot solely be attributed to the increase in the electrochemical
surface area of NPG (this was estimated to be ca. nine times that of bare gold). The
enhanced electrocatalytic activity at low-coordinated sites, grain boundaries, stepped sites
and kinks [57,59], whose presence maintain the high radial curvature of the 3D structure of
NPG, play a significant role, in combination with the increased binding energy of chlorine
at such sites. The cathodic shift in the chloride adsorption peak by 0.125 V upon moving
from bare gold to NPG electrodes may be attributed to an embellishment of the electron
transfer kinetics for the kinetically controlled adsorption of chloride at this 3D nanoporous
architecture. This reveals the dependence of the reaction on the nature of the electrode
surface and the role of its atomic structure in modulating reaction efficacy.

The promotion of electron transfer kinetics has been reported in the literature for
several other molecules at NPG that undergo kinetically sluggish electron transfer reac-
tions, as evidenced by the cathodic shift in potential for oxidation reactions (and anodic
shift for reduction reactions) at NPG relative to bare gold [75,76,89–93]. Most recently,
Kumar et al. [89] noted the enhancement in electron transfer kinetics of ascorbic acid at
NPG over bare gold (the oxidation wave shifted by 0.30 V to less positive potential at NPG
relative to bare gold), which they attributed to the porosity of NPG and to the evolution of
low index and higher surface energy crystalline planes. Moreover, the presence of (220),
(200) and (311) planes were confirmed at higher intensity at NPG by XRD, which is ex-
pected for materials with a higher density of electrocatalytically active sites. The evolution
of such low indexed crystalline planes in NPG is in contrast to the (111) plane exposed in
bare gold. Similarly, the onset potential for oxidation of glucose, galactose and mannose
were approximately 0.10 V lower at Au(100)-enhanced NPG than at bare gold in a recent
study [90]. The authors further highlighted the influence of crystallographic orientation on
the onset potential for the monosaccharide oxidation reactions, with a lower onset potential
at Au(100)-enhanced NPG than at Au(111)–NPG. Much earlier, the enhanced electron
transfer kinetics for oxidation of surface-confined nitrite and L-cysteine at NPG relative to
bare gold were evidenced in the cathodic shift in their oxidation potentials by Ge et al. [70]
and Liu et al. [91], respectively. Similarly, in the case of the reduction of hydrogen peroxide
and oxygen, an anodic shift in potential was recorded at NPG relative to bare gold [92,93].

The origin of the potential shift for chloride at NPG observed herein, and for the
aforementioned molecules, may be rationalised on the basis of the nanoconfinement effect,
which was pioneered by Park et al. [94]. This phenomenon bears particular relevance in the
case of surface-confined reactants with sluggish electron transfer kinetics that are less influ-
enced by mass transport than those undergoing fast electron transfer with mass transport
limitations. Essentially, nanoporous electrodes are predisposed to or biased towards redox
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couples that have slow rates of electron exchange. Specifically, Park et al. [94] noted that
the electrical field gradient and molecular dynamics at nanoporous solid–fluid interfaces
are theoretically predicted to be different from those on flat ones. In fact, nanoporous
electrodes can even augment the faradaic current for very sluggish electrochemical reac-
tions up to a level expected from diffusion-controlled systems. Essentially, for a reactant
undergoing slow electron transfer, which is present at high concentration, the faradaic
current generated is comparable to that of one at the same concentration undergoing fast
electron transfer at nanoporous electrodes. In the case of chloride that undergoes a sluggish
electron transfer reaction, it is likely to prevail at a sufficiently high concentration in the
deeper parts of the pores instead of being just confined to the outermost region of NPG. In
this situation, electron transfer occurs on almost the entire available external surface and
internal pores of NPG. By virtue of chloride residing within a distance shorter than the
pore radius from the inner wall surface of NPG, the charge transfer probability between
it and the surface is statistically higher. Consequently, heterogeneous charge transfer is
facilitated, and the electrode potential reaches equilibrium faster. This is realised as a
selective amplification of the amperometric response for the sluggish reaction of chloride
at NPG.

The adsorption of chloride at gold is, in fact, of general interest even outside of this
study and can present a significant issue in the electrochemical oxidation of glucose at
gold electrodes. Nanostructured gold electrode surfaces have been widely utilized in
developing electrochemical sensors for glucose due to their high electrochemical activity
towards glucose oxidation, but overcoming deactivation of electrode activity in the presence
of chloride ions in physiological media (e.g., ca. 0.10 M in blood) is an issue, owing to the
inhibition of glucose electrooxidation by adsorbed chloride ions [95]. The oxidation current
for a series of monosaccharides glucose and mannose (and, to a lesser extent, galactose)
at NPG were shown to decrease significantly in the presence of chloride by Mie et al. [90].
However, in comparison to flat Au surfaces, some nanostructured gold surfaces have been
shown to exhibit higher electrochemical activity towards glucose oxidation in the presence
of chloride ions [96–100], particularly nanoporous gold, which exhibited a wider linear
range and better sensitivity for glucose detection under physiological conditions containing
chloride ions [97].

3.4.3. LSV of VentolinTM at Bare Gold and NPG Electrodes

LSV studies in VentolinTM formulation (pH 4) containing 6.94 mM (2 mg/mL) salbu-
tamol (as sulphate) in 0.0154 M NaCl and 0.05 mM H2SO4 solutions at bare gold- and
NPG-modified microdisc array electrodes were performed vs. SCE over a suitable potential
range at 10 mV s−1. In VentolinTM solution, only one anodic peak was observed at bare gold
microdisc array electrodes at 1.09 V, whereas two peaks were recorded at NPG-modified
array electrodes at 0.88 V and 1.09 V; see Figure 8. This highlights that salbutamol is
indistinguishable from chloride at bare gold electrodes, as the potential for salbutamol
oxidation and chloride adsorption are very similar. In contrast, the two well-resolved peaks
observed at NPG show that salbutamol can be successfully discriminated from chloride
(the peaks at 0.88 V and 1.09 V are associated with chloride adsorption and salbutamol
oxidation, respectively). However, the salbutamol peak current at NPG (12.8 µA) is only
14% higher than that at bare gold electrodes (11.2 µA), despite the enhanced surface area
of NPG. This can be explained in terms of faster electron transfer kinetics of salbutamol
oxidation inhibiting its ingress to the internal pores of NPG so that the entire electrode
does not participate in the reaction but is confined to its outer surface.

As highlighted earlier, salbutamol oxidation was reported to undergo a diffusion-
controlled reaction at gold nanoparticle-modified ITO [34] and other electrodes [39,44].
The fast electrochemical oxidation occurs mostly in the outermost region of the pores, as
the electron transfer is much faster in this region than the mass transport of salbutamol
molecules from the bulk solution. The faster electrochemical reaction kinetics of salbutamol
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relative to chloride results in its greater depletion, and, hence, the nanoconfinement effect
is far less significant for salbutamol.
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Figure 8. LSVs at bare gold (black)- and NPG-modified microdisc array (blue) electrode arrays vs.
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3.4.4. Selective Amplification Verified at Thicker NPG Electrodes

The differing response of NPG to salbutamol and chloride as a function of their intrin-
sic electron transfer rates is another example of the ‘discriminative’- or ‘selective current
amplification’ previously attributed to nanoporous electrodes [101]. The nanoconfinement
effect associated with chloride leading to its selective amplification at NPG was confirmed
experimentally in Figure 9 by varying the NPG deposit thickness (and, hence, its avail-
able surface area) in the microdisc array and observing the change in the LSV response
for salbutamol and chloride in VentolinTM formulations. The current associated with
chloride adsorption increased with NPG deposit thickness, yet the salbutamol oxidation
current remained almost constant. It should be noted that there is some variability in
the peak potential for salbutamol and chloride signals due to the slight instability of the
platinum quasi-reference electrode. The SEM images corresponding to the NPG-modified
microdisc arrays of varying thickness are shown in Figure 10. Deposition of the precursor
Au0.18Ag0.82 alloy for 30, 10, 5 and 3s, followed by etching in 25% nitric acid for 30, 6, 3 and
2 min, respectively, yielded NPG deposits of 1.6, 1.0, 0.7 and 0.28 µm thickness, respectively.
The deposition was found to be affected by the shape of the microdisc such that somewhat
thicker deposits formed at the periphery of the microdisc while thinner deposits formed
in the central area. This is due to differences in the current flow; it flows more densely to
sharp edges than to the less accessible recessed areas.
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Figure 10. Plan view SEM images of a NPG-modified microdisc following (a–d) 30, 10, 5 and 3 s
deposition of Au0.18Ag0.82 alloy NPG and subsequent etching in nitric acid to yield NPG.

The selective amplification of the chloride reaction over that of salbutamol at NPG can
be harnessed to confer high selectivity to the discrimination of the salbutamol signal from
that of chloride interference, which is not feasible at planar gold. Guntapalli et al. [102]
also observed the simultaneous detection and discrimination of dopamine and serotonin
in a mixture at porous gold–single-walled carbon nanotube hybrid film with a resolution
greatly exceeding that at planar gold. Similar to the behaviour observed for salbutamol
and chloride herein, they attributed the enhanced resolution to the response of porous
gold to differing rates of electron transfer of multiple species stemming from negligible
mass transfer and shorter diffusion time for molecules in the pores. An amplification of
serotonin oxidation relative to dopamine was reported due to the slower electron transfer
of the former. This serves to further highlight the potential of harnessing nanogeometrical
control in NPG to achieve differentiation and/or electrocatalytic enhancement of analytes
in complex mixtures and in biological samples.

3.4.5. Nature of Salbutamol and Chloride Reactions at NPG Electrodes

It was confirmed in Figure S2 that the current for the single peak associated with
salbutamol oxidation and chloride adsorption at bare gold electrodes increased linearly
with scan rate over the range 20–100 mVs−1, which is indicative of adsorption-control, but
deviations from linearity were found for scan rates below 20 mV s−1. A linear plot of the log
of peak current versus log scan rate was obtained with slope of 0.23, as shown in Figure S3.
A slope of less than 0.5 is associated with a mixed adsorption-diffusion process, as would
be expected for the oxidation of salbutamol (diffusion-controlled oxidation followed by
product adsorption) and an adsorption-controlled reaction for chloride [34].

At NPG-modified microdisc array electrodes, the analysis of peak current with scan
rate for the chloride peak confirmed an adsorption-controlled process, based on the linear
plot of peak current versus scan rate shown in Figure S4. Analysis of the peak current for
salbutamol was more complex; the peak current function (ip/υ1/2) increased initially with
the square root of scan rate and then decreased (Figure S5). This behaviour is suggestive
of strong adsorption of the product formed in the oxidation of salbutamol at NPG [84].
Moreover, analysis of the variation of salbutamol peak potential with scan rate shown in
Figure S6 showed that the peak potential (Ep) increased with increasing scan rate, thereby
confirming the irreversibility of the reaction. The slope of the straight line plot of Ep
versus log of scan rate was found to be 0.162 V/decade, which is far greater than the
expected value of 0.059 V/decade for a simple 1 electron irreversible reaction and provides
further affirmation of the assertion that the reaction follows an EC mechanism [103], which
involves an electron transfer step (E) followed by a chemical reaction (C). Essentially,
salbutamol undergoes an irreversible electrochemical oxidation reaction, and its dimeric
product undergoes a chemically irreversible reaction at NPG. SEM analysis revealed the
presence of an adsorbed layer on NPG after recording an LSV in VentolinTM, as shown in
Figure S7.
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3.4.6. Quantification of Salbutamol at NPG Electrodes

LSV studies in VentolinTM formulation (pH 4) containing 0.87 to 6.94 mM (0.25 to
2 mg/mL) salbutamol (as sulphate) in 0.0154 M NaCl and 0.05 mM H2SO4 solutions
at gold electrodes were performed vs. on-chip Pt reference electrode over a suitable
potential range at 10 mVs−1; see Figure 11a. Only one oxidation peak was observed.
The slight instability of the platinum quasi-reference electrode accounts for the vari-
ability in the peak potential for salbutamol and chloride signals for different concen-
trations but serves to demonstrate the advantage of using an integrated reference elec-
trode over that of an external one. It was found that the peak current increased linearly
with increasing salbutamol concentration, with an average linear regression equation
(R2 = 0.976) of Ipa (µA) = 1.53 Csalbutamol (mM) − 0.68 and a detection limit of 0.26 mM;
see Figure 11b. The same set of experiments were conducted at NPG microdisc electrode
arrays; see Figure 11c. Two oxidation peaks were recorded for each solution. The first
peak at ca. 0.40 V, previously attributed to chloride, was found to vary only slightly with
varying solution, while the current for the second peak at ca. 0.70 V increased linearly
with increasing salbutamol concentration. An average linear regression (R2 = 0.984) of
Ipa (µA) = 1.35 Csalbutamol (mM) − 0.02 and a detection limit of 0.17 mM was found; see
Figure 11d. Consequently, NPG electrodes display enhanced performance compared to
their bare gold counterpart in terms of discrimination between the different ingredients and
lower salbutamol detection limit. Analysis was performed in triplicate using three different
substrates, and the calibration curves were constructed using the average peak curve of
such measurements. The concentration range investigated was confined to 0.25 mg/mL
to 2 mg/mL salbutamol in this study; hence, the magnitude of the linear range that is
attainable and the lowest possible detection limit remains undetermined for salbutamol at
this sensor.
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Figure 11. (a) LSVs at bare gold microdisc array electrodes at 10 mV s−1 in background solution
(pH 4) and in VentolinTM solutions (pH 4) containing 0.25, 0.5, 1, 1.5 and 2 mg/mL salbutamol (as
sulphate) in 0.0154 M NaCl and 0.05 mM H2SO4; (b) plot of peak current vs. salbutamol concentration
at bare gold electrodes; (c,d) are the equivalent of (a,b) at NPG electrodes.
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4. Conclusions

The present study provides insights into the potential of harnessing NPG’s unique
nanogeometrical properties, enhanced electrocatalytic activity and increased density of low-
indexed crystalline planes and high specific surface area NPG to selectively discriminate
an API from its excipients in pharmaceutical formulations. The signals from the API
in VentolinTM formulations and its chloride excipient were resolved at NPG-modified
microdisc arrays by exploiting the difference in the kinetics of their electron transfer
reactions and the increased density of active sites in NPG. Superior selectivity and lower
detection limits than that attained at bare gold microdisc arrays were realized.

In future work at NPG electrodes, SWV could be applied to the determination of
salbutamol in VentolinTM formulations. Exploiting its potential to effectively discriminate
the faradaic current from the charging could permit better resolution of the two peaks
associated with salbutamol oxidation at NPG, increase the detection sensitivity and reduce
the lower detection limit.

Furthermore, the role of particular crystallographic orientations in NPG (especially
for low-index planes) in determining the efficiency of electrocatalysis of the reactions
associated with a mixture of API(s) and excipients in pharmaceutical formulations and in
other complex matrices warrants further investigation.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/s21123975/s1. Figure S1: Chronoamperograms recorded at five different gold microdisc array
electrodes during 3 s AuAg electrodeposition at −1.19 V vs. SCE in a solution of 100 mM KAg(CN)2
and 20 mM KAu(CN)2 in 250 mM Na2CO3 at pH 13 at 20 ◦C. Figure S2: Plot of peak current versus
scan rate for the peak associated with combined salbutamol oxidation and chloride adsorption in
2 mg/mL salbutamol in 0.0154 M NaCl and 0.05 mM H2SO4 solution at pH 4. Figure S3: Plot of log
of peak current versus log scan rate for the peak associated with combined salbutamol oxidation and
chloride adsorption in 2 mg/mL salbutamol in 0.0154 M NaCl and 0.05 mM H2SO4 solution at pH 4.
Figure S4: Plot of peak current versus scan rate for chloride oxidation in 2 mg/mL salbutamol in
0.0154 M NaCl and 0.05 mM H2SO4 solution at pH 4 taken from the LSV recorded from −0.20 to
1.0 V vs. Pt at 10 mV s−1 at NPG-modified gold microdisc array electrode. Figure S5: Plot of peak
current function for salbutamol versus square root of scan rate recorded in 2 mg/mL salbutamol
in 0.0154 M NaCl and 0.05 mM H2SO4 solution at pH 4 taken from the LSV recorded from −0.20
to 1.0 V vs. Pt at 10 mV s−1 at NPG-modified gold microdisc array electrode. Figure S6: Plot of
peak potential for salbutamol oxidation versus log of scan rate recorded in 2 mg/mL salbutamol in
0.0154 M NaCl and 0.05 mM H2SO4 solution at pH 4 taken from the LSV recorded from −0.20 to
1.0 V vs. Pt at 10 mV s−1 at NPG-modified gold microdisc array electrode. Figure S7: Plan view SEM
image of NPG-modified microdisc array following recording of LSV from −0.20 to 1.0 V vs. Pt at
10 mV s−1 in 1 mg/mL salbutamol in 0.0154 M chloride and 0.05 mM H2SO4.
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