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Abstract: The wear and fatigue behaviors of two newly developed types of high-speed railway wheel
materials (named D1 and D2) were studied using the WR-1 wheel/rail rolling–sliding wear simulation
device at high temperature (50 ◦C), room temperature (20 ◦C), and low temperature (−30 ◦C). The
results showed that wear loss, surface hardening, and fatigue damage of the wheel and rail materials
at high temperature (50 ◦C) and low temperature (−30 ◦C) were greater than at room temperature,
showing the highest values at low temperature. With high Si and V content refining the pearlite
lamellar spacing, D2 presented better resistance to wear and fatigue than D1. Generally, D2 wheel
material appears more suitable for high-speed railway wheels.
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1. Introduction

Railways play a vital role in the development of rail transportation. The environmental climate
has a certain impact on wheel/rail systems exposed to the open air. Especially in China, wheel and
rail materials may serve under extreme temperature conditions due to torridity and severe cold.
For example, the highest and lowest temperature experienced by the Qinghai–Tibet railway during
operation can reach +40 ◦C and −45 ◦C, respectively [1,2]. With the activation of the Haerbin–Dalian
railway, the world’s first high-speed railway running through an alpine region, safe railway operation
in the alpine region has attracted more and more attention [3].

Wear and fatigue are common damages of wheel and rail materials during railway operation.
Wear (especially at the wheel tread and rail ball interface under straight-line running conditions,
as studied in this paper and shown in Figure 1) will directly lead to the reduction of rail height,
thus causing plastic deformation of materials and failure of surface materials [4]. Common wear
mechanisms include abrasive wear, adhesive wear, delamination wear [5]. Fatigue derives from the
formation of cracks and the detachment of material from the surface due to the repetitive application
of alternating forces [6,7], which by first causing defects or surface cracks, may eventually destroy
some components [8]. Especially in high-speed railways operating in extremely hot and cold climates,
the mechanical properties of temperature-sensitive wheel and rail materials will change at certain
extreme temperatures. Furthermore, friction performance and safety can be affected during train
operation [9]. In recent years, brittle fractures in steel structures caused by fatigue have occurred from
time to time. One of the characteristics of brittle fracture compared with ordinary strength failure is
that brittle fracture often occurs in cold winter [10]. In China, 60–80% of rail fracture accidents occur
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from November to March [11], and in Japan, 83 of the 121 rail failures recorded by a study occurred
from November to February [12]. Shank et al. investigated many accidents and found that the change
of steel’s notch sensitivity was the main cause of accidents that occurred at extreme temperatures [13].
It was also found that with the gradual decrease of temperature, fractures in railway material will
change from the ductile shear fracture mode to the brittle cleavage fracture mode, causing the decline
of fracture toughness, impact energy, and plasticity [14–18].
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Figure 1. Contact points of the rail and wheel in a variety of paths [4]. 

  

Figure 1. Contact points of the rail and wheel in a variety of paths [4].

As early as the 1980s, some scholars have studied the material properties of ferritic steel at low
temperature by means of mechanical experiments and material preparation methods [19–24]. The
results showed that extreme temperatures can cause the degradation of various ferritic steel properties,
such as strength and toughness, before the formation of macroscopic cracks, affecting the safety of
wheel/rail services [25–27]. Also, Zhu, Lyu et al. [28,29] conducted a study on wheel/rail tribology in
a low-temperature environment by using a pin-and-disk testing machine. The experimental results
showed that the low-temperature environment had a great impact on the friction performance of
the wheel/rail materials. Nevertheless, research on the performance of wheel and rail materials in
a low-temperature environment is limited. Therefore, it is very necessary to select wheel and rail
materials suitable for cold climates and analyze their wear and fatigue performance under extreme
temperature conditions.

2. Materials and Methods

The WR-1 rolling–sliding wear apparatus with a temperature-changing device was used to
evaluate the wear and rolling contact fatigue (RCF) properties of D1 and D2 wheel rollers with
friction pair of U71Mn rail material under different temperature conditions. As shown in Figure 2, the
apparatus is composed of two rollers which served as a wheel roller (upper specimen) and as a rail
roller (lower specimen). The rail roller (4) is driven by a DC motor, while the wheel roller (5) is driven
via a pair of gears. A normal force (from 0 to 2000 N) is applied by a compressed spring to the upper
specimen. Load sensors (8) are used to measure the tangential friction force and normal force at the
wheel/rail interface (measurement error: ±5%). A low-temperature environment is created by double
compressors (C) which make the refrigerant (Freon) to recirculate in the copper tube. A rubber tube (7)
and copper cavity (6) connect the WR-1 rolling–sliding wear apparatus (B) to the low-temperature
environment, resulting in a low temperature in the copper cavity (6) due to the flow of refrigerant. The
wheel and rail rollers are installed in the copper cavity (6). High ambient temperature is reached using
an electric heating tape entwined around the copper cavity (6). A digital temperature sensor (3) is
fixed into the copper cavity (6) and the temperature is monitored in the cavity in real time. A PLC
(Programmable Logic Controller) temperature control system (D) is used to stabilize the temperature
in the copper cavity at a set value. The temperature error in the copper cavity is ±2 ◦C. During the
experiment, the ambient temperature of the wheel and rail rollers are kept stable.
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Figure 2. Scheme of the WR-1 low-temperature simulation system. 

  

Figure 2. Scheme of the WR-1 low-temperature simulation system.

The dimensions of wheel roller (upper specimen) and rail roller (lower specimen are shown in
Figure 3a. The diameter of wheel and rail rollers was 40 mm. The wheel and rail rollers were cut from
the wheel tread and railhead (0–30 mm from the surface), respectively, as shown in Figure 3b. The
samples were molded into 40 mm-diameter rollers through machining processes such as turning and
drilling, and all rollers were polished to surface roughness (Ra) of approximately 0.15µm. Before testing,
each roller was thoroughly cleaned by ultrasonic cleaning for 15 min. The chemical compositions of
wheel and rail materials in weight percentage are given in Table 1.
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and the Pearlite lamellar spacing in D1 is larger than that in D2. 

Figure 3. Dimensions and sampling position of wheel and rail rollers. (a) Dimensions; (b)
sampling position.
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Table 1. Chemical composition of the wheel and rail rollers (wt%).

Roller C Si Mn P S Cr Al V

D1 wheel 0.52 0.26 0.73 0.0060 <0.002 0.25 0.023 ≤0.005
D2 wheel 0.54 0.68 0.70 0.0047 0.0013 0.055 0.011 0.07

Rail 0.65~0.75 0.1~0.5 0.8~1.3 ≤0.025 ≤0.025 - - -

In the test, the rotational speed of the rail roller was 400 r/min, and the number of cycles was 3.84
× 105. The normal force between the wheel and the rail rollers was about 150 N. The slip ratio was
0.91%. In addition, the experiments were performed at high temperature (50 ◦C), room temperature
(RT: 20 ◦C), and low temperature (−30 ◦C).

The rollers were ultrasonically cleaned in ethanol, dried, and weighed using an electronic balance
(JA4103, measurement accuracy: 0.0001 g) before and after testing. Wear loss of the wheel and rail
rollers was determined by calculating the mass loss. Figure 4 shows the sampling positions of the
surface and cross sections in the wheel/rail rollers. Three pieces of 1 mm length separated by 120◦ were
taken from each roller. Each section was cut along the rolling direction by wire-cutting processing,
mounted in resin, ground with 2000-grit abrasive paper, polished with 0.5 µm diamond, and etched
with 4% Nital. The plastic deformation of wheel and rail rollers was characterized using optical
microscopy (OM) (OLYMPUS BX60M, Tokyo, Japan). Metallographic microscopy and surface and
subsurface damages were inspected using scanning electronic microscopy (SEM) (QUANTA200 FEI,
Eindhoven, Netherlands). Metallographic microscopy images of D1 and D2 materials are shown in
Figure 5. It can be seen that pearlite composed of cementite and ferrite presents a lamellar structure,
and the Pearlite lamellar spacing in D1 is larger than that in D2.
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Figure 4. Sampling positions of surface and cross sections of the wheel/rail rollers for examination after
wear testing.
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Figure 5. Metallographic microscope images of wheel materials. (a) D1; (b) D2. 
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Figure 5. Metallographic microscope images of wheel materials. (a) D1; (b) D2.
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3. Results

3.1. Wear Loss

Figure 6 shows the wear loss of wheel and rail rollers under different temperatures. It is clear that
the wear loss of the D2 friction pair was slightly lower than that of the D1 friction pair, and both the
wear losses of the D1 and D2 friction pairs were higher at 50 ◦C and −30 ◦C than at room temperature.
The wear loss of D1 at 50 ◦C was not different from that at −30 ◦C, while that of D2 at −30 ◦C was
higher than that at 50 ◦C. The results showed that D2 had better wear resistance than D1, especially at
50 ◦C. For both wheel materials, the wear resistance at RT was the best, followed, in order, by wear
resistance 50 ◦C and at −30 ◦C. At the same time, the wear loss of the rail roller was obviously larger
than that of the wheel roller, which is consistent with plastic deformation of the material occurring in
the testing process.
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Figure 6. Wear loss of wheel/rail rollers. (a) D1; (b) D2. 
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resistance to hardening of D2 was stronger than that of D1; however, D2 wheel material was more 
significantly affected by temperature, and surface hardening was the lowest at room temperature. 

Figure 6. Wear loss of wheel/rail rollers. (a) D1; (b) D2.

3.2. Hardness and Plastic Deformation

Hardness tests were conducted on the wheel and rail samples before and after the experiment. It
was found that the surface hardness of D1 samples was about 285 HV0.05 before the experiment, that of
D2 samples was 300 HV0.05, and that of the rail samples was 280 HV0.05 (Figure 7). When comparing
the surface hardness of the wheel and rail samples before and after the experiment (Figure 8), the
hardness of the wheel and rail materials after the experiment was more than twice that before the
experiment. The wheel and rail samples of the D1 friction pair showed a significantly greater surface
hardness ratio than those of the D2 friction pair, indicating that surface hardening of the D1 friction
pair was greater than that of the D2 friction pair. At the same time, the wheel surface hardening
was greater than that of the rail, which caused a high wear of the rail samples. With the decrease of
temperature, the surface hardening of D1 decreased, while that of the rail increased. For the D2 friction
pair, the surface hardening of the wheel and rail samples was greater at 50 ◦C and −30 ◦C than at room
temperature; it significantly increased at −30 ◦C. The results showed that the resistance to hardening
of D2 was stronger than that of D1; however, D2 wheel material was more significantly affected by
temperature, and surface hardening was the lowest at room temperature.
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Figure 7. Surface hardness of wheel and rail samples before the experiment. (a) D1 friction pair; (b) D2
friction pair.
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Figure 8. Surface hardness ratios of wheel and rail samples of values measured after and before
the experiment:.(a) ratios of hardness values of the wheel measured after the experiment and before
the experiment; (b) ratios of hardness values of the rail measured after the experiment and before
the experiment.

The plastic deformation morphologies were obtained by metallographic treatment of the wheel
and rail samples. In Figures 9–11, it can be seen that at different temperatures, the D1 and D2
friction pairs showed the same change trend in plastic deformation thickness, with the greatest plastic
deformation at−30 ◦C, and the least plastic deformation at room temperature. At the same temperature,
the plastic deformation thickness of D1 was larger than that of D2, which means better deformation
resistance of D2 and is consistent with the results of surface hardening. Compared to the wheel roller,
the rail roller showed strong resistance to deformation, and the greatest plastic deformation occurred
at −30 ◦C, similar to what observed for the wheel roller.
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Figure 9. Plastic deformation of wheel and rail rollers at 50 ◦C: (a) D1 wheel; (b) rail of D1 friction pair;
(c) D2 wheel; (d) rail of D2 friction pair.
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Figure 10. Plastic deformation of wheel and rail rollers at room temperature: (a) D1 wheel; (b) rail of
D1 friction pair; (c) D2 wheel; (d) rail of D2 friction pair.
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Figure 11. Plastic deformation of wheel and rail rollers at −30 ◦C: (a) D1 wheel; (b) rail of D1 friction
pair; (c) D2 wheel; (d) rail of D2 friction pair.

3.3. Surface Damage

Micrographs of the worn surfaces of the wheel and rail rollers at different temperatures are shown
in Figures 12–14. It can be seen in Figure 12 that at 50 ◦C, peeling and surface crack damage occurred
on the surfaces of the D1 friction pair, while for the D2 friction pair, damage was mostly due to
large surface cracks. The surface damage was mild at room temperature, and peeling was the main
damage on the surface of the D1 wheel roller, while surface cracks were predominant on the rail roller
(Figure 13). Moreover, mixed damage consisting of ploughing, peeling, and surface cracks was present
on the surfaces of the D2 friction pair at room temperature. When the temperature decreased to −30
◦C, the surface damage aggravated (Figure 14). For the D1 friction pair, surface fatigue crack was
the main type of damage on the surface of the wheel roller, while slight peeling and surface cracks
were predominant on the rail surface. The surface damage of the D2 wheel roller was relatively mild
and was mainly due to peeling, while a combination of large adhesion areas, spalling, and surface
cracks was observed on the rail surface. With the temperature declining, the surface damage gradually
increased and transformed from surface cracks and peeling to spalling and adhesion damage. Overall,
the surface damage of the D2 wheel and rail samples was more serious than that of the D1 wheel and
rail samples.
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Figure 14. Micrographs of the worn surfaces of the wheel and rail rollers at −30 ◦C, (a) D1; (b) D2.

3.4. Subsurface Damage

Figures 15–17 show the subsurface damage of the D1 and D2 friction pairs at 50 ◦C, room
temperature, and −30 ◦C, respectively. At 50 ◦C and −30 ◦C, the fatigue crack length and angle of the
D1 and D2 wheel and rail rollers were larger compared to those at room temperature. It can be seen
from Figures 15 and 16 that the subsurface fatigue crack of the D2 wheel roller was relatively short and
deep compared with that of the D1 wheel roller at 50 ◦C and room temperature. The long fatigue crack
of D1 propagated along the surface, while the short fatigue crack of D2 extended slightly inward, with
a small angle, while at −30 ◦C the subsurface damage of the D1 and D2 wheel rollers was accompanied
by subsurface crack and a long internal crack in the material (Figure 17). For the rail roller, the main
damage at room temperature was a long crack extending parallel to the surface and a subsurface crack.
Under the conditions of 50 ◦C and −30 ◦C, there was a lamellar material inclusion inside the surface
crack of the rail roller (Figure 15b); the crack extended to the inside and branched, so that subsurface
crack damage increased compared with what observed at room temperature, becoming especially
serious at −30 ◦C. The results showed that the subsurface damage of D1 was serious compared to that
of D2 at the same temperature. Subsurface damage was severely affected by low temperature and less
severely by 50 ◦C; the slightest subsurface damage to the two kinds of wheel materials was observed at
room temperature.
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4. Discussion

The ambient temperature has a remarkable influence on the wear and fatigue properties of D1 and
D2 rollers. Our experimental results showed that wear loss, surface hardening, and plastic deformation
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of D1 and D2 wheel materials were particularly serious at low temperature. Meanwhile, D2 exhibited
good wear resistance and hardening resistance compared to D1. Except for the ploughing damage on
the surface of the D2 wheel roller at room temperature, surface damage type and degree of the two
kinds of wheel materials were basically the same. D2 exhibited a slightly smaller surface damage and
fatigue resistance than D1, and the surface and subsurface damage was severe at −30 ◦C.

Under the condition of 50 ◦C and −30 ◦C, both the fatigue crack angle and the fatigue crack length
in the D1 and D2 friction pair increased, compared to those at room temperature. Thus the surface
material was more easily damaged at 50 ◦C and −30 ◦C, and the fatigue damage was serious, indicating
poor fatigue resistance performance. At the same temperature, the fatigue crack damage generated
on the subsurface of the D2 material was slightly less and shorter in length than that on D1, which
indicated that the anti-fatigue properties of D2 were slightly better than those of D1. In regard to the
composition and alloying elements of the tested materials, the differences in Si and V contents led to
different performances of the D1 and D2 wheel materials. In pearlitic steels used for wheel materials,
the combination of V and C can form a stable VC structure, which improves the strength of ferrite
the material yield strength, and the low-temperature toughness; however, V can also increase the
ferrite phase volume fraction and reduce the tensile strength. Meanwhile, the addition of Si refines
the pearlite lamellar spacing and reduces the ferrite volume fraction, which significantly increases
the yield strength and tensile strength [30]. Generally, Si and V enhance a material’s hardness and
tensile strength and refine pearlite lamellar spacing, which improves wear resistance and hinders crack
propagation. Therefore, the D2 material, containing 2.6 times as much Si and 14 times as much V as
D1, presented increased resistance to wear, hardening, and fatigue.

As for the fatigue characteristics of wheel and rail materials, they can be analyzed from a
microscopic and kinematic perspective. With the action of Cyclic loading caused branch cracks, and
inclusions inside cracks appeared during fatigue crack propagation in D1 and D2 wheel rollers. The
subsurface damage of the rail material was more serious than that of the wheel material. Especially at
50 ◦C and −30 ◦C, crack growth, internal inclusions, and subsurface cracks in the rail material were
more serious than at room temperature, indicating that the temperature had a significant impact on the
damage of the wheel and rail materials. When the material was locally subjected to large contact stress
during periodic cycle loading, surface cracks developed forming secondary branches or connections
with subsurface cracks, thus extending inside the material. This resulted in further deformation and
crushing of the cracks, causing accumulation of material inside the cracks. In some of these cracks, the
inclusions accelerated crack propagation to the surface, material fracture under high cyclic load, and
surface peeling and spalling. At the same time, the connection of several adjacent surface cracks or
of surface and subsurface cracks led to crack growth, material surface peeling, or lamellar material
accumulation inside the cracks, which progressed with cyclic loading (Figure 15a). The fatigue cracks
generated in the D1 and D2 wheel materials also branched during cyclic loading (Figures 15, 16b
and 17).

5. Conclusion

(1) Ambient temperature has an obvious influence on the wear and fatigue properties of D1, D2,
and rail materials. At low and high temperatures, wear loss, plastic deformation, and subsurface
damage were more severe than at room temperature; they were the greatest at low temperature. while
Surface damage aggravated as temperature decreased. In regard to the surface hardness ratio, the D1
friction pair showed slight decline with the temperature decreased, while the D2 friction pair presented
the lowest surface hardening at low temperature, slightly better at high temperature, and the mildest
at room temperature.

(2) With high content of Si and V which refined the pearlite lamellar spacing, the D2 wheel material
showed high strength and hardness before testing, which led to a low wear loss and light subsurface
damage. Despite the mild surface damage of the D1 wheel material, the resistance to wear and fatigue
of the D2 wheel material was better than that of D1.
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(3) Comparing the wear and fatigue properties of the two wheel materials, the D2 wheel
material appears more suitable for high-speed railway wheels, and its performance is optimal at
room temperature.
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