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Seattle, WA, United States of America, 6 University of Maryland Center for Vaccine Development, Baltimore,

MD, United States of America, 7 Department of Biostatistics, University of Washington, Seattle, WA, United

States of America

* gpotter@emmes.com

Abstract

We present the first analysis of face-to-face contact network data from Niakhar, Senegal.

Participants in a cluster-randomized influenza vaccine trial were interviewed about their con-

tact patterns when they reported symptoms during their weekly household surveillance visit.

We employ a negative binomial model to estimate effects of covariates on contact degree.

We estimate the mean contact degree for asymptomatic Niakhar residents to be 16.5 (95%

C.I. 14.3, 18.7) in the morning and 14.8 in the afternoon (95% C.I. 12.7, 16.9). We estimate

that symptomatic people make 10% fewer contacts than asymptomatic people (95% C.I.

5%, 16%; p = 0.006), and those aged 0-5 make 33% fewer contacts than adults (95% C.I.

29%, 37%; p < 0.001). By explicitly modelling the partial rounding pattern observed in our

data, we make inference for both the underlying (true) distribution of contacts as well as for

the reported distribution. We created an estimator for homophily by compound (household)

membership and estimate that 48% of contacts by symptomatic people are made to their

own compound members in the morning (95% CI, 45%, 52%) and 60% in the afternoon/

evening (95% CI, 56%, 64%). We did not find a significant effect of symptom status on com-

pound homophily. We compare our findings to those from other countries and make design

recommendations for future surveys.

1 Introduction

Social contacts occurring in close proximity are transmission pathways for respiratory infec-

tions such as influenza [1]. These contacts form social networks over which the disease may

spread, and estimation of network structures can help improve estimates of transmission

parameters, predict disease spread, and refine social distancing strategies. Large-scale simula-

tion models incorporating location-based social mixing patterns have been used to compare

effectiveness of containment strategies for emerging pandemics [2–11]. Smaller-scale studies

have incorporated more detailed network structure from social contact data collected in
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schools to assess the relevance of network structures to the spread of H1N1 pandemic in rural

Pennsylvania [12] and to compare containment and and mitigation strategies for a pandemic

[13, 14]. Effort is ongoing to collect social network data in multiple countries, identify the key

network structures driving transmission, and incorporate these structures efficiently into sim-

ulation models as well as estimation methods. The relative roles of fomite transmission, large

droplet transmission, and small droplet transmission are not fully understood; we focus in this

paper on networks characterized by face-to-face interactions, which form pathways for large

droplet transmission networks [15]. Analogous networks may be modelled for the other trans-

mission routes.

One such network structure is homophily, the tendency to associate with others with simi-

lar characteristics [16]. The POLYMOD study measured network properties of eight European

countries [17] and produced mixing matrices capturing age-based homophily as well as esti-

mates of cross-generational contact patterns. These mixing matrices have been used to param-

etrize epidemiologic models of pertussis [18], to model the spread of norovirus gastroenteritis

in Berlin [19], to estimate the impact of school closure on the transmission of close contact

infections [20], and to predict spread of the H1N1 pandemic and compare effectiveness of vac-

cination strategies [21]. Furthermore, detailed census and demographic data have been used to

create synthetic mixing matrices for 26 European countries to discuss how these social factors

relate to epidemic patterns in the different countries [22]. In the POLYMOD study, a “contact”

was defined as a two-way conversation of at least three words in the same location and/or a

physical contact (such as a kiss or handshake). The survey analyzed in this paper defined “con-

tact” as speaking with a person in the same location. If two people had conversations in three

different locations, then three contacts were recorded.

Another key network property is the degree distribution, where the degree of a person is

the number of contacts a person makes. Researchers have used analytic methods as well as sim-

ulation studies to demonstrate that degree distribution is an important factor in predicting the

probability of an epidemic as well as the epidemic curve [23–25]. Measuring heterogeneity in

degree helps assess the impact of “super-spreaders”, individuals who make large numbers of

contacts and are important both for transmission and for targeted intervention strategies [26–

28].

There has recently been a large effort to measure face-to-face social contact data in a variety

of cultures and contexts. Such data may be collected by paper diaries, surveys, interviews, and/

or electronic sensor data. The diary approach has been applied in multiple European countries

[17, 29], Zimbabwe [30], Kenya [31], South Africa [32], Vietnam [33], Taiwan [34], and China

[35]. Other studies have used surveys or interviews to collect data in the Netherlands and Thai-

land [36], Peru [37], Australia [38], and the United Kingdom [39]. Finally, electronic sensor

data measuring close interactions has been collected in schools, workplaces, and in households

[40–45] There are also efforts to collect combinations of survey data and electronic sensor data

to obtain a more complete picture and to compare the different collection methods, on both

small and large scales [46–49].

This study presents results from a social contact survey that was administered by in-person

interviews in conjunction with a cluster-randomized influenza vaccine trial in Niakhar, Sene-

gal. This is the first paper, to our knowledge, analyzing data from face-to-face contact networks

in Senegal. We estimate key properties of the social network, including the degree distribution,

homophily based on compound membership, and the location distribution of contacts. We

compare our estimated network structures to those from networks analyzed in other countries

and make recommendations for survey design.
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2 Data

The Institut de Recherche pour le Développement (IRD) administered a brief contact survey

in conjunction with an influenza vaccine trial conducted from 2009-2010 in Niakhar, Senegal,

a region including 30 villages with approximately 40,000 residents at the start of the study. In

this cluster-randomized trial, ten villages were assigned to receive an influenza vaccine cam-

paign for children age 6 months to 10 years. Another ten villages received a similar vaccination

campaign for children, but received inactivated poliovirus vaccine as a control vaccine. The

remaining ten villages in the area did not receive a treatment program. In the twenty treated

villages, the study staff made weekly surveillance visits to compounds. (A compound is a resi-

dence for an extended family, which may include multiple buildings housing different nuclear

families; compounds form key locations for dense social interaction.) During these visits, all

consenting compound members were asked whether they had experienced any influenza-asso-

ciated symptoms (feverish, cough, sore throat, nasal congestion, or rhinorrhea) in the previous

seven days and asked the onset date of symptoms. Those who reported symptoms received an

influenza test and also responded to a brief social contact survey about their travel patterns

and social contacts in the previous three days. Patients presenting to three health posts in the

Niakhar region with influenza symptoms were surveyed as well. As such, this passive surveil-

lance covered the entire region of 30 villages. This study, ClinicalTrials.gov NCT00893906, is

closed, and the primary results for the trial have been published [50].

The form used to conduct the social contact survey is included in the supporting informa-

tion (S1 Appendix). In this survey, respondents reported the number of people they contacted

in their own compound on both the morning and the evening of the survey day. Next, they

were asked whether they had visited a list of twelve geographic locations on the survey day,

including up to five (non-home) compounds, a field, market, mosque/church, and others. For

each location that was visited, respondents reported the time of day (AM, PM, or both) and

the number of people contacted in that location. The same information was collected for the

preceding two days. For children too young to respond to the survey, the questions were

answered by a parent or guardian. This was left to interviewer discretion rather than defining

an age cutoff. For this analysis, the number of contacts a participant made during a given time

interval was calculated by summing reported numbers of contacts across locations that were

visited.

Contact data were collected only from participants who reported they had experienced

symptoms in the past seven days. However, respondents whose symptoms began on the survey

date reported contact patterns for the previous two days, so provide some information about

contact behavior while people are asymptomatic. Those whose symptoms began the day before

the interview date gave contact information from one asymptomatic day and two symptomatic

days. The incubation period of influenza is 1–4 days [51], so asymptomatic respondents may

have been infectious.

Respondents were identified by their demographic surveillance system identification num-

ber. This number links all residents in the Niakhar region (including those who never reported

symptoms) to a demographic database compiled by the IRD via quarterly censuses. The demo-

graphic information includes sex, age, ethnicity, and unique compound identification number,

which allows calculation of compound size for each participant.

Ethics approval was obtained from the National Ethics Committee for Health Research

(Senegal Ministry of Health and Social Welfare) and Western Institutional Review Board. The

study was conducted in accordance with the principles of the Declaration of Helsinki (2008)

and in compliance with Good Clinical Practice guidelines. Written consent was obtained for

collection of the symptom and contact data.
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3 Methods

In this section, we describe methods to characterize the following properties of the face-to-face

social contact network:

1. The degree distribution, where the degree of a person is the number of contacts he/she

makes (Section 3.1)

2. Homophily in compound membership (Section 3.3)

3. The location distribution of contacts (Section 3.4)

We discuss the impact of missing data on our estimates and describe the multiple imputa-

tion method we use to reduce bias in Section 3.2.

We restrict our analysis to surveys collected over the course of six months: August 1, 2009

to February 1, 2010, assuming the contact process is fairly constant over this time. During this

time period, contact surveys were submitted for 77% of symptom reports. For participants

who were ill multiple times during this period (and so submitted multiple surveys), we analyze

the first submitted contact survey to reduce dependency in the data. A total of 3,758 surveys

were included in our analysis.

Contacts that occurred on the day of the survey are subject to truncation bias, since the

interview occurred before the day was over. Either AM or PM was recorded for interview

time, but the exact time was not recorded, making it difficult to adjust for this truncation

bias, particularly because the majority (97%) of interviews occurred in the morning. For this

reason, we focus our analysis on contacts reported during the two days prior to the survey

date.

3.1 Modelling the degree distribution

The survey asked respondents to round reported numbers of contacts to the nearest multiple

of five, but not everyone did. The result is an observed degree distribution with spikes at multi-

ples of five, but additional mass at other non-zero values as well (Fig 1). We create a mixture

model to adjust for this feature of the data, which has been referred to as “heaping” or “coars-

ening” [52, 53]. For simplicity, we first describe our model for degrees for a single time inter-

val, ensuring independent errors; we then expand our model to include multiple time

intervals.

Let C denote the actual number of contacts, and let Y denote the reported number. We

assume that the probability of rounding may differ when C< 5 and when C> 5, and that no

positive numbers were rounded to zero. As such, we are assuming that respondents would be

disinclined to report zero contacts when they actually made one or two. Define α1 = P(Y = 5|C
2 {1, 2, 3, 4}), and define α2 to be the probability of rounding to the nearest multiple of 5 when

C> 5. Then our assumptions imply that

PðY ¼ 0Þ ¼ PðC ¼ 0Þ

PðY ¼ kÞ ¼ ð1 � a1ÞPðC ¼ kÞ; for k 2 f1; 2; 3; 4g

PðY ¼ 5Þ ¼ a1

X4

k¼1

PðC ¼ kÞ þ PðC ¼ 5Þ þ a2ðPðC ¼ 6Þ þ PðC ¼ 7ÞÞ

PðY ¼ kÞ ¼ ð1 � a2ÞPðC ¼ kÞ;
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when k> 5 and k is not a multiple of 5, and

PðY ¼ kÞ ¼ PðC ¼ kÞ þ a2

X

k2fk� 2;k� 1;kþ1;kþ2g

PðC ¼ kÞ;

when k> 5 and k is a multiple of 5.

We assume that C follows a negative binomial distribution with unknown parameters μ
and r. By substituting the negative binomial probability mass function into the above formulas,

we obtain the likelihood function for the observed counts of contacts. We maximize the likeli-

hood function using the optim function with the Nelder-Mead method in R to obtain maxi-

mum likelihood estimates for α1, α2, μ, and r [54].

We then expanded the negative binomial model to depend on covariates and include infor-

mation from four different time intervals for each participant: the morning and afternoon/

evening of the day before the survey and the morning and afternoon/evening of two days

before the survey. To do so, we define the mean parameter to be a log-linear combination of

covariate effects, including sex, categorized compound size, categorized age, symptom status,

time of day (morning or afternoon/evening), and day relative to the survey day. Using 1[condi-

tion] to represent an indicator variable taking the value 1 when a specified condition is met and

Fig 1. The observed degree distribution for the morning the day before the survey. The spikes result from rounding

to multiples of five.

https://doi.org/10.1371/journal.pone.0220443.g001
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0 when not, we specify the relationship between the mean degree and predictors as follows:

logðmÞ ¼ b0 þ b11½symptomatic� þ b21½6�compound size�25�

þb31½compound size>25� þ b41½male� þ b51½0�age�5�

þb61½6�age�11� þ b71½12�age�16�

þb81½Contact occurred in afternoon=evening�

þb91½Contact occurred two days before survey�

ð1Þ

The maximum likelihood estimation approach is extended to estimate the covariate

effects as well as the two rounding probabilities and the dispersion parameter. The error

terms can no longer be assumed independent because we are including up to four degree

observations per participant, so we fit robust “sandwich” standard errors. The jacobian
function in the numDeriv package and the optim function in R (which optionally outputs

the Hessian) were used to calculate the inner and outer matrices, respectively, for the sand-

wich variance [54, 55].

3.2 Multiple imputation for missing degree

The degree of an individual for a given time interval was calculated by summing the number

of contacts reported in each location for all visited locations together with at-home contacts

reported for that time interval. Each respondent was asked whether they had visited each of

twelve locations, how many contacts were made there, and the time of the visit. If a respondent

reported that she visited a location, but chose not to report the time or the number of contacts,

then the degree is missing for that person. Since people visiting multiple locations are likely to

make higher numbers of contacts outside the home, a complete-case analysis tends to underes-

timate numbers of contacts outside the home. This can be seen from Fig A in S2 Appendix.

Furthermore, people who travelled outside the home tended to make higher numbers of con-

tacts than those who stayed home (mean of 18.9 versus 8.8 on the morning before the survey

day, for example), so the estimate of mean degree is biased downwards in a complete-case

analysis.

We used multiple imputation to adjust for the bias in location distribution of contacts. The

process imputes multiple missing variables before they are combined to calculate the degree

for each individual. For outside-home locations, up to three variables may be missing: the

response to “Was this location visited?”, the time of day (AM or PM) the location was visited,

and the number of people contacted at that location. The responses to whether the location

was visited were imputed based on a log binomial regression model with location type, symp-

tom status, and age category as predictors, stratified on day relative to the survey day. Missing

times were imputed by sampling from the distribution of non-missing times for that location

type. To impute missing numbers of contacts for non-home locations, we fit a negative bino-

mial distribution to the reported contact numbers, predicting the number contacted by the

location, symptom status, time of day, and age category. For at-home contacts, we predicted

number contacted based on symptom status, time of day, day relative to survey day, age cate-

gory, and compound size. We are relying on the missing at random assumption that the covar-

iates we are using to predict our imputed values are sufficient to explain differences between

the observed and missing data [56]. Both types of reports were subject to the rounding issue

noted above, so in both cases, the negative binomial model used for imputation was extended

as described above to account for rounding. Otherwise, the imputed data would be smoother

than the actual data and would bias our final estimates of the rounding probabilities

downwards.
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We created twenty imputed data sets by simulating from the predicted distributions and

simulating the rounding process. We combined the point estimates and variances from the

twenty data sets with MIcombine in the mitools package in R [57]. This package imple-

ments standard rules for multiple imputation to combine the twenty estimates and variances

into a single estimate and variance for each parameter of interest [58]. The variance estimates

using this technique combine uncertainty arising from the sampling process with that intro-

duced by the imputation process. We report results based on the multiply imputed data, and

we include our complete case analysis in S2 Appendix.

We then used the parameter estimates from our model to estimate the mean degree for the

population. This was done separately for symptomatic and asymptomatic people, and sepa-

rately for morning and afternoon. While the model coefficients in Eq 1 permit calculation of

mean degree for any possible subgroup defined by the covariates, such mean degree values do

not necessarily apply to the population of Niakhar because our sample was not representative.

Therefore, we used a weighting procedure to adjust for the differences in age distribution

between the survey sample and the Niakhar population. To do so, we first used the model coef-

ficients to calculate the mean degree for all possible subgroups defined by combinations of the

age, sex, and compound size categories. For example, the mean degree in the morning for

asympomatic 0 − 5 year old females living in compounds with 6 − 25 members was calculated

as eb0þb2þb5 based on the coefficients in Eq 1. Mean degrees for other subcategories were calcu-

lated similarly. Next, these were combined in a weighted average, where the weights reflect the

age, sex, and compound size distributions of the Niakhar population. The estimates were cal-

culated for the day before the survey day since the coefficient for two days before was nonsig-

nificant. The mean degree estimates were calculated for each of the 20 imputed data sets, and

variances were calculated by the delta method. The 20 estimates and variances were then com-

bined using rules for multiple imputation with MIcombine [57].

3.3 Estimating compound homophily

Homophily is the tendency to contact others with similar characteristics [16], and has also

been referred to as assortativity in the literature [59]. In this paper, we define homophily by

compound membership to be the proportion of contacts which occur to one’s own compound

members. While respondents did not report whether people they contacted were compound

members or not, they did record numbers of contacts occurring in their own compound (i.e.,

at home).

We could estimate homophily by assuming that contacts within the respondent’s com-

pound were exclusively to his own compound members. This would be assuming that (1) com-

pound members are only contacted at home and (2) no one else is contacted at home. Yet 17%

of morning and 14% of afternoon contacts occurred while the respondent was visiting another

compound, likely to the residents of that compound, suggesting that the second assumption is

too strong. By relaxing this assumption and by assuming that contacts reported in a visited

compound include only members of the visited compound, we will show that homophily is

estimated by the proportion of all contacts in the respondent’s compound minus the propor-

tion of all contacts that occurred while the respondent was visiting another compound.

To do so, we will visualize the social network as a graph where nodes depict social actors

and edges represent contacts between them. A toy example, which we will use to walk the

reader through our derivation, is given in Fig 2. Our example network includes two com-

pounds, with contacts between compound members in blue and contacts between members of

different compounds in red, with the arrow pointing from visitor to host. The arrow indicates

that Oumar contacted Amadou while visiting Compound A. If the entire social network were

Networks of face-to-face social contacts in Niakhar, Senegal
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Fig 2. Toy example of a social network with adjacency matrices: S represents contacts between members of the

same compound, V represents contacts between members of different compounds, and H = S + V has row sums

equal to the numbers of contacts reported in the respondent’s compound.

https://doi.org/10.1371/journal.pone.0220443.g002
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observed, then our homophily value would be the number of edges connecting members of

the same compound divided by the total number of edges in the network, 4

5
.

We will first demonstrate how our proposed estimator quantifies homophily when the

entire network is sampled. In this case, the denominator for homophily—the number of edges

—is calculated as the sum of degrees divided by two, since each edge is reported by two people.

Letting Di denote the degree of respondent i, the total number of edges is

Pn

i¼1
Di

2
.

To calculate the numerator for homophily, we will define adjacency matrices to help

express the relationship between the visualized network and the way the data were recorded.

Let S denote an adjacency matrix (also called a sociomatrix) representing contacts between

compound members: Sij = 1 if i and j made contact and belong to the same compound and

zero otherwise. S is symmetric because if i contacted j, then j also contacted i. The matrix V
represents contacts between members of different compounds, and Vij = 1 if j contacted i
while j was visiting i’s compound. The asymmetry of V is used to distinguish the host from the

visitor and will allow us to align this matrix with S to show the data captured by our survey.

Here, V3,6 = 1 since persons 3 and 6 made contact while 3 was the host and 6 was the visitor.

The elements of S and V were not collected in our survey since respondents did not record the

exact identities of people they contacted. However, the column sums of V were collected as

each respondent reported numbers of contacts made while visiting other compounds. The sur-

vey also collected numbers of contacts made within one’s own compound, which include

those to one’s own compound members as well as to visitors. These reported counts are the

row sums of H = S + V. What we are interested in for the numerator is the number of blue

cells in the matrix H, since these represent within-compound contacts. We can obtain this by

summing all elements of H and subtracting the red elements of H, and then dividing by two

since each contact is reported twice—once by each person in the pair.

Let Vi denote the number of people person i reported contacting in other compounds—in

other words, the sum of column i of the matrix V. Let Hi denote the number of people person i
reported contacting at home—the sum of row i of H. If the entire network is observed, then

the number of edges between members of the same compound is

Pn

i¼1
Hi �
Pn

i¼1
Vi

2
. In our toy

example, this is 9� 1

2
¼ 4, the numerator for our homophily value.

As noted above, the denominator for our homophily value is

Pn

i¼1
Di

2
. Dividing numerator

by denominator yields

Pn

i¼1
Hi �
Pn

i¼1
ViPn

i¼1
Di

; which is the difference in proportion of contacts occur-

ring in the respondent’s compound and the proportion of contacts occurring in visited com-

pounds, as we set out to show.

We derived this method assuming the entire population was surveyed. In a random sam-

pling scheme, we sum across randomly sampled rows of H and randomly sampled columns of

V, and our estimator is unbiased. Since our sampling scheme favors symptomatic people, bias

could be introduced if people are less likely to visit other compounds when they are symptom-

atic, but we found no evidence for this in the data (Fig D in S2 Appendix).

Violation of the two assumptions we have made tend to bias our homophily estimate down-

wards. First, some contacts made by visitors to other compounds may be to non-members. If

this happens, these extra contacts would appear in V but not be included in the row sums of H.

This means that too large a count would be subtracted from H, biasing the homophily estimate

downwards. Next, some contacts between members of the same compound occur outside the

compound. Our assumption that they do not would lead to an undercount of contacts between

compound members, again leading to an underestimate of homophily.
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Homophily was estimated separately for morning contacts by asympomatic people, after-

noon/evening contacts by symptomatic people, morning contacts for symptomatic people,

and afternoon/evening contacts for asymptomatic people using the multiply imputed data sets.

Confidence intervals were calculated with a nonparametric bootstrap and combined with stan-

dard rules for multiple imputation by using MIcombine in the mitools package in R [57,

58].

3.4 Location distribution analysis

We created bar charts to display the location distribution of contacts using the multiply

imputed data sets combined. To calculate confidence intervals for proportions of contacts

within the respondent’s compound, we used an approach that applies a nonparametric boot-

strap to multiply imputed data [60] as follows. The confidence interval for the proportion of

contacts occurring in the respondent’s compound was calculated using a nonparametric boot-

strap: for each imputed data set, 500 bootstrap resamples were drawn and proportions of con-

tacts in the respondent’s compound were retained. The bootstrapped proportions were pooled

across all imputations, and 2.5% and 97.5% quantiles were calculated for this pooled data set.

Confidence intervals for proportions of contacts in other locations were calculated similarly.

The location distribution of the original data is provided for comparison, as well as those strat-

ified by age and by symptom status.

4 Results

A total of 6,758 surveys were collected from 5,557 participants. After restricting our analysis to

a single survey per participant between August 1, 2009 to February 1, 2010, our data includes

contact reports from 3,758 participants living in 345 compounds.

Table 1 summarizes the sex, ethnicity, and age distributions of participants analyzed in this

paper and compares this to the distributions for participants who contributed to the complete-

case analysis. More respondents were female (54%) than male (45.9%), and the majority were

Serere (65.8%) or did not report their ethnicity (33.4%). The overall population of Niakhar at

the start of the study was 51% female. Although we have access to ethnicity data only for con-

tact survey respondents, Niakhar was 97% Serere in 2012, and our sample data is consistent

with that [61]. The age distribution of our sample has more 0-5 year olds than the Niakhar

population (60% as opposed to 24%) because this age group is particularly susceptible to acute

respiratory infections. The proportion of 6-10 year olds in the sample is similar to that in the

population (14.9% as compared to 16%) as was that for 12-16 year olds (5.1 as compared to

11%) but there were fewer adults in the sample than the population (19.9% instead of 49%).

Only 61 of 3,758 respondents (1.6%) lived in compounds with five or fewer people, while

1,974 (52.5%) lived in compounds with over 25 people. Only 51 participants (1.4%) were

asymptomatic on the day before the survey, but 924 (24.6%) were asymptomatic two days

before the survey.

Among the 3,758 participants, 2,056 (54.7%) were missing either covariate values or values

for variables which contributed to the calculation of the degree, such as the numbers of con-

tacts made at home or the numbers of contacts made in a visited location. The distributions of

covariates for participants who contributed to the complete-case degree analysis are shown in

the two rightmost columns of the table. These distributions are similar to those of all analyzed

participants, but a higher proportion of those included in the complete case analysis were 0-5

years old (68.7% versus 60.1%) and fewer were over 16 years old (14.8% versus 19.9%).

Fig 3 shows the location distribution of contacts occurring two days prior to the survey by

time of day using all multiply imputed data sets combined. The majority of contacts—65% in
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the morning and 74% in the afternoon/evening—occurred at home. The next most frequent

location was in another compound.

School contacts comprised only 5% of morning contacts and 2% of evening contacts. This

is likely because most respondents were not school-aged or did not attend school on the day of

contact reports, because they were ill, because the day was a weekend day or holiday, or for

some other reason. To better understand the behavior of school-aged children, we examined

the location distribution of contact reports from children aged 6–16 years for weekdays

between October and February. Contact reports from 121 symptomatic children met these cri-

teria; 36% of such contacts occurred at school and 45% at home. Reports from 66 asymptom-

atic school-aged children met the criteria; for these, 27% of contacts occurred at school and

51% at home. As such, we observe higher proportions of contacts when we restrict our analysis

to school-aged children on potential school days, but we do not know the proportion of chil-

dren regularly attending school.

Location distributions were nearly identical between symptomatic and asymptomatic par-

ticipants (Fig D in S2 Appendix). They were fairly similar across age categories, with the

Table 1. Distribution of sex, ethnicity, age, compound size, and symptom status for (1) all participants completing

a survey between August 1, 2009 to February 1, 2010 and (2) all participants who contributed to the complete-case

analysis.

Variable All participants Participants with non-missing

degree

n % n %

Sex

Female 2031 54.0 878 51.6

Male 1724 45.9 824 48.4

Missing 3 0.1 0 0

Ethnicity

Serere 2473 65.8 1158 68

Wolof 14 0.4 6 0.4

Other 16 0.4 3 0.2

Not Reported 1255 33.4 535 31.4

Age category

0-5 2257 60.1 1169 68.7

6-11 560 14.9 215 12.6

12-16 193 5.1 66 3.9

>16 748 19.9 252 14.8

Symptoms, day before survey

Asymptomatic 51 1.4 16 0.9

Symptomatic 3689 98.2 1686 99.1

Missing 18 0.5 0 0

Symptoms, two days before survey

Asymptomatic 924 24.6 415 24.4

Symptomatic 2834 74.9 1287 75.6

Missing 0 0 0 0

Compound size

1-5 61 1.6 32 1.9

6-25 1723 45.8 741 43.5

>25 1974 52.5 929 54.6

Median, Mean (SD) 27, 34.0 (31.7) 28, 37.5 (37.2)

https://doi.org/10.1371/journal.pone.0220443.t001
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exceptions of 6-11 and 12-16 year olds making more school contacts than other age groups in

the morning (10% and 18% respectively, Fig E in S2 Appendix), and adults making more at-

home contacts in the evening (83% as compared to 70-75%; Fig F in S2 Appendix). Location

distributions of contacts for the multiply imputed data are similar to those based on the origi-

nal data, as evidenced by Figs B and C in S2 Appendix.

Table 2 summarizes missing data for variables that contributed to the calculation of the

contact degree. The number of people contacted at home was missing for 53% and 55% of

respondents for the morning and evening, respectively, on the day before the survey, and 60%

and 61% of respondents for two days before the survey. Among participants who reported vis-

iting at least one location outside the home, 47% and 46% did not report the number of people

contacted in that location for the day before the survey and two days before, respectively. Simi-

larly, 8% and 5%, respectively, were missing at least one time that a location was visited. In

Fig 3. Percentage of contacts occurring in various locations using the multiply imputed data, two days before the survey day, with 95% confidence intervals.

https://doi.org/10.1371/journal.pone.0220443.g003

Table 2. Numbers and percentages of participants missing data contributing to the degree calculation.

Variable missing Day before Survey Two days before

n % n %

Number contacted at home, AM 2003 53 2235 60

Number contacted at home, PM 2059 55 2276 61

For at least one outside location:

Number contacted� 826 47 874 46

Time visited� 143 8 96 5

Whether visited 91 2 90 2

� Denominator is number of participants who visited at least one location.

https://doi.org/10.1371/journal.pone.0220443.t002
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addition, 2% of participants had missing data for whether a location was visited or not, for at

least one of the possible locations.

Table 3 displays coefficient estimates with 95% confidence intervals for the degree distribu-

tion based on the multiply imputed data. The coefficient for “symptomatic” is 0.90, meaning

that a symptomatic person makes 10% fewer contacts, on average, than an asymptomatic per-

son (p = 0.006). The compound size and sex coefficients are not statistically significant. The

age coefficients indicate that 0-5 year olds make 33% fewer contacts than people over 16

(p< 0.001), and 12-16 year olds make 13% more contacts than people over 16 (p = 0.016), con-

trolling for other predictors.

The mean number of contacts for afternoon/evening time points is 9% lower than for

morning contacts (p = 0.002). The coefficient for “two days before the survey” is 1.04 and is

not statistically significant (p = 0.052). Of course, the day relative to the survey day is an artifact

of the data collection process; we added this predictor to assess potential recall bias. As this

coefficient is greater than one (so is in the opposite direction that would indicate recall bias)

and is not statistically significant, we do not have evidence for recall bias.

As we had conjectured, numbers of contacts between one and four are less likely to be

rounded. We estimate the probability of rounding to be 0.28 when the true degree is between

one and four, and 0.52 when the true degree is greater than five. The rounding probability for

contacts >5 does not correspond exactly to the respondent rounding probability since these

degrees are based on the sum of multiple contributing variables. However, the rounding prob-

abilities allow us to graphically assess whether our negative binomial model is an appropriate

model based on the observed data. The degree distribution for the multiply imputed data is

compared to the inferred underlying distribution in Fig 4. Our model allows us to visualize

what the actual degree distribution in this population is, without the heaping, which arises as

an artifact of reporting. However, because the inferred distribution is qualitatively different

from the data, it is difficult to assess goodness-of-fit from this graph. To do so, we calculated

the inferred distribution of reported contacts by combining our estimated rounding probabili-

ties with our inferred negative binomial probabilities using the equations in Section 3.1. Thus

we obtain an inferred distribution of reported contacts. We compare this to the empirical dis-

tribution of reported contacts in Fig 5. Our predictions fit the observed reports quite well

though we may be overestimating the number of reported zeroes. We have truncated the x-

axis at 100 since only 0.16% of imputed degrees were over 100 while our model places only

0.01% of probability mass on that range. As such our model underestimates the chance of

extreme values in the tail.

Table 4 displays inferred mean degree values for the population of Niakhar. The mean

degree in the morning is 16.5 for asymptomatic people and 15.0 for symptomatic people.

Mean degrees in the afternoon are 14.8 and 13.5 for asymptomatic and symptomatic people,

respectively. The overlap in confidence intervals indicates that the mean degrees for the differ-

ent time points and symptom statuses are not significantly different.

Table 5 shows our homophily estimates (the proportion of contacts occurring to one’s own

compound members), separately by symptom status and time of day. These are, in general,

lower than the proportion of contacts occurring in one’s own compound since a subset of

those occurred to visitors. A higher proportion of afternoon/evening contacts are to one’s own

compound members than morning contacts (60.1% versus 48.2% for symptomatic people and

59.1% vs 46.0% for asymptomatic people).

Symptomatic people make slightly higher proportions of contacts to their own compound

members than asymptomatic people at both time points, but the slight differences are not sta-

tistically significant as indicated by the substantial overlap in confidence intervals.
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Table 3. Estimates for coefficients, dispersion parameter, and rounding probabilities for the degree model.

Parameter Estimate 95% Confidence Interval P-value

Rounding probability, 1-4 0.28 [0.25, 0.31] <0.001

Rounding probability, >5 0.52 [0.50, 0.53] <0.001

Dispersion parameter 1.63 [1.57, 1.69] <0.001

Model coefficient

Intercept 15.58 [14.17, 16.98] <0.001

Symptomatic (vs. asymptomatic) 0.90 [0.84, 0.95] 0.006

Compound size 6-25 (vs.� 5) 1.05 [0.87, 1.23] 0.786

Compound size >25 (vs.� 5) 1.17 [0.99, 1.35] 0.072

Male (vs. female) 1.03 [0.99, 1.06] 0.184

Age 0-5 years (vs. > 16) 0.67 [0.63, 0.71] <0.001

Age 6-11 years (vs. > 16) 1.02 [0.96, 1.08] 0.626

Age 12-16 years (vs. > 16) 1.13 [1.04, 1.23] 0.016

Afternoon/evening (vs. morning) 0.91 [0.87, 0.94] 0.002

Two days before survey (vs. 1 day before) 1.04 [1.00, 1.07] 0.052

https://doi.org/10.1371/journal.pone.0220443.t003

Fig 4. Histogram of multiply imputed distribution of reported degree overlaid with fitted underlying degree

distribution.

https://doi.org/10.1371/journal.pone.0220443.g004
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5 Discussion

We have summarized the degree distribution, homophily by compound membership, and

location distribution of face-to-face social contacts in Niakhar, Senegal, based on two consecu-

tive days of survey reports from 3,758 participants over a period of 6 months.

For asymptomatic Niakhar residents, we estimated a mean contact degree of 16.5 (95% C.I.

14.3, 18.7) in the morning and 14.8 in the afternoon (95% C.I. 12.7, 16.9). While the extent of

overlap between morning and afternoon contacts is not known, 16.5 is a lower bound on the

degree for the entire day (assuming maximal overlap); the actual mean degree for the entire

day is probably higher. This estimate places this rural Senegalese community at the high end

when ranking cultures based on contact degree. The mean number of contacts in the multi-

country POLYMOD study was 7.9 for Germany, between 11 and 12 for Belgium, Finland, and

Fig 5. Histogram of multiply imputed distribution of reported degree overlaid with predicted distribution of

contact reports inferred by the estimated underlying curve and estimated rounding probabilities.

https://doi.org/10.1371/journal.pone.0220443.g005

Table 4. Inferred mean degree by symptom status and time point.

Symptom Status Time Point Mean Degree 95% Confidence Interval

Asymptomatic AM 16.5 [14.3, 18.7]

Asymptomatic PM 14.8 [12.7, 16.9]

Symptomatic AM 15.0 [12.9, 17.1]

Symptomatic PM 13.5 [11.5, 15.4]

https://doi.org/10.1371/journal.pone.0220443.t004
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Great Britain, 17.5 for Luxembourg, and 19.8 for Italy [17]. A recent analysis of diary-based

contact surveys in Zimbabwe found people made 11.1 contacts per day on average, and the

average was higher in their peri-urban site than their rural site (11.6 versus 10.8) [30]. A large

survey in coastal Kenya estimated a mean of 17.7 contacts per person per day; this was higher

for residents of rural areas than for those in semiurban areas (18.8 versus 16.5) [31]. A house-

hold-based survey of travel and contact patterns in Guangdong, China, found that the mean

numbers of contacts per day ranged from 17–22 for those under the age of 60 [35].

Our findings that people aged 0-5 years make fewer contacts than adults and that sex and

household size are not significantly related to numbers of contacts are consistent with results

from other countries [17, 31, 33]. However, a study of French contact patterns found signifi-

cantly more contacts by females than males and significantly fewer contacts by those in small

households [29]. The apparent differences between the French study and the results we report

here may be, in part, attributable to cultural difference between France and Senegal, and, in

part, due to how each study categorized household size (they categorized as 1, 2, 3, 4, and� 5

while we used the 0-5, 6-25, and> 25 as our categories). In addition, the distribution of house-

hold sizes is very different in the two settings with much larger households in Senegal.

We estimate that the majority of contacts occur in the home in this community: 65% of

morning contacts and 74% of afternoon/evening contacts. This is similar to results from a

diary-based survey of social contacts in Vietnam, which found that the majority (85%) of con-

tacts occurred at home, followed by school (5%) and workplace (4%) [33]. However, this con-

trasts with estimates for eight European countries in the POLYMOD study, which found that

20-30% of contacts occurred at home within each country, with similar proportions occurring

at work or in leisure activities and fewer occurring in schools [17].

We found that symptomatic people make significantly fewer contacts than asymptomatic

people, but the reduction was small in size. The average number of contacts was 16.5 in the

morning for asymptomatic people. It was 15.0 for symptomatic people at this time point, but

these values are not significantly different (Table 4). Researchers analyzing data from England

[62] also found a reduction but a much larger one; their averages were 14.9 for healthy people

and 3.8 for sick people. This could be due to cultural differences in withdrawing from work or

school while ill, higher numbers of people working within the home in Senegal, and/or to the

limited representation of school contacts in our data set.

We quantified compound homophily by estimating that 48.2% and 60.1% of contacts by

symptomatic people occur to their own compound members in the morning and afternoon/

evening respectively, with nearly identical (though slightly smaller) estimates for asymptom-

atic people. This is consistent with epidemic models estimating higher transmission rates

between household members than non-members [63–65]. Other contact surveys we reviewed

did not estimate household homophily, but instead estimated age-based mixing patterns. Our

design did not allow for estimating age-based mixing, and we would recommend that future

surveys record the age of people contacted in order to allow for this.

Some of the limitations of our data may guide future researchers in survey design. One limi-

tation was the large amount of missing data in our study. While we used multiple imputation to

Table 5. Compound homophily estimates: Estimated proportion of contacts to own compound members by symptom status and time of day, two days before survey.

Time of Day Symptomatic Asymptomatic

Percent 95% C.I. Percent 95% C.I.

Morning 48.2 [44.8, 51.6] 46.0 [40.8, 51.3]

Afternoon/evening 60.1 [56.2, 64.1] 59.1 [52.7, 65.5]

https://doi.org/10.1371/journal.pone.0220443.t005
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reduce bias from this shortcoming, we relied on the assumption that the data were missing at

random. As our imputation process includes key covariates found to predict contact patterns in

other studies, we believe our assumption is reasonable. However, because this assumption can

never be validated [66], it would be far better to have a more complete data set. To reduce miss-

ing data, we recommend consideration of a diary-based approach when literacy is at sufficient

levels. When implementing a diary survey in a setting without high literacy, we recommend the

methods used in a study in coastal Kenya [31]. These researchers employed focus group inter-

views and a small pilot study prior to survey implementation, which helped participants under-

stand the purpose and methods of the survey. They selected a “shadow” respondent for

participants under 10 and those who were illiterate, and they provided participants with wrist

watches programmed to sound an alarm every hour to remind them to update their diary.

Another limitation is the limited data on school contacts collected in our study. This partly

because some contact interviews took place on days that were not school days. Additionally,

some respondents may not have attended school regularly or may not have attended on the

survey day even when it was a school day. We recommend designing surveys to record school

attendance patterns and whether the survey day is a school day or holiday.

Collecting contact reports on the day of the survey, when many surveys were conducted in

the morning, induced truncation bias for those reports. Recording the time of the interview

would provide the researcher information to adjust for this, but assumptions would need to be

made regarding the distribution of contacts over time. It would be cleaner and save resources

to not record contacts that took place on the day of the survey. As no evidence for recall bias

was found, this approach would likely collect sufficient information.

Our focus on symptomatic participants was less of a limitation than anticipated, since a fair

amount of data on asymptomatic contact reports was nonetheless collected, allowing us to esti-

mate differences in contact patterns based on symptom status, and because we did not find

large differences based on symptom status. The age composition of our sample differed from

that of the overall population due to the higher frequency of febrile respiratory illness among

young children. We recommend random sampling to ensure that contact patterns are mea-

sured in a representative way.

While we had not explicitly asked participants which contacts were to household members,

we devised an estimator to quantify household homophily. Our assumptions that household

members are not contacted outside the home and that contact counts for visited compounds

only include members of the visited compound are quite strong, and their violation results in

an underestimate of homophily. In future surveys, it would be preferable to solicit numbers of

contacts to household members, as these groups are critical for disease transmission.

The estimates presented in this paper may be used to perform epidemic simulations for the

population of Niakhar. To do so, the population may be visualized as a set of nodes, which

may be connected by edges defining their contacts. The morning degree distribution for the

set of nodes would be simulated from the using the parameters in Table 3. Next, degrees

between compound members would be randomly linked until the required compound homo-

phily level is attained. School structure could be added by linking a subset of the remaining

unmatched degrees between children of the same age, based on school enrollment and atten-

dance data. Finally, the remaining unlinked degrees would be randomly linked between village

members. This would form one instance of the contact network. Next an SEIR (Susceptible-

Exposed-Infected-Removed) process may be simulated over the contact network by first ran-

domly selecting a subset of residents to be infected as “seeds” for the epidemic. The disease

may be transmitted over edges connecting infected and susceptible people with age-specific

transmission probabilities. Those infected move into the exposed state, then to the infected

state, then the recovered state, based on prefined probability distributions for the pathogen of
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interest. The process would be repeated for the afternoon time point and would continue until

all residents are either infected or recovered. The simulation would then be repeated thousands

of times, tracking epidemic outcomes over the simulations such as the proportion infected, the

epidemic peak date, and others. The impact of social distancing strategies on epidemic out-

comes could also be investigated. For example, a strategy of quarantining residents to their

compound when they manifest symptoms could be simulated by deleting all non-compound

contacts for those who show symptoms until they move to the recovered state.

We have provided the first analysis of face-to-face contact network data in rural Senegal

and quantified key network structures: heterogeneity in degree based on individual attributes,

homophily by compound membership, and the location distribution of contacts. By using a

latent variable model to account for irregular rounding of contact reports, we were able to vali-

date the fit of our model to the degree distribution. Our estimated parameters may be used as

input into epidemic simulation models for cross-cultural comparisons. As our mean degree is

at the high end of the range for various cultures and contexts, one might expect rural Senegal

to fall at the higher end when it comes to epidemic outcomes that depend on these types of

contacts for transmission. However, the limited impact of symptom status on contact patterns

is also a key factor. We expect a disease would spread farther and faster than in a culture with

similar degree distribution but stronger social distancing in response to respiratory illness.

Such a comparison may be undertaken as future work.
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