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SHORT COMMUNICATIONS

A plant-biotechnology approach 
for producing highly potent anti-HIV antibodies 
for antiretroviral therapy consideration
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Abstract 

Despite a reduction in global HIV prevalence the development of a pipeline of new therapeutics or pre-exposure 
prophylaxis to control the HIV/AIDS epidemic are of high priority. Antibody-based therapies offer several advantages 
and have been shown to prevent HIV-infection. Plant-based production is efficient for several biologics, including 
antibodies. We provide a short review on the work by Singh et al., 2020 who demonstrated the transient produc-
tion of potent CAP256-VRC26 broadly neutralizing antibodies. These antibodies have engineered posttranslational 
modifications, namely N-glycosylation in the fragment crystallizable region and O-sulfation of tyrosine residues in the 
complementary-determining region H3 loop. The glycoengineered Nicotiana benthamiana mutant (ΔXTFT) was used, 
with glycosylating structures lacking β1,2-xylose and/or α1,3-fucose residues, which is critical for enhanced effector 
activity. The CAP256-VRC26 antibody lineage targets the first and second variable region of the HIV-1 gp120 envelope 
glycoprotein. The high potency of this lineage is mediated by a protruding O-sulfated tyrosine in the CDR H3 loop. 
Nicotiana benthamiana lacks human tyrosyl protein sulfotransferase 1, the enzyme responsible for tyrosine O-sulfation. 
The transient coexpression of the CAP256-VRC26 antibodies with tyrosyl protein sulfotransferase 1 in planta had 
restored the efficacy of these antibodies through the incorporation of the O-sulfation modification. This approach 
demonstrates the strategic incorporation of posttranslational modifications in production systems, which may have 
not been previously considered. These plant-produced CAP256-VRC26 antibodies have therapeutic as well as topical 
and systemic pre-exposure prophylaxis potential in enabling the empowerment of young girls and women given that 
gender inequalities remain a major driver of the epidemic.
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Introduction
Despite the global reduction in HIV prevalence, of the 
38 million people living with human immunodeficiency 
virus/ acquired immunodeficiency syndrome (HIV/
AIDS), only 25.4 million people are currently on antiret-
roviral treatment [1]. A compounding factor is gender 
inequality which remains a major social driver of the epi-
demic, with young women and adolescent girls account-
ing for one in four new infection in 2019 [1]. Thus, 
development of protective vaccines and a pipeline of new 

therapeutics or prophylaxes to control the HIV/AIDS 
epidemic remains a high priority [2, 3]. As an alterna-
tive or as a complement to small-molecule therapy such 
as highly active antiretroviral therapy (HAART) which 
utilizes small-molecule therapeutics (Table  1) in vary-
ing combination, antibody-based therapies have several 
advantages, such as safety and specificity [4]. The use of 
VRC01, a broadly neutralizing antibody (bNAb) has been 
shown to prevent HIV-infection in over 70% of people 
exposed to strains which are able to be neutralized by 
VRC01 [5].

The production of protein-based biopharmaceuticals 
has been dominated by the use of mammalian cell cul-
ture-based approaches [6]. There are alternative systems 
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to mammalian-based production for protein-based biop-
harmaceuticals production; however, the ability of these 
non-mammalian systems to produce monoclonal anti-
bodies (mAbs) is limited by their inherent properties. 
These properties comprise of cellular machinery which 
influence the ability to correctly fold both monomeric 
and multimeric structures and incorporate the correct 
post-translational modifications (PTMs) at the correct 
amino acids [7]. In contrast to other developing regions, 
the local manufacturing of protein-based vaccines and 
biopharmaceuticals is limited or growing at a slow rate in 
Africa thereby contributing to the widening trade deficit 
and limited access to essential medicines by the under-
privileged [8]. Cost of goods, which will influence mass 
roll-out of such products, is also a major consideration 
[9]. Plant-based production is efficient for a number of 
biologics, and is particularly suitable for cost-sensitive 
markets in Africa and other low- and middle-income 
countries (LMICs) (reviewed by [10, 11]). The Nicotiana 
benthamiana (N. benthamiana) plant-based system has 
been employed for the production of anti-HIV antibod-
ies, such as 2G12, VRC01, and PG9 [12–15], and the effi-
cacy of some plant-produced versions have already been 
tested in animal trials [16].

We provide a short review on the paper entitled “Plant-
based production of highly potent anti-HIV antibodies 
with engineered posttranslational modifications”. This 
publication reported the production of potent CAP256-
VRC26 bNAbs with engineered PTMs in the antigen and 
fragment crystallizable (Fc) (receptor binding) region of 
the antibodies, respectively [17]. The ability to perform 
crucial N-glycosylation lacking β1,2-xylose and/or α1,3-
fucose residues using glycoengineered N. benthamiana 
(ΔXTFT) plants complemented with the coexpression 
of the antibodies with human tyrosyl protein sulfotrans-
ferase 1 (hTPST1) had been demonstrated, thus enabling 
the O-sulfation of tyrosine residues in the complemen-
tary-determining region (CDR) H3 loop. The latter PTM 
is critical to the neutralization potency of the CAP256-
VRC26 lineage of bNAbs.

Glycoengineering of CAP256‑VRC26 bNAbs
Glycosylation of the Fc region of Abs can significantly 
impact antibody effector functions like antibody-depend-
ent cell-mediated cytotoxicity (ADCC) and antibody-
dependent, cell-mediated virus inactivation (ADCVI) 
[18–20]. Wild type N. benthamiana glycosylates proteins 
with glycan species which are very different compared to 
mammalian production systems; proteins are produced 
with β1,2-xylose and/or α1,3-fucose containing N-gly-
cans residues in wild-type N. benthamiana [21]. These 
N-glycan residues influence the pharmacokinetics of a 
biopharmaceutical product and effector functions. mAbs 
produced in Lemna minor, engineered to produce mAbs 
which lack β1,2-xylose and/or α1,3-fucose containing 
N-glycans residues, had demonstrated enhanced effec-
tor activity when compared with their Chinese hamster 
ovary (CHO)-derived homologs [22]. It is highly desir-
able to produce mAbs in plants which lack these β1,2-
xylose and/or α1,3-fucose containing N-glycans residues 
[23, 24]. CAP256-VRC26.08 and CAP256-VRC26.09 
were produced using a double knockout N. benthami-
ana mutant (ΔXTFT) which has attenuated expression 
of xylosyl- and fucosyltransferase via downregulation by 
ribonucleic interference (RNAi) resulting in the transient 
production of mAbs with a predominantly mammalian 
GnGn glycan structure [23, 24].

Incomplete glycosylation of the produced CAP256 
bNAbs was observed [17], and this has been previously 
reported for other transiently plant-produced Abs [14, 
15, 23, 25]. Higher glycosylation levels were observed in 
plant-produced VRC01 [14], which had led to assump-
tion that these innate plant oligosaccharyltransferase 
(OST) complexes may not recognize the Fc glycosylation 
sites in different Abs with equivalent efficiency, resulting 
in the observed variations in glycosylation [13]. Increased 
in planta N-glycosylation can be achieved through the 
coexpression of recombinant protein with foreign OST 
subunits [13]. Glycosylation of the light chains of the 
CAP256 bNAbs produced in both mammalian and plant 
cells was observed [17]. The glycosylation of the light 

Table 1  Food and Drug Administration (FDA)-approved small molecule HIV therapeutics

Drug type Drug name

Nucleoside/nucleotide reverse transcriptase inhibitors Abacavir, emtricitabine, lamivudine; tenofovir 
disoproxil fumarate, zidovudine

NNRTIs non-nucleoside reverse transcriptase inhibitors Efavirenz, etravirine, nevirapine, rilpivirine

Fusion inhibitors Enfuvirtide

Protease inhibitors Atazanavir, darunavir, fosamprenavir, ritonavir, 
saquinavir, tipranavir

C-C chemokine receptor type 5 (CCR5) Maraviroc

Integrase inhibitors Dolutegavir, raltegravir, elvitegravir, bictegravir
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chains of Abs is known to shorten the clearance time of 
the antibody from blood [16]. These glycosylation sites 
can be removed to allow for increased blood circulation.

In planta tyrosine O‑sulfation of CAP256‑VRC26 
bNAbs
The CAP256-VRC26 antibody lineage targets the first 
and second variable region (V1V2) of the HIV-1 gp120 
envelope glycoprotein. The high potency of this lineage 
alongside other V1V2 targeting mAbs, such as PG9, is 
mediated by a protruding O-sulfated tyrosine in the CDR 
H3 loop of the antigen-binding domain, a characteristic 
posttranslational modification (PTM) of V1V2 targeting 
antibodies [26–28]. The O-sulfated tyrosine of the CDR 
H3 loop facilitates tight binding of the gp120 envelope 
glycoprotein, in a manner which mimics the HIV-1 gp120 
affinity for the sulfated chemokine receptor 5 (CCR5) 
[27]. Association of HIV-1 with the cluster of differentia-
tion 4 (CD4) receptor and critically the CCR5 corecep-
tor, which has a sulfated tyrosine at the N-terminal end, 
is essential for HIV-1 gp120 binding and ultimately cell 
entry [27]. The absence of this modification in V1V2 
targeting antibodies leads to a significant decrease in 
antigen-binding and results in loss of function [16]. The 
O-sulfation of tyrosine residues is carried out by hTPST1, 
an enzyme which N. benthamiana lacks. It was previ-
ously demonstrated that the transient coexpression of a 
V1V2 targeting antibody with hTPST1 in plants restored 
the efficacy of antibody through the proper incorpora-
tion of the O-sulfation modification [15]. The same tran-
sient coexpression strategy was used to incorporate the 
O-sulfation PTM to two tyrosine residues, Tyr112 and 
Tyr113, of which Tyr112 is critical to the efficacy of the 
CAP256-VRC26 bNAbs. Lower levels of sulfation were 
achieved in the plant-produced CAP256-VRC26 bNAbs 
with transient coexpression of hTPST1 when compared 
to the mammalian produced counterparts; however, 
despite the difference in sulfation, it was demonstrated 
that the plant-produced CAP256-VRC26 bNAbs with 
transient coexpression of hTPST1 have equivalent 
potency to that of their mammalian-produced counter-
parts. A similar level of sulfation was observed with PG9, 
which is indicative of transiently coexpressed hTPST1’s 
inability to efficiently sulfate tyrosines in the CDR H3 
domain as the native machinery of the human embryonic 
kidney 293 (HEK293) cells [15]. O-sulfation levels may 
be improved through the further in  vitro incubation of 
the CAP256-VRC26 bNAbs with hTPST1 and substrate, 
3′-phosphoadenosine 5′-phosphosulfate (PAPS). How-
ever, this approach may not be viable at large scale. In any 
case, despite the difference in sulfation, equivalent effi-
cacy between the plant-produced bNAbs with hTPST1 

coexpression and mammalian-produced CAP256-VRC26 
bNAbs counterparts.

Proteolytic bottleneck of plant production of Abs
It was also noted that the plant-produced CAP256-
VRC26 bNAbs were prone to proteolytic degradation 
[17]. A challenge faced with the production of proteins 
in Nicotiana species, is the proteolytic degradation of 
these recombinantly produced proteins in planta [29, 
30]. The peptidase database, MEROPS, (27/07/2021) lists 
515 known or putative peptidases and 98 non-peptidase 
homologs in N. benthamiana which may be responsible 
for in planta degradation of some recombinantly pro-
duced protein [31]. Proteolytic degradation may not only 
reduce the purity and yields of recombinantly produced 
protein but also compromises the structural integrity of 
these proteins. Proteolytic degradation such as this can 
result in altered biological activity or no protein pro-
duction at all, ultimately resulting in a bottleneck in the 
production of biopharmaceuticals [32–34]. The antibod-
ies are targeted through the plant secretory pathway for 
PTMs making them prone to proteolytic degradation by 
proteases which are auto-catalytically matured in low-
pH environments [35, 36]. Plant-produced CAP256-
VRC26 bNAbs were structurally similar to that of the 
mammalian produced bNAbs, despite the observation 
of proteolytic degradation fragments in the plant-pro-
duced CAP256-VRC26 bNAbs samples under reducing 
conditions.

The identity of the cleavage site/s are unknown, how-
ever, it was noted that under non-reducing conditions, 
no proteolytic degradation band is observed. Impor-
tantly, despite the presence of protease degradation prod-
ucts in the plant-produced Abs, similar neutralization 
potency was observed for the sulfated plant-produced 
Abs when compared to the mammalian-produced Abs. 
This suggests that this cleavage site does not influence 
antigen-binding in vitro. However, in vivo effects of such 
degradation are still unknown and will be a topic of our 
further research. The plant-produced CAP256-VRC26 
bNAbs were structurally similar to that of the mamma-
lian produced bNAbs. However, it may be important to 
improve the quality and/or quantity of produced mAbs 
in future. To circumvent such proteolytic degradation, 
commonly used strategies involve the use of RNAi to 
downregulate protease genes, or either the coexpression 
of plant protease inhibitors or proton channels to inhibit 
their enzymatic activity [37–40].

Conclusion
Despite the success of current antiretroviral therapy, 
long term usage could introduce multiple drug-resist-
ant escape mutants as a result of the high mutation rate 
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and recombinant frequency of HIV [41]. Continuous 
development of HIV therapeutics which are both more 
effective and less toxic is essential [4]. The approach 
taken in our work [17] and others allows for the incor-
poration of strategic PTMs in production systems, 
which may have not been previously considered for 
the cost-effective production HIV antibody-based bio-
therapeutics. Gender inequalities remain a major driver 
of the epidemic with half of all new HIV infections in 
sub-Saharan Africa are among young people, with girls 
being two to three times more likely to be infected than 
boys [1]. Apart from the therapeutic potential of these 
plant-produced bNAbs, these bNAbs also have the 
potential to be used in topical and systemic pre-expo-
sure prophylaxis (PrEP). It is thus prudent that work 
such as this be used in approaches which can enable 
the empowerment of young girls and women. The plant 
production system is likely to become increasingly 
important in enabling the production of antibodies 
and other proteins with therapeutic potential for mass 
roll-out in cost-sensitive markets where unequal access 
to resources, income opportunities, and social power 
drive high levels of HIV prevalence. The use of the 
plant-production system requires less capital expense/ 
investment and > 50% reduction in cost of goods than 
bioreactor-based processes, making it ideally suit-
able for LMICs [9]. This work has increased the likeli-
hood that such plant-produced immunotherapeutic 
production strategies can be considered for adoption 
to prevent and treat HIV-1 infection in these markets, 
including sub-Saharan Africa.
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