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Metastasis is the major cause of mortality in cancer patients. Analyses of mouse models
and patient data have implicated the protein kinase WNK1 as one of a handful of genes
uniquely linked to a subset of invasive cancers. WNK1 signaling pathways are widely
implicated in the regulation of ion co-transporters and in controlling cell responses to
osmotic stress. In this review we will discuss its actions in tumor malignancy in human
cancers and present evidence for its function in invasion, migration, angiogenesis and
mesenchymal transition.

Keywords: WNK1, OSR1, SPAK, TGF-β, EMT

INTRODUCTION

WNK (With-No-Lysine) kinases were originally identified in a screen for novel members of theMAP
kinase kinase (MAP2K) family (Xu et al., 2000; Verissimo and Jordan, 2001). The four WNK family
members are characterized by an atypical placement of the catalytic lysine. These serine-threonine
kinases participate in several functionally distinct signaling cascades controlling cellular responses to
osmotic stress (Xu et al., 2005b; Kahle et al., 2005; Lenertz et al., 2005; Moriguchi et al., 2005;
Anselmo et al., 2006; Gagnon et al., 2006; Vitari et al., 2006; Zagorska et al., 2007; Richardson et al.,
2008; Roy et al., 2015). Many putative WNK substrates have been identified; the best-known are the
related kinases OSR1 (oxidative stress responsive kinase1) and SPAK (STE20/SPS1-related proline/
alanine-rich kinase) (Chen et al., 2004; Moriguchi et al., 2005; Vitari et al., 2005; Anselmo et al., 2006;
Cope et al., 2006; Vitari et al., 2006; Richardson and Alessi, 2008). OSR1 and SPAK regulate ion co-
transporters and will be discussed further below (Moriguchi et al., 2005; Vitari et al., 2005; Anselmo
et al., 2006; Roy et al., 2015). In recent years, there is growing evidence that WNK1 is a critical kinase
involved in various types of cancer (Chen et al., 2017; Gallolu Kankanamalage et al., 2018; Shahi
Thakuri et al., 2020), but the exact mechanisms by which WNK1 modulates tumor progression are
not well understood. Here we summarize the structure and turnover of WNK1 protein and evidence
for its actions in tumor malignancy in human cancers.

Overview of With-No-Lysine kinases Structure and Expression
In humans, the four WNK kinases, WNK1-4, range in size from 2833 amino acids (the longest
isoform of WNK1) to 1243 amino acids (WNK4) (Verissimo and Jordan, 2001; Wilson et al., 2001;
Delaloy et al., 2003; Vidal-Petiot et al., 2012). The four WNK family members share high homology
in their kinase domains with 85–90% sequence identity, two autoinhibitory-like domains, a coiled-
coil domain, and proline-rich (PXXP) motifs for protein-protein interactions (Xu et al., 2000;
Verissimo and Jordan, 2001; Wilson et al., 2001; Xu et al., 2005a; Huang et al., 2007; Wang et al.,
2008). Crystal structures of the kinase domains and autoinhibitory domains of multiple WNKs have
been determined and some structures with small molecules bound are available (Min et al., 2004; Xu
et al., 2005a; Moon et al., 2013). Outside of these regions,WNKs show low sequence identity, which is
assumed to confer functional diversity for each of theWNK family members. Further, the abundance
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of low complexity sequence outside of the kinase domain makes
structure determination challenging. Alphafold2 did not provide
much greater clarity on the balance of the WNK1 molecule, for
example, (Jumper et al., 2021; Varadi et al., 2021).

WNK1 andWNK4 have been extensively studied because they
are responsible for pseudohypoaldosteronism type II (PHA II), a
genetic disease characterized by hyperkalemic hypertension
(Wilson et al., 2001; Susa et al., 2014). In contrast to other
members of the WNK family which display a more tissue-
restricted pattern of expression, WNK1 is widely and highly
expressed in most animal tissues and cell types (Xu et al.,
2000; Wilson et al., 2001; O’reilly et al., 2003; Vitari et al.,
2005). The sequence of WNK1 is conserved across species
(human WNK1 > 85% identical with mouse, pig 86%, rat
76%, and bovine 68%) and is recognizable in plants and many
unicellular eukaryotes. The kinase activity of WNK1 is regulated
via autophosphorylation on activation loop residues Ser382 and
Ser378 (Xu et al., 2002). Details of mechanisms controlling
autophosphorylation remain scant; however, importantly,
chloride ion binding in the active site prevents
autophosphorylation (Piala et al., 2014). This finding is
relevant to WNK function as central regulators of ion
homeostasis.

With-No-Lysine kinases1 Turnover and Ion
Homeostasis
Due to its importance for cellular homeostasis (Shekarabi et al.,
2017), the abundance of WNK1 protein is tightly controlled by
several layers of negative regulation (Mccormick and Ellison,
2011; Li et al., 2014; Roy et al., 2015; Dbouk et al., 2016). The set
point in the total amount of WNK1 protein in a cell has a
substantial impact on control of its downstream targets. All WNK
family members share the highly conserved acidic degron motif
near their autoinhibitory domain as a signal for destruction,
which plays a critical role in the ubiquitin-dependent
proteolytic process (Schumacher et al., 2014; Chen et al.,
2022). The initial finding showed that the adaptor protein
kelch-like family member 3 (KLHL3)-cullin3 (CUL3) E3 ligase
complex is associated with WNK1 and WNK4 (Shibata et al.,
2013). KLHL3 as a substrate adaptor binds to the conserved
degron motif just C-terminal to the kinase domain in these
WNKs to facilitate the recruitment of the CUL3 E3 ubiquitin
ligase, thereby promoting ubiquitination and degradation
(Shibata et al., 2013; Schumacher et al., 2014). Perturbations in
this interaction have great effects on WNK-mediated electrolyte
homeostasis, which was demonstrated by the finding that
mutations in KLHL3-CUL3 also cause PHA II (Ohta et al.,
2013; Mccormick et al., 2014; Lin et al., 2019).

Other ubiquitination pathways have also been connected to
WNK1 turnover. The HECT-type ubiquitin ligase NEDD4-2
(also called NEDD4L) can bind to PY motifs in WNK1 for
facilitating its ubiquitin-dependent proteasomal degradation
(Heise et al., 2010; Roy et al., 2015). This is supported by the
finding that WNK1 abundance was increased and OSR1/SPAK
activation were observed in mice lacking NEDD4-2 (Roy et al.,
2015; Al-Qusairi et al., 2017). We recently showed that WNK1 is

degraded not only by the ubiquitin-proteasome pathway, but also
by the lysosomal pathway (Jung et al., 2022). Non-lysosomal
cysteine proteases calpain and caspase-3 were also able to
influence WNK1 abundance. This study identified UBR5
(ubiquitin protein ligase E3 component N-recognin 5) as a
previously unknown regulator of WNK1 turnover that
mediates lysosomal degradation of WNK1 protein (Jung et al.,
2022). Though UBR5 inhibition only modestly elevated WNK1
protein, that change caused a significant increase in
phosphorylation of OSR1/SPAK, indicating that even small
changes in WNK1 protein will have a significant impact on
cellular processes. It is therefore likely that multiple
degradative pathways in cells participate in the modulation of
cellular WNK1 protein amount. WNK1 itself can also act as an
adaptor for endosomal trafficking. WNK1 is thought to be crucial
for glucose transporter GLUT1 and GLUT4 endosomal
trafficking through regulating the Rab GTPase-activating
protein AS160 (Akt substrate of 160 kDa) (Mendes et al.,
2010; Tan et al., 2012; Kim et al., 2018; Henriques et al.,
2020). WNK1 interacts with the endocytic scaffold protein
intersectin which is involved in clathrin-mediated endocytosis
that impacts recycling of ROMK (renal outer medullary
potassium channel) (He et al., 2007; Wang et al., 2008).
Moreover, we previously found that WNK1 negatively
regulates autophagic degradation pathways through inhibition
of class III phosphatidylinositol 3-kinase (PI3KC3) (Gallolu
Kankanamalage et al., 2016). These results imply that WNK1
protein is degraded bymultiple proteolytic pathways, whereas it is
also a critical modulator of endocytic degradation. The
mechanisms underlying the feedback between WNK1 turnover
and its function as a trafficking regulator remain to be
determined.

With-No-Lysine kinases1, Angiogenesis,
and Cell Junction Regulation
Phenotypes identified in mouse knockout studies demonstrated
that WNK1 is required for angiogenesis. Angiogenesis is a highly
regulated process that is turned on transiently during
development, reproduction, and wound repair, which involves
formation of new capillaries through sprouting or by splitting off
from the original vessel (intussusception) (Folkman and Shing,
1992; Otrock et al., 2007). Homozygous disruption of the WNK1
gene results in a lethal developmental failure in mice around
embryonic day E12, due to impaired angiogenesis (Xie et al.,
2009; Xie et al., 2009). The phenotype of the WNK1 global
knockout mouse mimics the defects caused by endothelial-
specific ablation of WNK1 and is rescued either by
endothelial-specific expression of WNK1 (Xie et al., 2009) or
an activated form of OSR1 (Xie et al., 2013). Additionally,
depletion of WNK1 and OSR1 decreased in vitro vascular cord
formation and cell migration in endothelial cells (Dbouk et al.,
2014; Jaykumar et al., 2022), indicating a crucial role of WNK1-
activated OSR1 signaling in angiogenesis, and vascular
remodeling.

Although a detailed mechanistic understanding of the effects
of WNK1 on angiogenesis is lacking, decreased expression of
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WNK1 in cultured endothelial cells caused reduced expression of
a number of factors that promote angiogenesis including Slug
(SNAI2), vascular endothelial growth factor A (VEGF-A), and
matrix metallo-proteinases (MMPs) (Dbouk et al., 2014). During
vein graft remodeling, Slug mediates endothelial-mesenchymal
transition (also called Endo-MT) via SMAD2/3-mediated
transforming growth factor-β (TGF-β) signaling (Cooley et al.,
2014; Welch-Reardon et al., 2014; Mahmoud et al., 2017), a
widely known inducer of this transition (Nakajima et al., 2000;
Pardali et al., 2017). We previously showed that WNK1 interacts
with, and phosphorylates SMAD2 and regulates its function (Lee
et al., 2007; Li et al., 2020). WNK1 signaling takes part in the
regulation of TGF-β/SMAD-dependent Endo-MT for promoting
onset of cell sprouting, migration and vascular remodeling. These
and other findings indicate an effect of the WNK1 cascade on
induction of a mesenchymal phenotype essential for endothelial
wound healing (Yoshimatsu and Watabe, 2011; Welch-Reardon
et al., 2014).

Partial Endo-MT is characterized by transient loss of an
endothelial phenotype and acquisition of mesenchymal
characteristics such as loss of cell-cell junctions, polarity and
gain of motility to promote angiogenic sprouting and cell
migration (Otrock et al., 2007; Welch-Reardon et al., 2015).
TGF-β initiates cytoskeletal turnover and a drastic down-
regulation and disintegration of tight junctions to promote
migration in endothelial cells. Upon TGF-β stimulation, the
TGF-β receptor type II redistributes into tight junctions which
leads to their dissolution (Barrios-Rodiles, 2005; Ozdamar et al.,
2005). Because OSR1 is a mediator of WNK1 action and because
OSR1 was found to be a component of the TGF-β interactome
(Barrios-Rodiles, 2005), we explored the possibility that WNK1
regulates OSR1 to influence endothelial tight junction turnover.
We found that OSR1 is involved in WNK1-mediated regulation
of turnover of tight junctions and adherens junctions, in part,
through its interaction with occludin via a TGF-β-sensitive
process. While occludin is not necessary for the formation of
tight junctions, occludin is vital to tight junction integrity (Rao,
2009; Cummins, 2011). Interestingly, occludin is also important
for directional migration of epithelial cells (Du et al., 2010).
Control of both tight junction integrity and directional
migration of endothelial cells are central to angiogenesis (Liu
et al., 2016). One mechanism underlying the importance of
WNK1/OSR1 to angiogenesis is the capacity to target occludin
turnover. This same capacity may also contribute to effects of the
WNK1 pathway on endothelial-mesenchymal transition.
Furthermore, recent studies have shown that occludin is also
involved in endothelial neovascularization and angiogenesis (Liu
et al., 2016). In addition to effects on occludin, we identified other
events that underlie WNK1-mediated control of angiogenesis
including stabilization of TGF-β-regulated components AXL (a
TAM receptor tyrosine kinase), ALK1 (a TGF-β receptor),
SMAD2/3, RhoA, and VE-cadherin (Jaykumar et al., 2022).

Adherens junctions are required for endothelial cell
stabilization and homeostasis because they promote contact
inhibition of growth and decrease cell responsiveness to
apoptotic stimuli. Adherens junctions in endothelial cells
primarily consist of VE-cadherin (Dejana, 2004; Rudini et al.,

2008). VE-cadherin is also known to be an endothelial cell-
specific regulator of TGF-β/SMAD signaling (Rudini et al.,
2008). TGF-β induces TGF-βRII association with VE-cadherin
and this clustering promotes TGF-β signaling, which, in turn,
destabilizes cell-cell junctions (Ma et al., 2020). Moreover, VE-
cadherin is essential for TGF-β-induced endothelial cell
migration (Rudini et al., 2008). VE-cadherin is a positive
regulator of TGF-β-induced SMAD2/3 phosphorylation. TGF-
β stimulation induces association of VE-cadherin with TGF-βRII/
TGF-βRI and therefore it participates in maximal activation of
the TGF-β pathway (Rudini et al., 2008). OSR1 was also shown to
phosphorylate the SMAD2/3 linker region to promote TGF-β
signaling (Li et al., 2020). We found that WNK1 inhibition leads
to decreased localization of VE-cadherin at cell-cell junctions
only in the presence of TGF-β, indicating that WNK1 actions are
context dependent (Jaykumar et al., 2022).

With-No-Lysine kinases1 and Cancer
Prognosis
For the last two decades, the majority of studies on WNK1 have
focused on their roles in hypertension and kidney function.
Although multiple studies revealed that WNK1 is involved in
major cancer-related signaling pathways such as PI3K-AKT,
TGF-β and NF-κB (Xu et al., 2005c; Jiang et al., 2005; Lee
et al., 2007; Yan et al., 2008), little is known regarding how
WNK1 contributes to cancer progression. Recently, there has
been growing interest in involvement of WNK1 in cancers. In
fact, large-scale cancer database analysis from the cBioPortal for
Cancer Genomics revealed that a high level of WNK1 expression
has been observed in various tumor types including prostate,
ovarian, testis and breast cancers (The cBioPortal for Cancer
Genomics; http://cbioportal.org). As noted above, upregulation of
WNK1 protein can result in increased activation of its
downstream pathways and potential cancer-promoting actions.
Utilizing transposon-mediated insertional mutagenesis for
identifying candidate BC driver genes, WNK1 was identified
as one of a handful of driver genes in high-risk invasive breast
cancer (Chen et al., 2017).

Paralleling findings in endothelial cells, WNK1 has been
implicated in migration with epithelial-mesenchymal (EMT)
features through knockdown studies in multiple cancer types,
and also as a contributor to stem-like properties in metastatic
breast cancers (Shyamasundar et al., 2016; Hung et al., 2017; Pio
et al., 2017). Mechanistic information has suggested links to
expression of EMT factors Slug and Snail, microRNA
networks, changes in expression of cell surface proteins,
altered vesicle trafficking, and effects on actin polymerization
(Shyamasundar et al., 2016; Hung et al., 2017; Tanaka and
Siemann, 2019). One study showed that WNK protects the
interaction between β-Catenin and the glucose-induced
degradation deficient (GID) complex, which includes an E3
ubiquitin ligase targeting β-Catenin, and that WNK regulates
β-Catenin levels. Furthermore, WNK inhibitors induced β-
Catenin degradation and suppressed xenograft tumor
development in mice (Sato et al., 2020). Elevated WNK1
mRNA and protein have been detected in hepatocellular
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carcinoma (HCC) and significantly correlated with poor
prognosis, highlighting the clinical significance of WNK1 in
HCC progression (Ho et al., 2020). Knockdown and inhibition
of WNK1 also decreased tumor-induced ectopic vessel formation
and inhibited tumor proliferation in two zebrafish models
transplanted with intestinal and hepatocellular carcinomas (Sie
et al., 2020). Endothelial-specific overexpression of WNK1
enhanced tumorigenesis in transgenic carcinogenic zebrafish,
supporting endothelial cell-autonomous effect of WNK1 in
tumor production (Sie et al., 2020). In addition, WNK1 fusion
to B4GALNT3 is a potential oncogenic driver in a patient with
papillary thyroid carcinoma, which is the most common type of
thyroid cancer (Costa et al., 2015). Another newly identified gene
fusion WNK1-ROS1 (c-Ros oncogene-1) has been described as a
novel driver of lung adenocarcinoma (Liu et al., 2019).WNK1 has
been shown to promote tumorigenesis in cancers through its
ability to promote cell proliferation via anti-apoptotic and pro-
survival functions (Tu et al., 2011; Fulford et al., 2016;Wang et al.,
2017). Importantly, the WNK1 signaling axis contributes to
pathologic features of malignancies such as enhanced invasion,
migration, adhesion and tumorigenicity, as shown in Figure 1.
Thus, interfering with WNK1 expression may have therapeutic
value in human cancers. In the following sections, we discuss
different mechanisms by which WNK1 has been reported to
support tumor malignancy.

With-No-Lysine kinases1 and
Epithelial–Mesenchymal Transition
Themajor characteristic of malignant tumors is a diffuse invasion
into adjacent normal tissue andmigration to a significant distance
from the primary tumor area, a fundamental step in metastasis
(Van Zijl et al., 2011; Clark and Vignjevic, 2015; Lambert et al.,
2017). This characteristic is one of the most difficult challenges to
target therapeutically in human cancers. Therefore, a clear
understanding of the cellular and molecular mechanisms
underlying the malignant behavior is crucial for the
development of specific therapeutic strategies.

Multiple studies have implicated WNKs in cell migration
in wound healing assays (Adams et al., 2017; Desjardins et al.,
2019; Kim et al., 2019; Liu et al., 2020). A direct relationship

between WNK1 and cell invasion in three-dimensional assays
was described in human umbilical vein endothelial cells
(HUVECs) (Dbouk et al., 2014). In that study, sprouting
and invasion into the surrounding matrix were significantly
diminished by WNK1 knockdown in spheroid sprouting
assays. The impaired invasive phenotype of WNK1-
depleted cancer cells was linked to downregulation of the
EMT-associated transcription factor Slug which was partially
rescued by overexpressing the WNK1-regulated kinases OSR1
or SPAK (Jaykumar et al., 2021). Consistent with this, it has
recently been proposed that OSR1 depletion in MDA-MB-231
cells displays a decrease in expression of EMT transcription
factors Twist1, Snail, and Slug at mRNA and protein levels,
resulting in reduced invasion of breast cancer cells in vitro and
in vivo (Li et al., 2021). As expected, OSR1 overexpression
elevated levels of EMT transcription factors (Li et al., 2021).
The pathological importance of complete or partial EMT has
become clear from numerous studies and the molecular
mechanisms governing malignant phenotypes of cancer
cells such as invasion and metastasis formation are
becoming clearer (Dang et al., 2015; Brabletz et al., 2018;
Ramesh et al., 2020; Ribatti et al., 2020). Inhibition of WNK
signaling with WNK463, an allosteric inhibitor of WNK
kinase activity (Yamada et al., 2016; Zhang et al., 2016),
significantly decreased expression of the EMT-related factor
N-cadherin in breast cancer cells (Jaykumar et al., 2021). This
mesenchymal marker is often highly expressed in cancers and
has been shown to be associated with poor prognosis (Mariotti
et al., 2007; Mrozik et al., 2018). Depletion of WNK1 in MDA-
MB-231 cells significantly attenuated invasive potential in
three-dimensional collagen matrices, and a similar result
was also observed in cells treated with WNK463 (Jaykumar
et al., 2021). In another study in MDA-MB-231 cells, miRNA-
93 was reported to suppress WNK1 expression, resulting in a
decrease in the invasiveness of the cells through upregulation
of epithelial markers CLDN1, CLDN3 and CDH1
(Shyamasundar et al., 2016). Additionally, it was shown
that overexpression of WNK1 in hepatocellular carcinoma
enhanced the expression of MMP-2 and MMP-9, which are
EMT-related proteolytic enzymes that can promote
degradation of the extracellular matrix, EMT, and invasion
(Dong et al., 2020). Thus, diverse studies place WNK1 as a
regulator of EMT during the invasion of different types of
cancer cells.

Evidence generated from several studies suggests that WNK1
is a key in cancer cell migration via regulation of EMT. Since the
initial finding through in vitro scratch wound healing assays that
knockdown of WNK1 reduced migration of mouse neural
progenitor cell line C17.2 accompanied by morphological
changes (Sun et al., 2006), numerous studies have identified
WNK1 regulation of the migratory phenotype in cancer cells.
In non-small cell lung cancer cell lines, WNK1 silencing leads to
decreased EMT molecules N-cadherin and Snail, and increased
E-cadherin, resulting in reduced migration of CL1-5 and H1299
cells (Hung et al., 2017). Also, work from our lab has shown that
WNK1 inhibition in five different breast cancer cell lines MDA-
MB-231, BT-549, BT-20, HCC1569, and HCC1419 significantly

FIGURE 1 | Pathological impacts of WNK1 in cancer. WNK1 regulates
the expression of various molecules involved in different aspects of
oncogenesis. Created with BioRender.com.
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reduced the migratory capacity concomitantly with the reduction
in N-cadherin protein expression (Jaykumar et al., 2021).

With-No-Lysine kinases, Ion
Cotransporters and Migration
As discussed above, the WNK-OSR1/SPAK signaling pathway is key
in the regulation of electrolyte homeostasis through regulating ion co-
transporters of the SCL12A family. These include the Na+K+2Cl− co-
transporters 1 and 2 (NKCC1 and NKCC2), the Na+Cl− co-
transporter (NCC), and multiple K+Cl− co-transporters (KCC)
that modulate the flux of ions across the cell membrane (Gamba,
2005; Flatman, 2008; Richardson and Alessi, 2008). WNK1 has also
been demonstrated to regulate cell surface expression of ion channels
including the epithelial Na+ channel (ENaC) and renal outer
medullary K+ channel (ROMK, Kir 1.1) (Xu et al., 2005b; Cope
et al., 2006; Lazrak et al., 2006). We recently showed that Kir2.1 and
Kir2.3 channels harbor an alternative SPAK/OSR1 binding motifs
(RxFxV), leading to their plasma membrane localization (Taylor
et al., 2018). Alterations of electrolyte homeostasis are frequently
observed in cancer patients (Miltiadous et al., 2008; Rosner and
Dalkin, 2014; Li et al., 2020; Bennet et al., 2021).

These ion transporters and channels have frequently been
implicated in the regulation of migration and invasion
(Cuddapah and Sontheimer, 2011; Schwab and Stock, 2014;
Stock and Schwab, 2015; Martial, 2016). WNK1 knockdown in
primary glioma cells results in attenuated phosphorylation of
NKCC1, the ubiquitously expressed ion co-transporter, in
response to the chemotherapeutic drug temozolomide,

reducing glioma cell migration (Garzon-Muvdi et al., 2012).
In a further study, Köchl et al. described the mechanistic
connection between WNK1 and NKCC1 on migration of
T cells in vitro and in vivo. In that study, WNK1 was
shown to negatively regulate integrin-mediated adhesion
through inhibition of the small GTPase RAP1, and
positively regulate migration through promoting OSR1/
SPAK-mediated NKCC1 activation, proposed to account for
cell volume changes required for cell migration (Kochl et al.,
2016). The importance of NKCC1 in cancer cell invasion and
migration is supported by studies carried out in numerous
systems. In glioblastoma cells, NKCC1 silencing impedes
invasion and migration, accompanied by inhibition of
MMP-2 and MMP-9 (Sun et al., 2020). The invasive ability
of hepatocellular carcinoma was regulated by NKCC1 (Zhou
et al., 2017). We found that depletion of OSR1 also reduced
migration of breast cancer cells; however, inhibition of NKCC1
was not as effective as OSR1 depletion in slowing migration
(Jaykumar et al., 2021). Finally, NKCC1 was reported to
facilitate EMT of human gastric cancer cells through the
MAPK-JNK signaling pathway, resulting in enhanced
invasion and migration (Wang et al., 2021). WNK1
regulation of calcium homeostasis has been previously
described (Lee et al., 2004; Xu et al., 2005a; Liu et al.,
2015). A recent study has hinted that actions of WNK1 on
calcium homeostasis may participate in cancer progression.
WNK1 affects TRPC6 (canonical transient receptor potential
channel)-mediated Ca2+ influx, leading to migration in clear-
cell renal-cell carcinoma (Kim et al., 2019). These results

FIGURE 2 | Cancer metastasis and angiogenesis by WNK1. WNK1 is a key in the metastasis cascade via regulation of EMT-effectors and -transcription factors.
Created with BioRender.com.
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highlight the functional importance of ion homeostasis
regulated by WNK1 in cancer cell invasion and migration.

With-No-Lysine kinases1 and AXL
Phenotypic plasticity in several cancers is dependent on the
expression of the receptor tyrosine kinase AXL. In normal
mammary epithelial cells, AXL is a driver of stemness (Fujino
et al., 2017; Engelsen et al., 2020). Interestingly, several
characteristics of epithelial-mesenchymal transition overlap
with those in endothelial cells (Welch-Reardon et al., 2015).
Endothelial-expressed AXL is known to modulate angiogenesis
(Gallicchio et al., 2005; Sacha et al., 2005; Li et al., 2009). The
catalytic activity of AXL induces endothelial tube formation
in vitro and knockdown of AXL in breast cancer cells and in
endothelial cell co-culture impairs this process (Sacha et al., 2005;
Li et al., 2009). AXL was identified as a downstream effector of
TGF-β and modulates expression of TGF-β/SMAD-dependent
target genes involved in cell migration in hepatocellular
carcinoma (Bauer et al., 2012; Lee et al., 2014; Reichl et al.,
2015). Moreover, inhibition of AXL decreases autocrine TGF-β
signaling in hepatocellular carcinoma and impairs secretion of
pro-angiogenic factors in breast cancer cells which in turn affects
the function of endothelial cells in co-culture and in vivo (Reichl
et al., 2015; Tanaka and Siemann, 2019). Paracrine angiogenic
factors have also been shown to be expressed in endothelial cells,
suggestive of an autocrine signaling loop (Lee et al., 2007). In view
of these observations, we investigated the potential of an AXL and
WNK1 signaling collaboration in endothelial cells to regulate
endothelial cell migration and tube formation. We found that
inhibiting WNK1 decreased expression of the tyrosine kinase
AXL, apparently not due to a change in AXL mRNA (Jaykumar
et al., 2021).

AXL expression is associated with metastasis and poor
prognosis in a variety of tumor types including breast
cancer (Oh et al., 2011; Dang et al., 2015; Garrido-Castro
et al., 2019). BGB324 is a first-in-class AXL inhibitor,
currently in phase II clinical trials, exhibiting promising
therapeutic characteristics. It displays AXL-selective
antitumor and antimetastatic activity in murine models of
breast cancer (Garrido-Castro et al., 2019). AXL inhibition in
tumor cells decreases the secretion of pro-angiogenic factors
such as endothelin and VEGF-A and impairs functional
properties of endothelial cells in vivo, suggesting its
important role in the initiation of tumor angiogenesis
(Tanaka and Siemann, 2019). In our recent study, we
found elevated phospho-OSR1 in bone metastatic cells,
suggesting that increased WNK activity may be a feature of
breast cancers that can metastasize to multiple sites. We
showed that inhibition of WNK1 reduces tumor volume
and dispersion of metastatic cells in a mouse xenograft
model of metastatic breast cancer, in part, via a network
involving Slug and AXL (Jaykumar et al., 2021).
Interestingly, we previously reported that mRNAs encoding
these factors were also decreased upon knockdown of WNK1
in endothelial cells (Dbouk et al., 2014). Perhaps WNK1

knockdown diminishes these mRNAs in part via
suppression of AXL (Dang et al., 2015). The connection
revealed here between AXL and WNK1 raises the
possibility that WNK1 may be a therapeutic option in
other AXL-dependent tumor types as well. We also found
that inhibition of WNK1 via WNK463, had a more
pronounced effect than the AXL inhibitor to attenuate
migration in MDA-MB-231 cells. Yet, the combination of
AXL and WNK inhibitors was more effective at reducing
migration than inhibition of either alone (Jaykumar et al.,
2021). This observation warrants future studies examining the
combination of AXL and WNK inhibitors on tumor
progression and metastasis in animal models, which could
potentially inform future clinical trials (Figure 2).

CONCLUSION

In summary, we briefly highlight four points that may be
considered in future analyses of the actions of WNK1 and
other WNK family members in cancers. It should be clear that
WNK1 has related actions in angiogenesis and cancer. Howmany
of these related actions are shared by otherWNK family members
is not clear. The control WNK1 exerts over ion transport is a
significant factor in its actions in cancers but may be
overshadowed by its potential impact on cell phenotype. In
both endothelial cells and cancer cells, WNK1 has the capacity
to induce migration and enable transition towards a
mesenchymal phenotype (Figure 2). This occurs in certain
contexts, e.g., in endothelial cells during wound repair, but
what other triggers exist and what contexts determine when
these actions of WNK1 will overtake its homeostatic functions
are not established or yet recognized. We close with the question
why and when does WNK1 switch from being a homeostatic
housekeeper to instead promoting EMT.
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