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Abstract: Despite its scarcity in terrestrial life, helium effects on microstructure evolution and
thermo-mechanical properties can have a significant impact on the operation and lifetime of
applications, including: advanced structural steels in fast fission reactors, plasma facing and
structural materials in fusion devices, spallation neutron target designs, energetic alpha emissions
in actinides, helium precipitation in tritium-containing materials, and nuclear waste materials.
The small size of a helium atom combined with its near insolubility in almost every solid makes
the helium–solid interaction extremely complex over multiple length and time scales. This Special
Issue, “Radiation Damage in Materials—Helium Effects”, contains review articles and full-length
papers on new irradiation material research activities and novel material ideas using experimental
and/or modeling approaches. These studies elucidate the interactions of helium with various extreme
environments and tailored nanostructures, as well as their impact on microstructural evolution and
material properties.
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Understanding radiation damage effects in materials, used in various irradiation environments,
has been an ongoing challenge since the Manhattan Project, more than 75 years ago. The complexity
stems from the fundamental particle–solid interactions and the subsequent damage recovery dynamics
after collision cascades, which involves a range of both spatial (Å to m) and temporal (ps to decades)
length scales. Adding to this complexity are the transmuted impurities that are unavoidable from
accompanying nuclear processes, such as (neutron, alpha) reactions and their interactions with both
intrinsic and extrinsic defects through damage recovery and defect evolution processes [1]. Helium
(He) is one such impurity that plays an important and unique role in controlling the microstructure
and properties of materials. Although abundant in the universe, He is a rare terrestrial resource
with even greater scarcity in solid matter due in part to its virtually zero solubility in any material
systems [2]. The ultra-low solubility forces He atoms to self-precipitate into small He bubbles that
become nucleation sites for further void growth under radiation induced vacancy supersaturations,
resulting in material swelling and high temperature He embrittlement, as well as surface blistering
under low energy and high flux He bombardment at elevated temperatures. Because it is the large
voids (not the small bubbles) that contribute to the detrimental effects, two general approaches have
been adopted over the years to mitigate the bubble to void transition [3,4]:

(1) Maximize the critical radius at which bubbles transform into voids, for example, by reducing the
vacancy supersaturation; and
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(2) Increase the number of stable bubbles by maximizing the number of their nucleation sites
(e.g., as in nanoferritic alloys [5,6]), which reduces the He flux to individual bubbles for any given
He implantation rate.

Obviously, both approaches do not prevent the formation and eventual linkup of voids, but merely
delay it with a hope that other degradation mechanisms become life-limiting. More recently, a totally
different approach was proposed, in which carefully engineered semicoherent metal nanolayers were
found to alter the fundamental growth trajectory of He-precipitates from the traditional equiaxed
growth of 3D nanobubbles into a preferential formation of elongated 1D nanochannels [7]. These 1D
He nanochannels that once interconnected to form a 3D network have a potential to outgas He outside
of the material in Operando when the material is continuously being implanted with He particles,
and thus, effectively reduce the net He particle flux received by the material. During these studies,
He implantation has emerged as a useful tool for understanding complex and diverse environments,
ranging from solar winds in space [8] to ‘nanofuzz’ formation in fusion energy systems [9].

This Special Issue, “Radiation Damage in Materials—Helium Effects”, includes three review articles
and nine full length papers (12 publications in total) on new irradiation material research activities
and novel material ideas focused on understanding He effects on microstructure evolution and the
subsequent properties. The research, originating from 24 different institutions in five different countries
(USA, China, UK, Romania, and Japan), utilizes both experimental and modeling approaches to explore
the complex interaction of He in a wide range of metallic-based microstructures and compositions
(10 in total). These compositions included four ferrous-based systems (Fe, Fe/SiOC, FeCrNi, and
Fe12Cr), three copper-based systems (Cu, Cu/V, and Cu/Nb), two tungsten-based systems (W and
W-TiC), and palladium (Pd). The impact of the research ranged from fundamental shock wave physics
questions such as the role of He impurity on ejecta production in dynamic materials to elucidating the
nuclear engineering candidacy of certain alloys and processing routes for advanced fission and fusion
reactor concepts.

The Special Issue starts with two modeling papers exploring the fundamental nuances of
helium–solid interactions, which in turn permit a greater understanding of the physics and the
development of more reliable models predicting the response of He-containing materials. The first
article by the team at Los Alamos reviews the rapid developments in the Accelerated Molecular
Dynamic (AMD) simulations as applied to the interaction of He in W, which is important for the
success of current and future applications in the area of magnetic confinement fusion [10]. This is
followed up by a detailed MD simulation by Xu et al., that explores the role of He generation on both
grain boundary stability and crack growth in BCC-Fe. This modeling effort also takes advantage of
recent advancements in computational code to produce simulated X-Ray Diffraction (XRD) patterns
that permit rapid experimental validation [11].

The following six papers nicely demonstrate the complex He defects formed depending greatly
on the underlying microstructure and the nuances of the radiation environment. The current
understanding of He evolution in solids is well presented in the review “Radiation-Induced Helium
Bubbles in Metals” [12]. The nuanced importance of composition and nanostructure for both fusion
and Generation IV fission relevant materials are highlighted in the papers by El Atwani et al. exploring
equiaxed nanocrystalline W and ultrafine grained W-TiC Alloy [13], by Kim et al.’s study of dual-phase
12Cr oxide-dispersion-strengthened alloy [14], and by Zhang et al. examining swelling and He bubble
morphology in a cryogenically treated FeCrNi alloy with martensitic transformation and reversion
after He implantation [15]. Two studies in model metal systems (Cu and Pd) noted the impact of
radiation environments by comparing various sequential and concurrent heavy ion irradiation and He
implantation conditions and by controlling the irradiation temperature. The study on nanocrystalline
Cu by the team at Purdue University [16] suggests that He bubbles at grain boundaries and grain
interiors may retard grain coarsening. The work on Pd hydriding behavior by the Sandia and University
of Huddersfield team [17] utilized hydrogen over-pressure during in situ TEM observation in order
to effectively mimic tritium-decay-induced He-3 precipitates in Pd. In both model and application
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alloys, it is clear that the evolution of He can vary greatly as a function of alloy composition and
microstructure, as well as the details of the radiation environment.

Utilizing the understanding of He evolution at the time, it was proposed and demonstrated in
Cu/Nb in 2005 that nanolayered materials with tailored layer thickness and interface structures could
greatly decrease the large scale and catastrophic failure in He implanted metals [18]. In the last 15 years,
the type of interfaces and layer thickness that have been He implanted has exponentially expanded with
a range of engineered microstructures. These research activities are fortunately reviewed in “Interface
Effects on He Ion Irradiation in Nanostructured Materials” [19]. This field continues to grow with new
results from Chen et al. showing a clever triple layer approach to demonstrate the difference between
Cu/V and Cu/Nb interfaces vacancy sink efficiency [20]. Pushing the community away from just
metallic nanolayers, the team from the University of Nebraska and Texas A&M University has explored
the He evolution in a ceramic/metal (SiOC/Crystalline Fe) nanolayer system [21]. These combined
studies show the rapid growth in the study of nanolayers for radiation tolerance and the exciting new
directions that are still left to be explored.

The final paper in this Special Issue by S. Fensin et al. deviated somewhat from the traditional He
effects in materials, where He-induced defects affect microstructural evolution, which further impacts
material properties and performance. Instead, this paper used a clever experimental design, utilizing
the Richtmyer–Meshkov Instability (RMI) technique to determine “The Role of Helium on Ejecta
Production in Copper” [22] and demonstrated a new area of interest in dynamic materials research,
where He-doped microstructures are found to directly influence the surface material ejection behavior
under shock wave extreme conditions.

Taken together, these studies show a vibrant and still evolving simulation and experimental
research community exploring the unique impact He can have on solid matrixes. Despite the scarcity of
He on earth, we expect studies exploring the interaction of He in matter will increase as the accessibility
of He implantation capabilities via the He Ion Microscope (HIM) [23] becomes a common commercial
tool at most research institutes, while simultaneously, the demand for such studies from advanced
fission and fusion nuclear reactor, space exploration, actinide research, and nuclear waste communities
continues to increase.
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