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Abstract

Ectomycorrhizal fungi are ubiquitous in forest ecosystems, benefitting plants principally by increasing the uptake of water
and nutrients such as calcium from the soil. Previous work has demonstrated accumulation of crystallites in eucalypt
ectomycorrhizas, but detailed morphological and chemical characterization of these crystals has not been performed. In this
work, cross sections of acetic acid-treated and cleared ectomycorrhizal fragments were visualized by polarized light
microscopy to evaluate the location of crystals within cortical root cells. Ectomycorrhizal sections were also observed by
scanning electron microscopy (SEM) coupled with energy dispersive x-ray (EDS) microprobe analysis. The predominant
forms of crystals were crystal sand (granules) and concretions. Calcium, carbon and oxygen were detected by EDS as
constituent elements and similar elemental profiles were observed between both crystal morphologies. All analyzed
crystalline structures were characterized as calcium oxalate crystals. This is the first report of the stoichiometry and
morphology of crystals occurring in eucalypt ectomycorrhizas in tropical soils. The data corroborates the role of
ectomycorrhizae in the uptake and accumulation of calcium in the form of calcium oxalate crystals in hybrid eucalypt plants.
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Introduction

The occurrence of calcium oxalate crystals (CaC2O4 or CaOx)

has been observed in plants of several botanical families [1], and

they contribute a large portion of the total calcium of these plants.

CaOx deposits have been described in most tissues and organs as

either intracellular (usually associated with vacuoles of specialized

cells; idioblasts) or extracellular [1–4] deposits. The biological

function of CaOx crystals in plants is neither completely

understood nor characterized. Several functions have been

attributed to them, largely based upon the amount, distribution

and morphology of the crystals as well as the inherent

characteristics of the cells where they are produced [1]. Some

studies imply that CaOx may serve different biological functions

such as a calcium reservoir, deposit of secondary metabolites and

sequestration of potentially toxic metal ions [5,6], formation of

aerenchyma in aquatic plants [7], providing structural support [8],

or protection against herbivory by association with stinging

substances or proteolytic toxins [9–11].

Eucalyptus is the most important genus of exotic plants in

Brazilian planted forests, with great economic and environmental

significance [12]. Generally, the soils under eucalypt cultivation in

Brazil are highly weathered, with pH values below 5.5, an

Aluminum saturation of 90%, and a low content of organic matter

and limiting concentrations of Phosphorus, Nitrogen and Calcium

(Ca2+) [13–16]. Soil exchangeable calcium is often at or below

8 kg ha21 and insufficient to fulfil the plant demand [17]. Soil

microorganisms play an essential role in biochemical cycles and

contribute to edaphic homeostasis. In the current understanding

that biological and functional diversity is a crucial factor in

maintaining ecosystems [18] are included ectomycorrhizal fungi

associated with the roots, that benefit plants by increasing the

volume of the soil explored by roots, and thus the amount of

absorbed nutrients and water [19].

The presence of CaOx crystals in ectomycorrhizal hyphae is

limited to temperate soils containing high concentrations of

calcium [20–22]. In Brazil, the number of studies aiming at

evaluating the accumulation of calcium crystals in eucalypt

ectomycorrhizae is scarce [23]. However, the existing report has

suggested a paramount role of ectomycorrhizal fungi in supplying

Ca to eucalyptus in Brazilian soils poor in Ca, since putative CaOx

crystals have been shown to be predominantly present in

ectomycorrhizae rather than in non-mycorrhizal fine roots.

Understanding the morphochemical patterns of crystalline struc-

tures in Eucalyptus ectomycorrhizae can help generate new

information regarding the role of ectomycorrhizal fungi in Ca2+

uptake by plants. Therefore, the aim of this study was to evaluate

the location, morphology and chemical composition of crystals

present in eucalypt ectomycorrhizae.

Materials and Methods

The experiments were performed at Mycorrhizal Associations

Laboratory/BIOAGRO, Microbiology Department of Federal
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University of Viçosa (UFV). Analyses of Scanning Electron

Microscopy (SEM) and Energy Dispersive X-ray (EDS) were

performed at the Microscopy Center of the Federal University of

Minas Gerais. All samples were processed at the Center of

Microscopy and Microanalysis at UFV.

Characterization of Sampling Site
Samples were taken from within a 2.5 year old planted stand of

clonal E. grandis X E. urophylla hybrids located in the experimental

field of UFV (20u 469 27.399 S and 42u 519 36.299 W; elevation:

697 m). Ten soil cores (2.0 cm diameter, 20 cm depth) were

collected at random points within the study area, and the cores

were combined to form a composite sample. Physicochemical

analyses (Table 1) were performed according to routine methods.

Fine lateral roots colonized by ectomycorrhizal fungi were

collected from the 0–10 cm layer of soil around randomly selected

trees within the plantation. The soil was excavated and the roots

were collected with fine-tipped forceps and razor blades. Samples

were placed in a moist chamber and transported to the laboratory,

for analysis.

Ectomycorrhizal Eucalypt Preparation, Acid Digestion
and Image Processing

Ectomycorrhizal samples were washed in phosphate buffer,

pH 7.0, to remove soil particles adhered to the surface, and then

dehydrated in an ethanol series [10, 30, 50, 70 and 90% ethanol

(vol/vol)] for 10 min in each solution and finally kept in 95%

ethanol (vol/vol) for 12 h. Subsequently, part of the samples was

cleared in a 1.8% (vol/vol) sodium hypochlorite solution for 1 h.

The cleared samples containing crystals were treated with 5%

acetic acid, followed by three successive rinses in deionized water,

to remove calcium carbonates and phosphates before further

analyses [24]. The fragments were mounted on semi-permanent

slides with a glycerine:gelatin (1:1) fixative. Slides were viewed and

analyzed on an Olympus BX-50H microscope provided with

crossed polarizers and a digital image capture system (QColor3H
OlympusH). The obtained images were processed with QCaptureH
Suite Pro 6.0 software (Quantitative Imaging Corp., British

Columbia, Canada) and organized with Adobe Illustrator CS5

software (Adobe Systems Incorp., USA).

Ectomycorrhizae samples were mounted in Jung Tissue

Freezing MediumH solution and transversely sectioned at -25uC
(25–40 mm) using a Leica CM 1850H cryostat. The sections were

mounted on semi-permanent slides for microscopic observation.

Scanning Electron Microscopy and X-ray Microanalysis
Selected ectomycorrhizal fragments were fixed in 2.5%

glutaraldehyde in phosphate buffer 1 M, pH 6.8–7.0 (1:1) for

1 h, and then washed in 1 M phosphate buffer, pH 6.8–7.0 for

10 min., followed by dehydration through an ethanol series [10,

30, 50, 70, 90, 100, and 100% (vol/vol)] at 1 h per step. Samples

were CO2 critical-point dried (Balzers CPD 030), mounted on

Aluminum SEM stubs and sputter coated with ca. 15 nm Gold

(Balzers SCA 010). Samples were observed by scanning electron

microscope (Quanta 200 series FEG, FEITM), equipped with

Energy Dispersive X-Ray Analysis Pegasus integrated EDS, for

chemical analysis. The operating conditions were 10, 15 or 30 kV,

750 mA, and scanning time of 30 s.

Results

Distribution and Morphology of Calcium Crystals in
Ectomycorrhizal Eucalypts

Polarized light microscopy reveals more dense accumulations of

crystals associated with ectomycorrhizae compared to non-

colonized fine lateral roots of E. grandis X E. urophylla hybrids

(Figure 1a). Transverse sections of ectomycorrhizae revealed that

the crystals are formed within root cortical parenchyma cells, and

may occupy considerable intracellular volume (Figure 1b).

The acetic acid treatment retained all crystal types observed,

indicating calcium oxalate. Two different morphologies were

found to be dominant: granules, also known as crystal sand (CS)

and spherical crystals, recently named as concretions (Figures. 1c,

1d, 1e and 1f). CS accumulations are easily visualized by polarized

light microscopy as bright dots associated with the roots (Figures 1c

and 1d). These crystals had sizes ranging from 3 to 8 mm. In

contrast, concretions were characterized as large spherical crystals

(average size 20 mm) and it could be erroneously classified as

druses when observed using crossed polarizers (Figures 1e and 1f).

However, druses usually assumes a globular cluster composed of

needle shaped crystals, and concretions, despite showing an

irregular surface, seem to be comprised of many compacted mini-

crystals or CS’s when visualized by scanning electron microscopy

(SEM).

Table 1. Physicochemical properties of the soil sampled in
planting area of Eucalyptus grandis X E. urophylla hybrid.

Property Unit Value

pH– H2O (1:2,5) 5.30

P mg kg21 (1) 41.70

K mg kg21 (1) 97.00

Ca2+ cmolc dm
23 (1) 1.20

Mg2+ cmolc dm
23 (2) 0.50

Al3+ cmolc dm
23 (2) 0.20

H+Al cmolc dm
23 (3) 4.95

SEB cmolc dm
23 1.95

ECEC cmolc dm
23 2.15

CEC(T) cmolc dm
23 6.90

BS % 28.00

ASI % 9.00

MO % (4) 3.30

P - remaining mg L21 (5) 30.60

Zn mg kg21 (1) 11.10

Fe mg kg21 (1) 54.20

Mn mg kg21 (1) 62.90

Cu mg kg21 (1) 1.20

B mg kg21 (6) 0.90

Sand %(7) 59.00

Silt %(7) 18.00

Clay %(7) 23.00

Textural class Sand-clay loam

(1)Extracted with Mehlich-1.
(2)Extracted with KCl 1 mol L21.
(3)Extracted with calcium acetate 0.5 mol L21, pH 7.0.
(4)Walkey & Black method.
(5)P concentration in solution after 1 h shaking with a 60 mg L21 P
(1:10 soil:solution ratio) [51].
(6)Extracted with hot water.
(7)Pipet method. SEB = Sum of Exchangeable Bases. ECEC - Effective Cation-
Exchange Capacity. CEC (T) - Cation-Exchange Capacity in pH 7.,0. BS = Base
Saturation. ASI = Aluminum Saturation Index.
doi:10.1371/journal.pone.0067685.t001

CaOx in Eucalypt Ectomycorrhizae
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Figure 1. Polarized light micrographs of eucalypt ectomycorrhizae after clarification. (a) Ectomycorrhizal and non-colonized fine lateral
roots of E. grandis X E. urophilla hybrids. Calcium oxalate crystals (CaOx) in ectomycorrhizae (EC), and root hairs (RH) in non-colonized fine lateral
roots. Scale bar = 100 mm. (b) Transverse section of ectomycorrhizae. Root cortex (C), root epidermis (RE), mycorrhizal mantle (M) and calcium oxalate
crystal (CaOx) within a root cortex cell. Scale bar = 20 mm. (c–d) Crystal sand (CS) calcium oxalate in ectomycorrhizal fragments (EC). Scale bar = 50 mm.
(e–f) Concretion (Con) calcium oxalate crystal in ectomycorrhizal fragments (EC). Scale bar = 50 and 10 mm, respectively.
doi:10.1371/journal.pone.0067685.g001
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SEM-EDS: Details and Composition of Concretions and
Crystal Sand

SEM analyses allowed visualization of the detailed crystal

morphology and confirmed the classification as CS and concre-

tions by light microscopy (Fig. 2a and 2b). The x-ray elemental

analysis of these crystals showed similar profile for both crystalline

types, identifying Calcium, Oxygen and Carbon, confirming a

likely calcium oxalate stoichiometry (Figures 2c, 2d, 2e and 2f).

Discussion

Our results corroborate previous observations that ectomycor-

rhizal fungi associated with eucalypt fine lateral roots induce

accumulation of CaOx crystals in the host plant root cortex [23].

High densities of root hairs were observed in non-colonized fine

lateral roots in contrast to ectomycorrhizae-associated roots. The

ectomycorrhizal association inhibits the formation of root hairs,

which are functionally replaced by fungal hyphae [25]. The

inhibitory process involves fungal secretion of indolic compounds

such as indole-3-acetic acid and hypaphorine, responsible for root

morphogenesis regulation [25]. Generally, hypaphorine leads to

root plasma membrane depolarization [26], which should block

the elongation of root hairs by decreasing the calcium influx into

the tip. However, there are reports of calcium gradient attenuation

in root hair cells of E. globulus, after treatment with hypaphorine

[27]. Therefore, the mechanism of root hair growth inhibition, via

mycobiont secreted hypaphorine action, directly influence the flow

of Ca2+ into root cells.

Previous research regarding eucalypt ectomycorrhizae in

calcium-rich soils has identified calcium oxalate crystal crusts on

the mantle surface, resultant from Ca2+ complexion with oxalic

acid produced by the fungi [21,28]. However, most Brazilian soils

used for eucalyptus cultivation are low in calcium content, and

perhaps for this reason CaOx crusts were not observed in the

mantle, and were only observed within cortical cells in this study.

CaOx crystals may show widespread occurrence in various plant

organs including roots, stems, leaves, fruits and seeds [29,30].

Plants exhibit a precise pattern of accumulation of crystals

reflecting the multiple levels of control of the crystallization

process [31], and its particular distribution and morphology is

often used in phylogenetic systematics [32]. It has been suggested

that the crystals do not result from random precipitation, where

levels of calcium and oxalate are appropriate, but precipitate in

certain cells that becomes specialized to accumulate these

compounds, called idioblasts [5,33]. However, crystals may also

form less frequently within parenchyma cells or other non-

specialized cells [34], as we identified in this study. Crystal

accumulation within endosperm of Umbelliferae plants [35] and

leaf epidermis of Fabaceae [36] has also been observed. CaOx

crystals in the xylem and associated parenchyma cells of

Chamelaucium uncinatum flowers, a species belonging to the same

family as the genus Eucalyptus (Myrtaceae) have also been reported

[34].

Calcium crystals adopt in a wide range of morphologies [29,33].

In plants, the most commonly found are prismatic, acicular, crystal

sand (granule) or druse crystals [1]. In eucalypt ectomycorrhizae,

two crystal forms have been identified by polarized light

microscopy: crystal sand, which is characterized as amorphous

crystals of uniform size; and druse, defined as clusters of needle-

shape crystals forming globular structures [23]. This study,

however, shows that this crystalline structure was misclassified as

druse. Using SEM we were able to obtain more detailed

information regarding the crystal morphology, identifying concre-

tions. This crystal form was recently described in some Mitragyna

species [24] with probable taxonomic significance in this genus,

and previous misidentification of the class of cluster crystals (i.e.

druses) was also reported. Similar crystals were observed in

Cactaceae and classified as druses in the dihydrate state

(Weddellite, CaC2O4?2H2O), while druses formed by needle-

shaped crystals as monohydrate (Whewellite, CaC2O4?H2O) [37].

Different plant species typically have varying patterns of crystal

morphogenesis that may reflect gene regulation [33]. Franceschi

and Nakata [1] reported the combination of genetic and

environmental factors was responsible for defining the quantity,

shape, size and function of the crystals inside the plants.

Differences in nucleation factors, crystal state of hydration,

calcium/oxalate ratio, and contaminants can also influence crystal

morphology [38,39]. The biological function of CaOx crystals in

plants is poorly understood and the observation of concretions

presents a new problem for the understanding of crystal

development [24].

The shared stoichiometry of the crystal sands and concretions

identified in the eucalypts studied here suggests a common

development process. Individual plant species often form only one

type of CaOX crystal. This supports the genetic control hypothesis

of the crystallization process [1]. Some studies have shown that

different crystals can form within the same plant, but this usually

occurs in different organs or tissues, or when the plant is subjected

to different conditions [40,41]. High concentrations of calcium

induce an increase in the number and size of the crystals, while

Ca-deficiency promotes crystal dissolution [6,42]. Early reports

describe the disappearance of CaOx crystals from plants

experiencing Ca-deficiency, suggesting remobilization to support

growth [43,44]. However, this has not been verified for

ectomycorrhizal CaOx.

Brazilian soils under eucalypt plantations are characteristically

low in calcium [17]. Ectomycorrhizal fungi can increase the

uptake and translocation of nutrients to the root of the host plant,

and this is probably the reason for the elevated accumulation of

crystals in roots associated with mycorrhizal fungi. In plants, the

Ca2+ transport requires strict control, since it plays important roles

in cell signaling and metabolism [45,46]. This control may involve

H+/Ca2+ and Ca-ATPase antiporters, transporting Ca2+ to the

inner of cytoplasmic vacuoles, endoplasmic reticulum, mitochon-

dria, plastids and cell wall, where calcium can be stored [47–49].

However, these homeostatic mechanisms are limited and when

overcome can cause damages [42]. Calcium oxalate crystal

formation may act as an effective system for sequestering calcium

and appears very common in plants [33,42,50].

This is the first report concerning the detailed morphology and

chemical composition of prevalent crystalline structures in

eucalypt ectomycorrhizae in tropical soils. Our results support

the proposed role of ectomycorrhizal fungi in the acquisition and

translocation of calcium into eucalypt plants, and its strict control

being stored as crystals, even in soils with low calcium content

conditions. However, the factors and circumstances that modulate

the biomineralization process in ectomycorrhizae remain un-

known, and further research focused on biochemical and

physiological data acquisition is needed.

Conclusions
Ectomycorrhizae associated with E. grandis X E. urophylla hybrids

accumulate crystals of calcium oxalate within cells of the root

cortex. The predominant crystal morphologies are granules and

concretions (globular crystals formed by agglomeration of gran-

ules). This is the first report of the detailed morphology and

chemical composition of crystalline structures in eucalypt ectomy-

corrhizae.

CaOx in Eucalypt Ectomycorrhizae
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Figure 2. Transverse sections of ectomycorrhizae associated with E. grandis X E. urophilla hybrids analyzed by SEM. (a) Two calcium
oxalate concretions (arrows) located within cortical root cells. Scale bar = 50 mm. (b) Single crystal sand calcium oxalate (arrow) located within cortical
root cell. Scale bar = 2 mm. (c) Single concretion analysed by SEM (arrow) showing its irregular surface. Scale bar = 10 mm. (d) Elemental spectrum of
Figure 2c (concretion) showing carbon, oxygen and calcium peaks. (e) Single crystal sand analysed by SEM (arrow). Scale bar = 5 mm. (f) Elemental
spectrum of Figure 2e (crystal sand) showing carbon, oxygen and calcium peaks.
doi:10.1371/journal.pone.0067685.g002
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