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Abstract
Variation in mechanical properties is a useful marker for cancer in soft tissue and has been used in clinical diagnosis for centuries.
However, to develop such methods as instrumented palpation, there remain challenges in using the mechanical response during
palpation to quantify tumor load. This study proposes a computational framework of identification and quantification of cancer-
ous nodules in soft tissue without a priori knowledge of its geometry, size, and depth. The methodology, using prostate tissue as
an exemplar, is based on instrumented palpation performed at positions with various indentation depths over the surface of the
relevant structure (in this case, the prostate gland). The profile of force feedback results is then compared with the benchmark in
silico models to estimate the size and depth of the cancerous nodule. The methodology is first demonstrated using computational
models and then validated using tissue-mimicking gelatin phantoms, where the depth and volume of the tumor nodule is
estimated with good accuracy. The proposed framework is capable of quantifying a tumor nodule in soft tissue without a priori
information about its geometry, thus presenting great promise in clinical palpation diagnosis for a wide variety of solid tumors
including breast and prostate cancer.
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1 Introduction

Determining the size and location of a tumor nodule in soft
tissue is critical. Ideally, this should occur at the earliest pos-
sible stage, giving the best chance of determining the optimal
treatment thus improving patient outcomes. However, charac-
terizing cancer, even with the aid of conventional biopsy re-
mains a non-trivial task, particularly for primary diagnosis.
Imaging techniques such as magnetic resonance imaging
(MRI) have proven useful in detecting pathological conditions
such as neoplasms [1], and sonoelastography has also been
widely used in clinical diagnosis for such tissues as breast [2]
and liver [3]. Although such techniques allowmaps of relative
tissue density or stiffness, diagnosis still remains challenging
in certain scenarios such as co-occurrence of benign prostate
hyperplasia [4] or tumors located deeply from a measurable
surface [5].

Although prostate cancer may not initially cause symp-
toms, in later stages, it can lead to difficulty in urinating or
pelvic pain and, once it has metastatically spread to places
including the lymph nodes [6] or bones, may significantly
worsen the prognosis of the patient. The current methods used
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to diagnose prostate cancer include examination of prostate-
specific antigen (PSA) level in blood, digital rectal examina-
tion (DRE), biopsies, and various imaging techniques, includ-
ing multi-parametric magnetic resonance imaging (mpMRI)
and trans-rectal ultrasound. These methods vary in their sen-
sitivity and specificity, and limitations include low sensitivity
in diagnosis using PSA level alone [7, 8], false negatives [6, 9,
10], and the risk of infection [11] in using biopsies. DRE is a
primary diagnostic technique where a clinician’s finger is ap-
plied to the palpable surface of the prostate through the rectal
wall, looking for abnormalities such as changes in roughness
and lumps. It is simple, relatively non-intrusive, and requires
no equipment. However, it remains a qualitative diagnostic
method that largely relies on the practitioner’s experience
and is therefore subjective.

To overcome these limitations, a range of instrumented
palpation techniques have been proposed to use quantitative
analysis of mechanical measurements of the prostate to im-
prove sensitivity [12, 13]. Instrumented palpation devices, of-
ten utilizing automated algorithms through mechanical means
such as using rolling, sweeping, or indentation probes
[14–16], have been developed to measure tissue elasticity
and assess the presence of any abnormality. In addition, au-
tonomous robotic systems have been used to locate tumor
nodules in soft tissue and have been applied to ultrasound
elastography [17]. Nevertheless, the effects of the depth and
size of a nodule in the force feedback during palpation are
often coupled. A small nodule near the surface of the tissue
and a larger nodule deeper inside the tissue could result in the
same local force feedback. Decoupling these effects for the
purpose of tumor nodule quantification is of critical impor-
tance since the depth, size, and location of a tumor can, in
many cases, be related to the progression of the disease [18].
Furthermore, knowledge of the location and size of a tumor
nodule can affect the required treatment and the surgical mar-
gin, both of which influence the surgical risks and outcome. In
the literature, there have been various studies of palpation-
based quantitative tumor identification, such as those using
computational models with simple geometries of cancerous
nodules of cylindrical [19, 20] or rectangular [14] shape, and
others based on inverse or optimization methods, such as ar-
tificial neural networks, to predict not only the size and depth
of anomalies but also their mechanical properties [20].
However, most methods rely on a priori knowledge of the
stress distribution in the tissue under certain loading condi-
tions, which remains impracticable in primary diagnosis.

Thus, there is a need of an inexpensive, fast, and reliable
method to detect and characterize the cancerous nodules in
soft tissue, at the very least to supplement and inform early
stage diagnosis. For prostate cancer, this approach would be
particularly useful when patient surveillance is required and as
a complement to PSA testing and biopsies. To that end, this
study presents a novel diagnostic framework using palpation

to determine both the size and depth of an anomaly without a
priori knowledge of its location or geometry, providing a rel-
atively non-invasive, quantitative tool for early detection, and
characterization of tumor nodules.

2 Materials and methods

2.1 The computational models

2.1.1 In silico configuration

A2D in silicomodel was used to demonstrate the feasibility of
the proposed methodology. As shown in Fig. 1, it consists of a
square domain (100 mm× 100 mm) with a tumor nodule lo-
cated inside. Instrumented palpation was performed at the
upper surface at 40 equally spaced locations, using indentation
depths of 1, 5, and 10mm. It is worth pointing out here that the
indentation parameters (depth, number and direction) may be
limited by clinical factors such as the acceptable duration of
examination, patient comfort, and accessibility from within
the rectum. Therefore, a balance needs to be found between
detectability and practicability, for which a sensitivity analysis
using the model is very helpful, provided that the model can
be validated. A cylindrical probe with a spherical tip of diam-
eter 10 mm was used here on the basis that such a probe has
already been demonstrated for detecting tumors in soft tissues
[19]. The probe was considered to be a rigid body with contact
between it and the tissue frictionless [14]. The bottom of the

Fig. 1 Schematic diagram of the 2D computational model. U denotes the
indentation applied with a certain indentation depth, over a number of
indentation locations
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model was constrained to represent the configuration of an
ex vivo measurement where the tissue sample lies on a flat
testing platform [20, 21]. The “test” consisted of applying a
quasi-static vertical displacement and recording the force
feedback.

2.1.2 Material model and parameters

As with most biological tissues, prostate tissue exhibits a cer-
tain amount of viscoelasticity [13, 22] and its mechanical be-
havior may depend on the strain/loading rate [12, 13].
However, the approach adopted here is to make use of the
(quasi-)elastic behaviors of the materials and prostatic tissue
under low deformation rates. In such cases, the viscous re-
sponse of the materials becomes negligible and this approach
has been widely used in the literature [21, 23]. To satisfy this,
indentations are conducted using a low indentation rate
(0.1 mm/s) and allowing sufficient waiting time (60s) at the
desired indentation depth (see below).

Experimentally measuring the elastic properties of the
prostate tissue and their cancerous counterparts is not trivial.
This is due to the nature of prostate tissue being glandular
tissue (filled with prostatic fluid); therefore, it is not ideal to
utilize commonly used approaches of soft tissue measure-
ments where tissue is cut into, for example, thin sheets or
cylindrical cores, for mechanical characterization. Table 1
summarizes a selection of published values for the elastic
properties of prostate tissue, revealing a wide range attribut-
able to inter-patient variations (within investigator) and differ-
ent experimental configurations (between investigators). In
the interest of focusing on detectability, for our study, non-
cancerous and cancerous tissues are modeled as incompress-
ible elastic materials, with equivalent Young’s moduli of
20 kPa and 40 kPa, respectively, adopted fromHoyt et al. [13].

To overcome potential numerical issues at high strain range
caused by the deep indentation while maintaining a sufficient
accuracy, the elastic moduli of both tissues are fitted with the
second-order hyperelastic Ogden strain energy density func-
tion, as

Ψ ¼ ∑
2

i¼1

2μi

α2
i
� λ1

αi þ λ2

αi þ λ3

αi
� �

þ ∑
2

i¼1

1

Di
� J el−1ð Þ2i ð1Þ

2.2 The computational framework—decoupling
the size and depth of tumor nodule

As mentioned above, the size and depth of a nodule are often
coupled in the force feedback from instrumented palpation.
The methodology proposed to overcome this consists of two
stages: nodule localization and nodule quantification. It has
been suggested [14, 19] that the location of a nodule can be
determined by finding the point where the difference between
the force feedback and that from the “healthy” background
reaches a maximum. Such a procedure only requires the force

Table 1 Mechanical properties of
the prostate tissue, including
healthy and cancerous ones,
reported in the literature

Young’s modulus (kPa)

Healthy tissue

Young’s modulus (kPa)

Cancerous tissue

Poisson’s ratio Reference

12 200 0.499 [14]

30 90 0.495 [22]

16 ± 5.7 40 ± 15.9 0.49–0.5 [13]

3 19 [15]

41 135 [12]

10~29 11–38 [23]
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where μi and αi are the material parameters to be fitted and λ1;
λ2; λ3 are the principal stretches. Finite strains were considered
in the model, which was solved using the finite element meth-
od in ABAQUS (Dassault Systemes, Vlizy-Villacoublay,
France). The resulting parameters used for the Ogden model
in ABAQUS, fitted against the elastic moduli as mentioned
above using Eq. (1), are shown in Table 2.

2.1.3 Sensitivity analysis—influence of nodule geometry

To demonstrate the capability of the proposed method, four
different nodule geometries were considered for a total of five
different cases. The first two cases comprised two intersecting
circular nodules of different diameters, as shown in Fig. 2a, b.
This represents scenarios where a tumor is growing from two
different locations or growing around the urethra [24]. A tu-
mor of arbitrary shape was also considered, Fig. 2c and one
with an interfacial layer between the cancerous nodule and the
healthy tissue (Fig. 2d), where the nodule is surrounded by a
mixture of healthy and cancerous tissues. Such a scenario is
often found in clinical cases, where it is difficult to draw a
clear boundary between healthy and cancerous tissue without
local histopathological examination. Finally, a nodule of rect-
angular shape was included (Fig. 2e) for comparison with the
experimental validation model, described later.



feedback to be recorded at a single depth of indentation, which
is not sufficient to determine both size and depth of a nodule,
as the size and depth can both affect the force feedback of
indentation measurement in a similar way, leading to potential
ambiguity. Although the force feedback curves for a deeply
embedded nodule and a healthy sample are similar, they be-
come progressively different (different curvature of the force-
displacement profile) as the nodule is closer to the surface of
indentation. It is hypothesized, and later validated, that such
variations in the curvature of the force feedback profile can be
affected in distinct ways by size and depth of the nodule,
based on which the quantification of the tumor nodule is
performed.

The proposed schema for developing a localization/quan-
tification/calibration process is illustrated in Fig. 3, involving
five steps:

Step 1: The FE models are constructed based on the
dimensions of the tissue phantom. The cancer-
ous nodule in the FE models has varying size
and depth; however, in the experiment, there
is only one set of values for size and depth of
the cancerous nodule. Point-wise indentations
are conducted at the surface of the phantom,
both experimentally and computationally, at
multiple depths of indentation (e.g., 1, 5, and
10 mm)

Step 2: Obtain a series of line profiles of indentation force
for each scenario and each indentation depth. Obtain
the second derivative (with respect to indentation
position) of the force feedback profile using a
smooth spline over all data points

Step 3: Plot the value of the second derivative at the position
where the tumor is located against the diameter of the
nodule (known in the FEmodels) for different inden-
tation depths

Step 4: Plot the value of the second derivative at the tumor
location from the experimental measurement on top
of the data derived from in silico models from Step
(3) to generate a set of intersecting points of depth
and diameter, for each indentation depth used

Step 5: Plot the intersecting points on a depth-diameter dia-
gram representing the correlation between datasets

Fig. 2 Different scenarios of cancerous nodules considered to test the
effectiveness of the proposed methodology. a, b are built from
intersecting circle in different sizes (10 mm and 15 mm in diameter,
respectively). c Tumor nodule is in a arbitrary shape. d Circular nodule

surrounded by a mixture of both tissues (20 mm inner diameter and
30 mm outer diameter). e Nodule in a rectangular shape (25 mm in
height and 12.5 in width)

Table 2 Parameters of the second order Ogden strain energy density
model for the healthy prostate tissue and the cancerous nodule,
respectively

Tissue μ1 α1 μ2 α2 D1 D2

Prostate 0.02119 2.244 − 0.01120 − 1.081 0 0

Cancerous nodule 0.04238 2.244 − 0.02240 − 1.081 0 0
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to indicate the depth and size of the nodule. For
nodules with irregular shapes, the estimated equiva-
lent radius is defined as

Requivalent ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 � Vnodule

4 � π
3

r
ð2Þ

where Vnodule denotes the volume of the nodule.

2.3 Experimental validation

2.3.1 Material characterization of gelatin phantom

A gelatin phantom which mechanically mimics the prostat-
ic tissue was used to validate the proposed framework.
Such material has been widely used for surgical training
[25] and ultrasound diagnosis [26] for prostate. To make
the phantom materials, gelatin powder was mixed with
boiling water (144 g/l for “cancerous” and 120 g/l for
‘healthy’ samples) and the cancerous sample was dyed

Fig. 3 The proposed schema for
developing a localization/
quantification/calibration process.
Step 1: Acquire reaction force
data from point-wise indentations
at different depths of indentation
across the surface. Step 2: obtain
the second derivatives of the force
feedback profiles. Step 3: the
second derivative at the nodule
position is then plotted against the
nodule diameter, based on the FE
results, for each indentation
depth. Step 4: the 2nd derivatives
obtained from the experimental
measurements for each indenta-
tion depth are plotted on top of
those from Step 3, leading to a
number of intersecting points,
represented by the symbols black
square, black triangle, and black
circle. Step 5: the intersecting
points are then plotted in the
nodule depth/diameter figure, and
a set of curves allows identifying
the size and depth of the nodule

Med Biol Eng Comput (2020) 58:1369–1381 1373



using the red food colorant. The mixture was then slowly
stirred to avoid bubble formation until it became homoge-
neous and transparent. After cooling to room temperature,
the samples were stored at 4 °C for 18–20 h. To make the
tissue phantom, a block 100 mm × 31 mm × 60 mm was
prepared consisting of healthy gelatin with an embedded
tumor nodule of dimensions 20 mm × 12 mm × 12 mm.
This was achieved using a first layer of healthy gelatin
onto which the pre-solidified cancerous nodule was placed
before it had completely set. The remaining healthy gelatin
was then poured in so that the top surface of the cancerous
nodule was located 10 mm below the surface of the sam-
ple. Such a configuration was reasonably representative of
the clinical situation as tumors are often found near the
posterior surface of the prostate [27]. Before testing, the
tissue phantom was given 90 min to reach the room tem-
perature. It should be noted here that the shape of tumor
nodule was idealized in order that it could be made and
measured more accurately and be used to validate the com-
putational model similar to Fig. 2e.

The indentation measurements, in line with the pro-
posed modeling methodology, aimed to measure the elas-
tic response, in the form of force measurements, at the
desired indentation depth. To achieve that, careful consid-
erations were given to the design of the experimental pro-
tocols, mainly to ensure consistency among all indenta-
tion measurements and to minimize the potential influence
of viscoelastic behaviors of gelatin materials, including (i)
the indentation rate/speed was set to be 0.1 mm/s; (ii)
before the force data was taken for each probing point,
sufficient time was allowed for the phantom materials to
relax (60 s) and the sign of stress relaxation was no longer
observed; (iii) between two consecutive probing, suffi-
cient time was given to make sure the first probing point
showed no observable sign of indentation deformation;
and (iv) spacing of 20 mm was given between two adja-
cent probing points on the phantom.

For the benchmarking process, two different material phan-
toms were prepared: a healthy one consisting entirely of the
softer gel and a cancerous one, consisting entirely of the stiffer
gel. The material phantoms were characterized using a total of
9 indentationmeasurements, three different indentation depths
(i.e., 2/4/6 mm) at three locations (considering the symmetry
of the sample). The same configuration (including the depth
and location of indentations and the material geometries) was
modeled using finite element in ABAQUS, using the incom-
pressible neo-Hookean model:

Ψ ¼ C1 I−3
� �

ð3Þ

where I is the first invariant of the left Cauchy-Green tensor
and C1 the material constant. The material phantoms were

mechanically characterized in such a way that the difference
in the force feedback between the experimental measurement
and finite element simulations was minimized using
Levenberg-Marquardt’s algorithm [28], a damped method
commonly used to perform nonlinear least square approxima-
tions:

min ∑
n

depth¼1
∑
m

pos¼1
FFE C1ð Þ−FExp

� �2 ð4Þ

where FFE and FExp denote the force feedback data from finite
element analysis and experimental measurement, respectively,
and n denotes the number of indentation depths and m the
number of indentation positions used. In this way, the optimal
C1 is found by converging the reaction forces at the indenter
considering all force measurements at various indentation
depths and positions, and the mechanical properties of the
two gelatin materials (i.e., cancerous, red, and non-cancerous,
yellow) are then derived.

2.3.2 Instrumented palpation on tissue phantom

The tissue phantom was subjected to point-by-point in-
dentation measurements over its top surface, using in-
d e n t a t i o n t e s t m a c h i n e , M a c h - 1 V 5 0 0 c s s
(Biomomentum Inc., Laval, Canada). A 10-mm diameter
hemispherical indenter, (as used for computational anal-
ysis) was with three different indentation depths (i.e., 2,
4, and 6 mm), respectively. The diameter was chosen to
be 10 mm, as a compromise between covering the entire
measureable surface with a reasonable number of inden-
tations and having sufficient sensitivity to detect the
edges of the nodule. The long-term modulus was deter-
mined at 150 s, in order to minimize the effect of any
viscoelastic behavior in the gelatin materials. It should
be noted here that the number of indentation sites and the
depths of indentation were chosen within certain con-
straints. The indentation sites must have sufficient dis-
tance between them to minimize the influence of inelas-
tic effects such as long-term viscoelastic behavior. The
smallest indentation depth was chosen to be 2 mm, to
ensure an adequate signal to noise ratio, while the largest
indentation depth of 6 mm was chosen as a limit beyond
which patient discomfort might ensue in a clinical situa-
tion. The phantom was visually examined after every
indentation test to ensure that no material damage had
been caused by the measurements. The probe points are
illustrated in Fig. 4a, while Fig. 4b, c shows the location
of the cancerous nodule (red) within in the healthy (pale
yellow) matrix. The recorded force feedback data of was
then processed using the proposed framework to identify
and characterize the tumor nodule.

1374 Med Biol Eng Comput (2020) 58:1369–1381



3 Results and discussion

3.1 Quantitative identification of cancerous nodules:
2D analysis

This section illustrates, firstly, how using a single indentation
depth is insufficient to determine the size and depth of a can-
cerous nodule, and then demonstrates, by examples, how the
proposed methodology quantifies the depth and size of a tu-
mor nodule.

As mentioned above, one of the major challenges in iden-
tification of tumor nodules in soft tissue is the ambiguity that
arises where a smaller nodule closer to the surface could give
similar force feedback to a larger one located deeper inside the
tissue. To demonstrate the coupling effect of size and depth, a
parametric study was carried out using circular tumors with
the maximum size at each depth within the practical con-
straints for the particular case considered, as shown in the
electronic supplementary material ESM-Fig. 1(a)-(b). ESM-
Fig. 1(c) shows the “envelope” of maximum force feedback
obtained for different combinations of tumor depth and size
subject to indentations of depth 1 and 10 mm, respectively.
For any given force feedback, the solutions of the nodule
depth and size are not unique in that different combinations
of the depth and size exist and could lead to the same force
feedback. It is therefore impossible to quantify the size and
depth of the nodule from palpation measurements using a
single indentation depth. This demonstrates a critical chal-
lenge in palpation-based diagnosis, especially when the ratio

between nodule diameter and depth is small. Put bluntly, large
tumors located deep in the prostate (i.e. far away from the
rectal wall) could be identified as a smaller, more superficial,
benign tumor.

Figure 5 shows two examples to demonstrate the proce-
dures of the proposed methodology. In the first example, a
circular tumor of 16 mm diameter located at a depth of
30 mm was considered and, in the second one, a 30-mm di-
ameter nodule located at a depth of 45 mm. The second de-
rivatives of the force feedback profiles from the experimental
measurements were derived and plotted against the same
dataset but calculated from in silico models (i.e., with circles
of different sizes located at various depths) as shown in
Fig. 5a–c. Following the steps illustrated in Fig. 3, the nodules
were identified and quantified as shown in Fig. 5d, e. It can be
seen that all depth-size curves intersected at one point which
accurately estimated the depth and size of the cancerous
nodule.

3.2 Variations in nodule geometry—a sensitivity
study

The proposedmethodology was then applied to tumor nodules
of different and irregular geometries, in order to further dem-
onstrate the feasibility of the method. Figure 6a and b show
the results for the identification of nodules with shapes similar
to those found close to the urethra in the prostate. The area was
estimated with an error below 25%, and the radius of the
equivalent tumor nodule was estimated with an error of

Fig. 4 The gelatin tissue phantom
and experimental configuration. a
The positions where indentation
is performed. b, c The nodule
(red) inside the phantom (light
yellow). The size of gelatin
phantom is 100(length) ×
31(height) × 60(width) mm and
the cancer nodule 20 × 12 ×
12 mm at the depth of 10 mm
from the top surface of the
phantom
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11.6%, while the estimated depth was close to the center of the
nodule. Although the cancerous nodules in most examples
presented here were of regular shapes, either in rectangular
or circular geometries, this enabled a more convenient com-
parison of the effect of tumor geometry on the quantification
outcome. In Fig. 6c, where an irregular nodule was present,
the area was estimated with an error of around 10% with a
good agreement in nodule depth. Cancerous nodules in pros-
tate are often of irregular shape, similar to the case shown in
Fig. 6c. In Fig. 6d, an additional scenario was considered
where the tumor boundary was not well defined. The tumor
area and depth were both underestimated in this case with
relatively high error, due to a higher ambiguity in the force
feedback arising from the “transition zone.” It should be noted
that, in this case, it is possible that the area that contains a
highly diffuse tumor or boundary areas of an un-confined
nodule could have different mechanical behavior to the main

part of the nodule, and that it may be necessary to introduce a
material model that operates beyond the elastic regime, a com-
plication not pursued in the current study. Finally, a nodule of
a rectangular shape was considered in Fig. 6e, with an error of
12.58%.

3.3 Experimental validation using gelatin phantom

The proposed computational framework was then validated
using data from the experimental measurements with gelatin
phantoms. In order to do this, the mechanical properties of the
material phantoms need to be characterized first. Figure 7a
and b show the force feedback obtained from the experimental
material phantoms fitted to the incompressible neo-Hookean
model, Eq. (3), optimized using the Levenberg-Marquardt al-
gorithm, which resulted in values for the Young’s modulus of
28.1 kPa and 39.5 kPa for the healthy and cancerous tissues,

Fig. 5 The procedures of
quantification of cancerous
nodules are explained here, where
the nodule has different sizes and
depths. The diameter of the
cancerous nodule against the
second derivative of the force
profile at the tumor position is
plotted, when using a depth of
indentation of 1 mm (a), 5 mm
(b), and 10 mm (c). The depths of
the tumor, in computational
models, are 30, 35, 40, 45, 50, and
60 mm. d The point of
intersection is (30, 16) in example
1, which indicates the true values
of the tumor diameter (16 mm)
and depth (30 mm). e The point of
intersection is (45, 30) in example
2, which indicates the true values
of the tumor diameter (30 mm)
and depth (45 mm)
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respectively. Table 3 shows the errors in estimating the mate-
rial parameters using the neo-Hookean model. It should be
noted that the maximum fitting errors (16.7% and 18.45%
for healthy and cancer, respectively) occurred in both cases
at the mid-point of the sample when the smallest depth of
indentation was used.

The force feedback for palpation of the tissue phantom
(containing the cancerous nodule of size 20 × 12 × 12 mm at

a depth of 10 mm) is shown in Fig. 7c and compared with the
fully healthy sample, illustrating the more “peaky” nature of
the scan (larger second derivative) when a tumor was present.
Whereas the absolute value of the feedback force was
generally higher at higher indentation depths, it must be
noted that the reverse was the case for the 2-mm indenta-
tion. This can be attributed to the difficulties in robustly
finding the contact in the experimental indentation, less

Fig. 6 Geometries of 2D tumor
nodules used to test the
effectiveness of the proposed
methodology and the predicted
nodule depths and sizes

Med Biol Eng Comput (2020) 58:1369–1381 1377



noticeable for deeper indentation depths where the force
feedback was significantly higher than the “noise” record-
ed during the contact-finding process. This would be of
critical importance in clinical applications, especially dur-
ing surgery (e.g., nodule identification prior to tissue re-
moval) when blood clots or other debris, along with work-
ing access constraints, may lead to complications in
achieving a robust detection of contact.

Figure 8 summarizes the experimental validation of the
method designed to overcome these limitations. After the ma-
terial phantoms were characterized, point-by-point indenta-
tions were carried out on the tissue phantom, as illustrated in
Fig. 4. Experimental data of force feedback, i.e., indentation
over 5 locations using indentation depths of 2/4/6 mm, were
obtained and then put through the framework demonstrated in

Fig. 2. Similarly, multiple in silico models were also run with
spherical cancerous nodules of different diameters located at
various depths (i.e., 4, 8, 9, 10, 11 and 12 mm). The second
derivatives of the force feedback profiles from the in silico
models were then plotted in Fig. 8a–c for indentation depths
of 2, 4, and 6 mm, respectively. It should be noted here that it
is possible to further increase the number of nodule depths
used in in silico models, although this would also lead to
higher computational cost. As it was, the datasets in the
depth-radius plots, i.e., Fig 8d, did not intersect at a single
point, possibly due to experimental errors in the indentation
measurements. For this example, two possible solutions,
highlighted in circles, were obtained where the three datasets
approach each other most closely; Fig. 8e shows the corre-
sponding quantification errors. The chosen solution (predic-
tion 1, highlighted in gray) led to an estimated radius of
9.05 mm, compared to the equivalent radius of the cancerous
nodule in the tissue phantom of 8.83 mm, an error of 2.5%.
The depth of the nodule was predicted to be 10 mm, the same
as the true depth of the nodule in the phantom. If the other
solution (i.e., red/prediction 2) was chosen, the estimated ra-
dius became 9.94 mm (i.e. an error of 12.6%) and the depth
11 mm (i.e. an error of 10%).

Fig. 7 Results of the instrumented palpation on the healthy (a) and
cancerous (b) material phantoms and the fitted neo-Hookean model. c
Comparison of the healthy sample and the sample with a nodule

embedded. Note that the symmetry condition is used in a, b, where
position 3 is the middle point of the phantoms

Table 3 Results of fitted material properties for the healthy and
cancerous material phantoms, respectively

C1 Max error Min error Mean error E (kPa)

Healthy 4.6898e−3 16.7% 0.6% 6.82% 28.1

Cancer 6.5872e−3 18.45% 0.22% 6.65% 39.5
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It is important to note here that, in practical uses of the
proposed method based on the force measurements ob-
tained experimentally, the error in estimating the tumor
volume could arise through a number of factors, including
(i) the inaccuracy in finding the contact point in experi-
mental measurement leads to a certain error in measuring
indentation depth. This would be a particular problem for
indentations of smaller depth, less than around 1 mm, and
it is for this reason that the indentation depth used for the
experiments was kept higher than 1 mm to ensure good
accuracy in finding the contact point before indentation
measurement; (ii) the friction coefficient between the in-
denter and the tissue is hard to measure. In the in silico
model, the contact was considered frictionless; however, it
has been shown that friction between the indenter and the
tissue may influence the force feedback in experiments
[29]; (iii) compared to previous work in nodule character-
ization [14, 19, 20], the ratio between the cancerous and
healthy stiffness considered in this study was rather low,
thus making the this study even more challenging.

4 Concluding remarks

There is a need for a quantitative strategy in determining
the depth and size of cancerous nodules in soft tissue,
e.g., prostate, using instrumented palpation for clinical
application of nodule identification and characterization.
A novel methodology based on mechanical probing and

finite element analysis to quantify the size and depth of
nodules without a priori knowledge of the topology of
nodule and/or stress distribution in the tissue was pro-
posed in this study. Gelatin phantoms with tissue-
mimicking mechanical properties were then used to vali-
date the proposed methodology, where both the size and
depth of the nodule were estimated with good levels of
accuracy, therefore making it a useful complimentary tool
for characterizing a variety of tissues such as breast, pros-
tate, liver, and kidney for the purpose of tumor detection
and robot-assisted surgery [30].

This study, as it currently stands, has a number of lim-
itations. Firstly, it is worth noting that the materials in this
study were considered to be elastic, due to the indentation
measurements being conducted with a low indentation
rate and long waiting time at the desired indentation
depth. Viscoelastic behavior of examined tissue and how
it could affect the identification outcome will be studied
in future work. Secondly, the ratio of moduli between
cancerous and non-cancerous tissues in this study was
2:1, which was somewhat a conservative estimation, com-
pared to findings from many other studies (see Table 1).
Should such a ratio be higher than 2:1, one would expect
the proposed methodology of cancer nodule detection to
be even more sensitive. This will be investigated in detail
in a future study, where the prostate tissue phantoms
could also be tuned to reflect on different ratios of moduli
between cancerous and non-cancerous phantoms. Finally,
future studies will also be carried out to further test and

Fig. 8 Experimental validation of the proposed method using the gelatin
phantom. a–c Results of the second derivative of the force feedback
profile obtained from computational models where nodules of different
sizes are located at various depths (4, 8, 9, 10, 11, and 12 mm). The

vertical dashed lines indicate the value of 2nd derivative obtained from
experimental measurements. d, e Results of nodule depth and size
identification. f Error between the phantom and predicted parameters
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validate the proposed method for in vivo applications, poten-
tially with multiple tumor nodules and heterogeneity [31] in
the tissue.

Acknowledgments The authors also thank Mr. Nasim Mammadov for
his technical support on the gelatin phantom work.

Funding information Support under grant no. (EP/I019472/1, EP/
I020101/1 and EP/N006089/1) was from the Engineering and Physical
Sciences Research Council (EPSRC). The first author received the James
Watt Scholarship at Heriot-Watt University.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of
interest.

No human or animal subjects were involved in the submitted work.
All funding sources of this study have been included in the
acknowledgement.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate if
changes weremade. The images or other third party material in this article
are included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the
article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Guan J, Chen M, Xiao N, Li L, Zhang Y, Li Q, Yang M, Liu L,
Chen L (2016) EGFR mutations are associated with higher inci-
dence of distant metastases and smaller tumor size in patients with
non-small-cell lung cancer based on PET/CTscan. Med Oncol 33:1

2. Yi A, Cho N, Chang JM, Koo HR, La Yun B, Moon WK (2012)
Sonoelastography for 1,786 non-palpable breast masses: diagnostic
value in the decision to biopsy. Eur Radiol 22:1033–1040

3. Masuzaki R, Tateishi R, Yoshida H, Sato T, Ohki T, Goto T,
Yoshida H, Sato S, Sugioka Y, Ikeda H, Shiina S, Kawabe T,
Omata M (2007) Assessing liver tumor stiffness by transient
elastography. Hepatol Int 1:394–397

4. Miyagawa T, Tsutsumi M, Matsumura T, Kawazoe N, Ishikawa S,
Shimokama T, Miyanaga N, Akaza H (2009) Real-time
elastography for the diagnosis of prostate cancer: evaluation of
elastographic moving images. Jpn J Clin Oncol 39:394–398

5. Tsutsumi M, Miyagawa T, Matsumura T, Kawazoe N, Ishikawa S,
Shimokama T, Shiina T, Miyanaga N, Akaza H (2007) The impact
of real-time tissue elasticity imaging (elastography) on the detection
of prostate cancer: clinicopathological analysis. Int J Clin Oncol 12:
250–255

6. Su LM (2010) Early diagnosis and treatment of cancer: Saunders
Elsevier

7. Carter SM, Williams J, Parker L, Pickles K, Jacklyn G, Rychetnik
L, Barratt A (2015) Screening for cervical, prostate, and breast
cancer: interpreting the evidence. Am J Prev Med 49:274–285

8. Parimi V, Goyal R, Poropatich K, Yang XJ (2014) Neuroendocrine
differentiation of prostate cancer: a review. Am J Clin Exp Urol 2:
273–285

9. Sartor AO, Hricak H, Wheeler TM, Coleman J, Penson DF, Carroll
PR, Rubin MA, Scardino PT (2008) Evaluating localized prostate
cancer and identifying candidates for focal therapy. Urology. 72:
S12–S24

10. Serfling RSM, Thompson GL, Xiao Z, Benaim E, Roehrborn CG,
Rittmaster R (2007) Quantifying the impact of prostate volumes,
number of biopsy cores and 5alpha-reductase inhibitor therapy on
the probability of prostate cancer detection using mathematical
modeling. J Urol 177:2352–2356

11. Loeb S, Vellekoop A, Ahmed HU, Catto J, Emberton M, Nam R,
Rosario DJ, Scattoni V, Lotan Y (2013) Systematic review of com-
plications of prostate biopsy. Eur Urol 64:876–892

12. Carson WC, Gerling GJ, Krupski TL, Kowalik CG, Harper JC,
Moskaluk CA (2011) Material characterization of ex vivo prostate
tissue via spherical indentation in the clinic.Med Eng Phys 33:302–
309

13. Hoyt K, Castaneda B, Zhang M, Nigwekar P, di Sant’Agnese PA,
Joseph JV, Strang J, Rubens DJ, Parker KJ (2008) Tissue elasticity
properties as biomarkers for prostate cancer. Cancer Biomark 4:
213–225

14. Ahn B, Kim Y, Oh CK, Kim J (2012) Robotic palpation and me-
chanical property characterization for abnormal tissue localization.
Med Biol Eng Comput 50:961–971

15. Lee H, Kim Y, Shin YK, Ahn B, Rha K, Kim J (2012) Localization
of abnormality using finite element modeling of prostate glands
with robotic system: a preliminary study 4th IEEE RAS & EMBS
international conference

16. Hammer SJ, Good DW, Scaland P, Palacio-Torralba J, Phipps S,
Stewart GD, Shu W, Chen Y, McNeill SA and Reuben RL (2017)
Quantitative mechanical assessment of the whole prostate gland
ex vivo using dynamic instrumented palpation. Proceedings of the
Institution ofMechanical Engineers, Part H: Journal of Engineering
in Medicine (in print) . DOI: https: / /doi.org/10.1177/
0954411917734257

17. Patlan-Rosales PA and Krupa A (2016) Automatic palpation for
quantitative ultrasound elastography by visual servoing and force
control. IEEE/RSJ international conference on intelligent robots
and systems. DOI: https://doi.org/10.1109/IROS.2016.7759367

18. Stamey T, McNeal J, Yemoto C, Sigal B, Johnstone I (1999)
Biological determinants of cancer progression in men with prostate
cancer. J Am Med Assoc 281:1395–1400

19. Sangpradit K, Liu H, Dasgupta P, Althoefer K, Seneviratne LD
(2011) Finite-element modeling of soft tissue rolling indentation.
IEEE Trans Biomed Eng 58:3319–3327

20. Hosseini SM, AmiriM,Najarian S, Dargahi J (2007) Application of
artificial neural networks for the estimation of tumour characteris-
tics in biological tissues. Int J Med Rob Comput Assisted Surg:
235–244

21. Ahn B, Lorenzo EI, Rha KH, Kim HJ, Kim J (2011) Robotic
palpation-based mechanical property mapping for diagnosis of
prostate cancer. J Endourol 25:851–857

22. Phipps S, Yang TH, Habib FK, Reuben RL, McNeill SA (2005)
Measurement of tissue mechanical characteristics to distinguish be-
tween benign and malignant prostatic disease. Urology. 66:447–
450

23. Yan Z, Zhang S, Alam SK, Metaxas DN, Garra BS, Feleppa EJ
(2012) Modulus Reconstruction from prostate ultrasound images
using finite elment modeling. Publisher, San Diego

24. McNeal J, Haillot O (2001) Patterns of spread of adenocarcinoma in
the prostate as related to cancer volume. Prostate 49:48–57

25. Lawrentschuk N, Lindner U, Klotz L (2011) Realistic anatomical
prostate models for surgical skills workshops using ballistic gelatin

1380 Med Biol Eng Comput (2020) 58:1369–1381

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1177/0954411917734257
https://doi.org/10.1177/0954411917734257
https://doi.org/10.1109/IROS.2016.7759367


for nerve-sparing radical prostatectomy and fruit for simple prosta-
tectomy. Korean J Urol 52:130–135

26. Madsen EL, Hobson MA, Shi H, Varghese T, Frank GR (2005)
Tissue-mimicking agar/gelatin materials for use in heterogeneous
elastography phantoms. Phys Med Biol 50:5597–5618

27. Bouyé S, Potiron E, Puech P, Leroy X, Lemaitre L, Villers A (2009)
Transition zone and anterior stromal prostate cancers: zone of origin
and intraprostatic patterns of spread at histopathology. Prostate 69:
105–113

28. Marquardt DW (1963) An algorithm for least-squares estimation of
nonlinear parameters. J Soc Ind Appl Math 11:431–441

29. Zhang M, Zheng YP, Mak AFT (1997) Estimating the effective
Young’s modulus of soft tissues from indentation tests—nonlinear
finite element analysis of effects of friction and large deformation.
Med Eng Phys 19:512–517

30. Yamamoto T, Abolhassani N, Jung S, Okamur AM, Judkins TN
(2012) Augmented reality and haptic interfaces for robot-assisted
surgery. Int J Med Rob Comput Assisted Surg 8(1):45–56

31. Palacio‐Torralba J, Good DW, Stewart GD, McNeill SA, Reuben
RL, Chen Y (2018) A novel method for rapid and quantitative
mechanical assessment of soft tissue for diagnostic purposes: A
computational study. Int J Numer Meth Biomed Engng 34:e2917

Publisher’s note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

Javier Palacio-Torralba obtained
his PhD, on computational
modeling for palpation-based tu-
mor detection, at Heriot-Watt
University, UK in 2016. After
1 year post-doc working on topol-
ogy optimization for heteroge-
neous porous materials, he moved
to the industrial sector. Currently,
he develops and deploys solutions
for embedded systems, hardware
and software in the loop, and vir-
tual validation for the automotive
and autonomous vehicle applica-
tions.

Robert L. Reuben graduated in
Metallurgy from the University
of Strathclyde in 1974, and as
PhD on Hydrogen Permeation
through Metals in 1980. After
post-doc work on novel steels for
automotive and structural use, he
became a lecturer at Robert
Gordon’s Institute of Technology
(now Robert Gordon University)
before joining Heriot-Watt
University as a lecturer in 1985.
In 1995, he was appointed as
P r o f e s s o r o f M a t e r i a l s
Engineering. His current research

interests are focused on structure-property relationships in biological ma-
terials and associated diagnostic devices, although he continues to have
activities in manufacturing technology and microsystems engineering.

Yuhang Chen graduated in
Engineering Mechanics in 2007
from Tongji University, China.
He obtained his PhD on computa-
tional mechanics at the University
of Sydney, Australia, in 2011.
After a post-doc period, he joined
Her io t -Wat t Univers i ty as
A s s i s t a n t P r o f e s s o r o f
Biomedical Engineering in 2012.
Currently, he leads the Tissue
Mechanics Research Group and
his research mainly spans from
experimental/computational bio-
mechanics to mechanical behav-

ior of biological tissue, particularly in understanding the relationship be-
tween tissue hierarchical structures at multiple length scales and their
pathophysiological conditions.

Med Biol Eng Comput (2020) 58:1369–1381 1381


	A...
	Abstract
	Introduction
	Materials and methods
	The computational models
	In silico configuration
	Material model and parameters
	Sensitivity analysis—influence of nodule geometry

	The computational framework—decoupling the size and depth of tumor nodule
	Experimental validation
	Material characterization of gelatin phantom
	Instrumented palpation on tissue phantom


	Results and discussion
	Quantitative identification of cancerous nodules: 2D analysis
	Variations in nodule geometry—a sensitivity study
	Experimental validation using gelatin phantom

	Concluding remarks
	References


