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INTRODUCTION

Determining the neurobiological substrates of working memory is of major clinical significance
yet has proven to be a complex undertaking. The dorsolateral prefrontal cortex (dlPFC) is a key
site for working memory (Luebke et al., 2010), and the integrity of this cognitive domain has
been assessed in both humans and non-human primates using the delayed response (DR) task
(Goldman-Rakic, 1990). Critically, this task employs a delay period during which the stimulus
is absent and the animal must hold in memory the trial-unique, task-relevant information until
the delay ends. Initial investigations showed that acetylcholine (Bartus and Johnson, 1976),
dopamine (Arnsten et al., 1994, 1995), and norepinephrine (Arnsten and Goldman-Rakic, 1985)
activity influence DR working memory performance. Scientists have examined the dlPFC cellular
contributions to working memory and the relationship between neuromodulator receptors and
dlPFC cellular activity. Here I synthesize results from across non-human primate studies to
examine the complexities of the relationship between neuromodulation and working memory.

NEURAL SUBSTRATES OF WORKING MEMORY IN THE
PREFRONTAL CORTEX

Early studies of working memory in monkeys employed the DR task to examine the dlPFC
cellular contributions to this cognitive domain. It was discovered that during the delay period
a subset of pyramidal cells in area 46 of the dlPFC is persistently active (Fuster and Alexander,
1971). In spatial versions of the task, delay cells exhibit spatial tuning and fire preferentially for
a preferred cue direction. This persistent firing correlates with behavioral performance and is
proposed to be the neurological substrate of working memory (Funahashi et al., 1989; Goldman-
Rakic, 1996). Computational models predict that persistent firing is dependent upon the NMDA
receptor (NMDAR) subunit GluN2B because of its slow kinetics (Wang, 2001), and experimental
results confirm this prediction (Wang et al., 2013). Systemic administration of ketamine (NMDA
antagonist) decreases behavioral performance and reduces delay cell firing (Wang et al., 2013).
Iontophoretic blockade specifically of either receptor subunit GluN2A or GluN2B impairs delay
cell firing, with GluN2B blockade also impairing spatial tuning (Wang et al., 2013). Local blockade
of the AMPA receptor (AMPAR) has a modest effect on delay cell firing for preferred directions that
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appears in the latter half of the delay period, suggesting
that AMPAR activity is more important for background
depolarization (Wang et al., 2013).

In addition to delay cells there are several other cell types
in area 46 whose activity supports task performance (Funahashi
et al., 1991) fixation cells fire during the duration of the trial
and are proposed to play a role in attention (Sun et al., 2017);
cue cells fire at the onset of the cue; and, response cells
fire during the response portion of the trial. Cue cell firing
is decreased by iontophoretic blockade of either GluN2B or
AMPAR (Wang et al., 2013). Response cell firing is decreased by
iontophoretic blockade of GluN2B, but systemic administration
of a general NMDAR antagonist increases both task-related
and spontaneous firing of response cells (Wang et al., 2013).
Perisaccadic response cells are unaffected by AMPAR blockade,
whereas postsaccadic response cells show decreased activity
(Wang et al., 2013).

THE ROLE OF ACETYLCHOLINE IN
WORKING MEMORY DELAY CELL FIRING

While glutamate drives working memory neurotransmission
via AMPAR and NMDAR, dlPFC cellular activity is also
heavily influenced by neuromodulators like acetylcholine. The
dlPFC receives cholinergic innervation from the nucleus basalis
of Meynert in the basal forebrain (Mesulam et al., 1983),
and a decrease in the number of nucleus basalis cholinergic
cells is correlated with impaired DR average performance
(Voytko et al., 1995). Both acetylcholine depletions from
the PFC (Croxson et al., 2011) and systemic antagonism of
muscarinic receptors (Bartus and Johnson, 1976) cause working
memory impairments. Iontophoretic blockade using a general
nicotinic receptor antagonist decreases delay cell firing for
both preferred and non-preferred directions, and iontophoretic
blockade specifically of nicotinic α7 receptor (α7R) reduces
delay cell firing only for preferred directions (Yang et al.,
2013). Iontophoretic, low-level α7R agonism increases delay
cell firing for preferred directions, enhances spatial tuning, and
improves behavioral performance whereas high-level agonism
impairs behavioral performance (Yang et al., 2013). Local
α4β2 receptor (α4β2R) agonism increases delay cell spatial
tuning by increasing the firing for preferred directions (Sun
et al., 2017). Local α4β2R blockade reverses the effects of
α4β2R agonists, and α4β2R agonists restore firing to normal
levels after iontophoresis of α4β2R antagonists (Sun et al.,
2017). Increasing the cognitive demand by introducing a
distractor cue decreases spatial tuning by increasing firing for
non-preferred directions and decreasing firing for preferred
directions, resulting in impaired behavioral performance. Local
α4β2R agonism during the distractor condition restores preferred
direction delay cell firing rates to control levels, but has
no effect on firing rates for non-preferred directions (Sun
et al., 2017). Acetylcholine is known to play a critical role
in attention (Sarter et al., 1999), and α4β2R manipulations
suggest that acetylcholine is important for working memory

function because it supports increased attention needed to
maintain persistent firing in the face of a distraction. This
idea is further supported by the fact that fixation cell firing,
which lasts the duration of the trial and is thought to play a
role in attention, is increased by iontophoretic α4β2R agonism
for both preferred and non-preferred directions (Sun et al.,
2017).

THE ROLE OF DOPAMINE IN WORKING
MEMORY DELAY CELL FIRING

In addition to cholinergic innervation, the dlPFC receives
dopaminergic innervation from the ventral tegmental area
(Porrino and Goldman-Rakic, 1982), and systemic agonism
of dopamine receptor D1 (D1R) improves DR behavioral
performance in both agedmonkeys who have naturally occurring
low dopamine and in young animals with experimental depletion
of catecholamines (Arnsten et al., 1994). Local, low-level D1R
agonism increases spatial tuning of delay cells by decreasing
firing for non-preferred directions, but high-level agonism
decreases spatial tuning by decreasing firing for both preferred
and non-preferred directions (Vijayraghavan et al., 2007).
Local, low-level D1R antagonism increases firing for preferred
directions and modestly decreases firing for non-preferred
directions, but high-level antagonism dramatically decreases
delay cell firing (Williams and Goldman-Rakic, 1995). Systemic
injection of a D1R antagonist impairs behavioral performance
(Sawaguchi and Goldman-Rakic, 1991; Arnsten et al., 1994).
The inverted-U effects of D1R activity on delay cell activity
suggests that dopamine is involved in sculpting spatial tuning
such that broad spatial tuning becomes more precise with low-
level D1 agonism (Vijayraghavan et al., 2007). Local D2 receptor
(D2R) modulation is reported to have no effect on delay cell
firing (Wang et al., 2004), but systemic D2R agonism has a
biphasic effect on behavioral performance: low doses impair
performance but high doses enhance performance (Arnsten
et al., 1995), suggesting that D2R activity supports working
memory by modulating activity of cell types other than delay
cells. Substantial dopamine depletion (90%) produces working
memory deficits on the delayed alternation task as severe as
surgical ablation of the principal sulcus of the dlPFC (Brozoski
et al., 1979).

THE ROLE OF NOREPINEPHRINE IN
WORKING MEMORY DELAY CELL FIRING

Similar to D1R agonism, systemic agonism of α2 adrenergic
receptor (α2-AR) improves behavioral performance in both aged
monkeys who have naturally occurring low norepinephrine and
in young animals with experimental depletion of catecholamines
(Arnsten and Goldman-Rakic, 1985). The dlPFC receives
adrenergic innervation from the locus coeruleus (Porrino and
Goldman-Rakic, 1982), and α2-AR agonism increases delay
cell firing whereas α2-AR antagonism decreases delay cell
firing (Li et al., 1999). Systemic α2-AR agonism at both low
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and high doses improves working memory performance for
aged animals but only high doses improve performance for
young animals (Arnsten and Goldman-Rakic, 1985; Franowicz
and Arnsten, 1999). Catecholamine depletion impairs working
memory, and systemic α2-AR agonism after catecholamine
depletion rescues behavioral performance to control levels (Cai
et al., 1993). Local α1-AR agonism decreases delay cell firing
for preferred directions (Birnbaum et al., 2004), and both
local (Birnbaum et al., 2004) and systemic α1-AR agonism
impairs working memory (Arnsten and Jentsch, 1997; Mao
et al., 1999; Birnbaum et al., 2004). However, behavioral
performance is not altered with local blockade of α1-AR (Li
and Mei, 1994). Neither systemic (Arnsten and Goldman-Rakic,
1985) nor local injection (Li and Mei, 1994) of a general
β-adrenergic antagonist affects behavioral performance. Local
blockade of β1-AR enhances working memory (Ramos et al.,
2005), and systemic injection of a β2-AR agonist enhances
working memory performance in a subset of aged animals
(Ramos et al., 2008), suggesting that these two receptors have
opposing effects in the dlPFC. Norepinephrine is thought to play
a role in working memory function by improving the spatial
tuning of delay cell firing thereby decreasing distractibility and
improving behavioral performance (Arnsten, 2006). This idea
is supported by the effect of α2-AR vs. α1-AR agonism on
preferred direction delay cell firing, and is further reinforced
by the fact that systemic α2-AR agonism improves behavioral
performance when aged animals are tested on the DR task
with distractor cues (Arnsten and Contant, 1992). Additionally,
depletion of norepinephrine causes modest working memory
impairments on the delayed alternation task (Brozoski et al.,
1979).

THE ROLE OF SEROTONIN IN WORKING
MEMORY DELAY CELL FIRING

Compared to the other neuromodulators, significantly less
is known about the role of serotonin in working memory.
The dlPFC receives serotonergic innervation from the dorsal
raphe nucleus (Porrino and Goldman-Rakic, 1982), and local
serotonergic 5-HT2A receptor agonism increases delay cell
firing for preferred directions and modestly decreases firing for
non-preferred directions (Williams et al., 2002). Iontophoretic
blockade of 5-HT2A decreases firing for preferred directions
and modestly increases firing for non-preferred directions
(Williams et al., 2002). General serotonergic stimulation through
local, low dose application of either 5-HT or α-methyl-5-
HT causes increased firing for preferred directions and a
modest increase for non-preferred directions, resulting in overall
increased spatial tuning (Williams et al., 2002). However,
iontophoretic high dose application of α-methyl-5-HT severely
depresses delay cell firing (Williams et al., 2002). It is
unclear how serotonin modulates working memory, as a 70%
depletion of serotonin in the principal sulcus does not cause
working memory impairments on the delayed alternation task
(Brozoski et al., 1979). In marmosets, serotonin depletion in

the orbitofrontal cortex increases perseverative errors on a
serial discrimination reversal task (Clarke et al., 2004, 2007)
but does not impair attentional set shifting (Clarke et al.,
2005).

CONCLUSIONS: THE COMPLICATED
RELATIONSHIP BETWEEN
NEUROMODULATION AND WORKING
MEMORY

The complex and varied effects of neuromodulation on
dlPFC cellular activity and working memory performance are
summarized in Table 1. Although neurotransmitter (AMPA or
NMDA) receptor modulation generally affects the firing of
area 46 cell types in a similar manner (e.g., antagonism of
GluN2B decreases firing for cue cells, delay cells, and response
cells Wang et al., 2013), neuromodulator receptor activity has
cell type-specific effects. Even more selectively, neuromodulator
receptor activity can differently affect subpopulations of the
same cell type (e.g., α7R activity affects the firing rate of
preferred direction delay cells but has no effect on non-preferred
direction delay cells, Yang et al., 2013), and the degree to which
neuromodulation affects preferred vs. non-preferred direction
delay cells is sensitive to the level of cognitive demand of the task
(Sun et al., 2017). Further, a given neuromodulator can be active
at a number of receptors, and activation of different receptor
subunits can have a dramatically different effect on cell activity
(e.g., α1-AR agonism decreases delay cell firing whereas α2-AR
agonism increases delay cell firing, Li et al., 1999).

Although many studies have investigated the role of
neuromodulation on delay cell firing, the neuromodulation of
other dlPFC cell types remains vastly understudied. Local α4β2
agonism increases fixation cell firing for both preferred and non-
preferred directions but has no effect on cue or response cells
(Sun et al., 2017). Iontophoretic blockade of α7R has no effect on
cue cell firing (Yang et al., 2013). Local D2R modulation affects
both perisaccadic and postsaccadic response cell firing but only
for preferred directions, with D2R agonism increasing response
firing and D2R antagonism decreasing response firing (Wang
et al., 2004). Local D1R modulation has no effect on response
cell firing, and local D2R modulation has no effect on cue cell
firing (Wang et al., 2004). To understand the complex dynamics
of the working memory network it is imperative that more work
be done investigating the effects of neuromodulation on cue cells,
response cells, and fixation cells.

A number of studies use delay cell firing as a proxy for
working memory performance. It bears mentioning that there
are alternative hypotheses for the significance of persistent
delay cell firing other than the maintenance of task-relevant
information (Rowe et al., 2000; Tsujimoto and Postle, 2012;
Konecky et al., 2017). Nevertheless, studying the effects of
neuromodulation on delay cell firing has given insights into
potential pharmacological strategies for improving working
memory deficits, and the non-human primate model is
especially suitable to studying the neurobiological substrates
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of working memory given the unique qualities of the human
and non-human primate dlPFC (Preuss, 1995; Wise, 2017).
But local modulation of a receptor is not network-wide
modulation and there remains a tremendous knowledge
gap in how many of these neuromodulator receptors affect
behavioral performance. For therapeutic interventions to be
efficacious it is critical that we understand how neuromodulation
affects working memory performance especially when systemic
administration of a drug is a significantly less invasive therapeutic
intervention than local infusion. Building from our current
foundation of knowledge, it is important that future studies
examine the behavioral effects of neuromodulation as well
as the cellular effects on all cell types and not just delay
cells.
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