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Abstract: The outbreak of the monkeypox virus (MPXV) in non-endemic countries is an emerging
global health threat and may have an economic impact if proactive actions are not taken. As shown by
the COVID-19 pandemic, rapid, accurate, and cost-effective virus detection techniques play a pivotal
role in disease diagnosis and control. Considering the sudden multicountry MPXV outbreak, a critical
evaluation of the MPXV detection approaches would be a timely addition to the endeavors in progress
for MPXV control and prevention. Herein, we evaluate the current MPXV detection methods, discuss
their pros and cons, and provide recommended solutions to the problems. We review the traditional
and emerging nucleic acid detection approaches, immunodiagnostics, whole-particle detection, and
imaging-based MPXV detection techniques. The insights provided in this article will help researchers
to develop novel techniques for the diagnosis of MPXV.
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1. Introduction

The ongoing COVID-19 pandemic and the recent monkeypox virus (MPXV) outbreak
reflect the need for a viable global healthcare system. Almost every country is now glob-
ally connected, and infectious disease outbreaks have become a constant global threat,
necessitating proactive measures [1]. MPXV is an adenovirus with a double-stranded DNA
genome, belonging to the family Poxviridae, subfamily Chordopoxvirinae, and the genus
Orthopoxvirus [2,3]. MPXV was first reported in 1958 after two pox-like disease outbreaks
occurred in monkeys [4]. The original source of MPXV is unknown. Rodents likely harbor
the virus [5], leading to spillover events. The case of human infection by MPXV was first
reported in humans in in the Democratic Republic of the Congo in 1970 [6]. The trans-
mission of MPXV from animals to humans may occur by direct or indirect contact with
infected organisms (live or dead), while close contact with symptomatic cases is thought to
be the main human-to-human transmission mode [5]. MPXV infection in asymptomatic or
undiagnosed (where signs and symptoms overlap with other diseases) men who have sex
with men (MSM) was also reported in a recent case study [5]. In recent MPXV outbreaks,
the MPXV cases were predominantly reported in homosexual or bisexual males [7]. The
approximate incubation period of MPXV is about 5–21 days [8,9]. However, an incubation
period of 3–20 days was also reported [10].

Recently, a multicountry monkeypox outbreak was reported to the World Health
Organization (WHO) by several non-endemic countries. Since January 2022, and as of
14 September 2022, about 103 member states from six regions have reported a total of
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59,147 confirmed cases of MPXV and 22 deaths [7]. MPXV has been declared a global
health emergency by the WHO [11].

Diagnostic methods play a pivotal role in infectious disease control and monitor-
ing. Nucleic acid amplification assays (NAAa), sequencing, and serological tests have
been developed for MPXV (Table 1). Quantitative polymerase chain reaction (qPCR) and
sequencing are common MPXV diagnostics [12]. In addition to PCR and sequencing,
isothermal amplification methods have been developed in an effort to complement the
PCR-based approaches [13]. However, their clinical implementation has not yet been
demonstrated. Though isothermal amplification methods do not rely on thermal cyclers
and reduce diagnostic costs, these methods have certain limitations in terms of selectivity
and operational ease [13], providing room for future developments. Since MPXV has spread
to many demographics, a review of MPXV detection techniques and possible development
opportunities could be a timely addition to the fight against MPXV.

Herein, we highlight the MPXV detection modalities and discuss challenges and op-
portunities. We start with a brief introduction to MPXV, including its genome organization,
followed by a detailed discussion of monkeypox diagnostic approaches. The limitations
and possible solutions are delineated.

2. Overview of Monkeypox Virus

MPXV, together with other orthopoxviruses, is a complex virus and has one of the
largest viral genomes [14]. Under an electron microscope, MPXV and other poxviruses
show a brick-shaped geometry [15,16]. The size range of the monkeypox virus is 200 to
250 nm [17]. The genome size of MPXV is about 197 kbp [18]. The virion genome contains
inverted tandem repeats, tandem repeats, open reading frames, and hairpin loops [19]. The
MPXV genome has a conserved central genomic region harboring housekeeping genes,
while variable regions on both termini are involved in virus pathogenesis [15,19–21].

MPXV is genetically divided into two main clades: clade 1, formerly known as the
Congo Basin or Central African (CA) clade, and clade 2, formerly designated as the West
African (WA) clade [21]. The fatality rate of the WA clade is relatively lower. Conversely,
the CA clade is more virulent (the fatality rate is about 11%) and is potentially more
transmissible [22]. Recently, the WHO convened global experts on the nomenclature of
virus variants or clades [23]. A consensus was reached. According to the consensus, the
MPXV genome is divided into two clades, viz. clade I and clade II. Clade II is divided into
subclades: clade IIa and clade IIb (the currently circulating clade) [23]. Clade I corresponds
to the genome from the CA clade, while clade II corresponds to the WA clade [24].

Initially, most of the cases were concentrated in the European region (Figure 1) [25],
but the virus is now increasingly spreading to other non-endemic countries. A total of
28 deaths have been reported so far [26]. Among the globally infected countries, countries
from the American and European regions are the most affected [26].
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Figure 1. Multicountry MPXV outbreak. The figure shows the countries where the recent outbreak 
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Figure 1. Multicountry MPXV outbreak. The figure shows the countries where the recent outbreak
was initially reported. The numbers indicate the total number of cases in each country during
January 2022–June 2022. Redrawn from Ref. [25].

3. Monkeypox Diagnosis Approaches

Since MPXV is a re-emerging virus, a number of MPXV detection modalities have
been developed since its discovery (Figure 2).
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Figure 2. Overview of MPXV diagnostics. The years indicate the time frames of the published articles
discussed in this manuscript.

3.1. Indirect Detection

Indirect detection is based on virus-induced morphological changes to host cells
or membranes.

3.1.1. Monkeypox Diagnosis Based on Virus Culture

Some viruses can induce macroscopic lesions (called pocks) on the chick chorioallan-
toic membrane (CAM). The pattern of pock formation, the time required for pock formation,
and the size of the pock have been explored to differentiate different poxvirus infections,
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including MPXV [27,28]. The morphological changes can be observed with a microscope
or the naked eye. For instance, when CAM was inoculated with MPXV, the pocks were
visible and could be reckoned with the naked eye [28]. However, detection solely based on
the above-mentioned characteristics may not be sufficient for an accurate diagnosis due to
overlapping signs and symptoms with other diseases.

Monkeypox isolates are grown in RK13 cells [29], where cytopathic effects are observed
within 24–48 h of infection. The major drawback of culture-based virus diagnosis is the
prolonged assay time [30], which is not suitable for mass testing scenarios. Further, virus
culture methods need biosafety level 3 (BSL3) labs and pose a risk of laboratory-acquired
infections [31]. Shell vial culture (SVC) has been developed as an alternative culture method
for the rapid in vitro detection of MPXV and other viruses [30]. In this method, a cell mono-
layer is grown on a cover slip in a shell vial culture tube, and the specimen is inoculated
on the monolayer, followed by low-speed centrifugation and immunofluorescence-based
detection. The low-speed centrifugation step is introduced to enhance the virus’s infectivity.
The mechanical force resulting from low-speed centrifugation is thought to cause cell
trauma, which subsequently enhances viral entry into cells, resulting in a reduced cell
infection time [32].

3.1.2. Diagnosis Based on Image Analysis

Image digitalization has already gained momentum for infectious disease diagnosis
and monitoring. Chatbots have been developed for disease diagnostic evaluation and the
recommendation of immediate measures in case a patient contracts SARS-CoV-2 [33]. A
monkeypox image dataset was constructed comprising 43 original images and 587 images
obtained after data augmentation [34] (Figure 3). Using the newly developed “Monkeypox
2022” dataset, an image classification model was proposed [35]. The study paves the way
towards the development of image-analysis-based tools for monkeypox virus detection.
The images used in the dataset are from previous outbreaks. The classic MPXV cases were
characterized by a generalized rash. In contrast, most of the cases in the current outbreak
have localized lesions in anogenital and genitourinary areas [36,37]. Since many recent
MPXV-infected cutaneous images have been reported, the updated dataset may have added
value to the above MPXV 2022 image dataset.

3.2. Direct Detection

In the case of direct detection, nucleic acid and protein components of the virus are
detected without the need for a pathogen culture. Molecular detection, immunodiagnostics,
and sequencing are widely explored direct detection approaches.

3.2.1. Monkeypox Immunodiagnostics

The hemagglutination test is a simple and cost-effective approach for virus detection.
The test is based on the agglutination of erythrocytes in the presence of a virus [30].
The hemagglutination mechanism led to the development of another assay called the
hemagglutination inhibition (HI) assay [38]. The HI approach relies on virus-specific
antibodies to detect viral antigens. The MPXV strains are tested using hemagglutination
and HI tests [28]. The test cannot differentiate MPXV from the variola and vaccinia viruses
but can differentiate cowpox from MPXV and can be used to estimate the evolutionary
relationships of viral strains or species.

The enzyme-linked immunosorbent assay is a widely used protein detection method [39].
A commercially available Orthopox BioThreat® Alert Assay for orthopox virus (OPV)
detection is a reliable OPV detection method [40]. This antibody-based lateral flow assay
captures virus antigens and detects the viral load at 104 PFU/mL. The surface protein
A27 was found to be the most immunogenic protein for virus particle capture and detec-
tion [41]. After a comprehensive screening of A27-binding antibodies, an ELISA approach
was developed for orthopoxviruses, including MPXV. The method’s detection limit is
1× 103 PFU/mL. In a similar line of work, an ABICAP (Antibody Immuno Column for
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Analytical Processes) immunofiltration system was developed by Stern et al. The system
has an OPV detection sensitivity of 104 PFU/mL with an assay time of 45 min [42]. A
dot immunoassay based on protein array technology can detect MPXV in a concentration
range of 103–104 PFU/mL within 39 min [43]. Recently, Ulaeto et al. described the char-
acteristics of an LFA for the detection of orthopoxviruses [44]. The assay detects vaccinia
virus samples spiked in human saliva and clinical sample buffer with a detection limit of
between 104 and 105 PFU/mL within 20 min. Since this assay detects orthopoxviruses, the
test can be further explored for MPXV detection in real samples. Combining the clinical
presentation of MPXV with the LFA test could provide a rapid MPXV detection tool. All of
the above-mentioned immunodetection modalities are suitable for generic orthopox virus
detection applications, but none of them are specific for MPXV.
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3.2.2. Whole-Particle Detection

Finding biomarkers for a newly emerged virus is challenging and may hamper the di-
rect implementation of routine diagnostic methods. In this regard, whole-particle detection
using electron microscopy (EM) is a powerful alternative [45]. Transmission electron mi-
croscopy is a good first step for the detection of viruses, as it provides information about the
shape and amount of viral load with a small sample volume [46]. The use of virus-specific
antibodies in immunoelectron microscopy (IEM) further improves the detection accuracy of
EM [47]. EM has been used to detect monkeypox and other orthopoxviruses [48]. Although
EM is suitable for the laboratory validation of the virus detection results, the approach
has certain limitations, such as the high cost of the instrument, the requirement of highly
trained staff, and low sample throughput [48].

3.2.3. Detection by Genome Sequencing

Genome sequencing is the gold standard to identify novel or mutated viruses. Genome
sequencing not only identifies the target virus but may pinpoint the presence of other
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viruses in the sample that can help to create a treatment plan for a particular disease. MPXV
detection based on qPCR coupled with genome sequencing has been reported [49]. To date,
200 genome sequences of MPXV isolates from recent outbreaks in non-endemic countries
have been reported [50]. Whole-genome sequencing is a time-consuming process and
requires expensive instruments, trained staff, and skilled bioinformaticians for computa-
tional analyses. These limitations need to be overcome to harness the potential of genome
sequencing approaches.

3.2.4. Monkeypox Virus Detection Based on PCR

The polymerase chain reaction (PCR) is widely regarded as the gold standard for nu-
cleic acid detection. According to WHO recommendations, PCR (conventional or real-time)
is a standard method for MPXV laboratory validation [51]. The detection can be com-
bined with sequencing or other orthopox detection assays [19]. Conventional PCR-based
MPXV detection involves PCR amplification and restriction digestion of the PCR-amplified
fragments to identify MPXV based on restriction fragment length polymorphisms.

A hemagglutinin PCR (HA-PCR) assay was developed based on MPXV-specific
primers coupled with TaqI restriction digestion [52]. The method could not distinguish
different MPXV isolates. To improve the detection accuracy of the PCR assay, an A-type
inclusion body protein (ATI) gene has been used to detect MPXV and other orthopoxviruses
based on PCR-based gene amplification and XbaI digestion [53,54]. The method can dif-
ferentiate MPXV strains based on restriction digestion. In another development, the open
reading frame (ORF) of the ATI gene was identified, sequenced, and compared with other
related poxviruses [55]. Unique deletions were found in the OFR of MPXV and were
harnessed for the specific detection of the MPXV ATI gene. This PCR method differentiates
19 MPXV strains. The specificity was confirmed by BglII restriction digestion.

Compared to traditional PCR, real-time PCR is rapid and sensitive. Due to the low GC
content and almost 90% genome identity with other Eurasian orthopoxviruses, designing
an MPXV-specific TaqMan assay is challenging. Li et al. developed a real-time PCR assay
where minor-groove-binding protein-based (MGB) probes were developed [56]. The use
of MGB stabilizes probe–template interactions, enables the use of small probe sequences
for single-nucleotide polymorphism (SNP) detection, and enhances assay sensitivity and
specificity [57]. The method could detect 15 MPXV isolates at a 10 ng concentration. The
assay efficiency with freshly diluted DNA is 97%, while it is reduced to 67% after multiple
freeze–thaw cycles. These observations indicate that a fresh sample should be used in order
to achieve maximum assay efficiency. The detection of MPXV and other orthopoxviruses
based on melting-curve analysis (MCA) has also been reported [58–60]. Both clades (West
African and Congo Basin) of MPXV have 99% sequence identity but are significantly
different in terms of virulence [61]. It is a big challenge to develop a clade-specific real-time
PCR detection approach due to the limited availability of unique sequences. In an effort to
differentiate between isolates from the two different clades, the terminal genomic sequences
of MPXV strains were analyzed [62]. Since the terminal sequences show relatively more
sequence variability than the central genomic region and the G2R protein gene lies in the
terminal genomic region, the G2R protein gene was chosen to design primers and probes
for the West African MPXV specific assay called G2R-WA. No unique sequences were found
in the G2R protein gene of the Congo Basin clade. Therefore, another gene, the C3L protein
gene, is targeted for Congo Basin MPXV [62].

Multiplex detection can significantly reduce the misidentification of coexisting
pathogens [63,64]. A multicolor, multiplex approach for MPXV detection was reported
where MPXV was specifically detected in the presence of the variola virus (VARV) and
the varicella-zoster virus (VZV) [65]. The target genes harboring unique sequences for
MPXV, VARV, and VZV are F3L, B12R, and ORF38, respectively. The specificity of the
developed approach is 100%, and LODs of 20 copies per reaction for MPXV and VARV
and 50 copies per reaction for VZV were reported. The robustness of the approach was
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demonstrated by successfully detecting the different combinations of MPXV, VARV, and
VZV samples.

The standard poxvirus detection approach combines the disease’s clinical symptoms
with a generic poxvirus PCR assay, followed by a poxvirus-specific PCR assay [60]. These
pan-pox real-time PCR methods are instrumental in the accurate diagnosis of poxvirus
infection. Based on the GC content, the chordopoxviruses (poxviruses that infect verte-
brates) of the subfamily Chordopoxvirinae have two distinct genome types: one genome type
contains high GC content (>60%), while the other genome type is comprised of low GC
content (30–40%) [66]. GC-content-based pan-pox PCR assays have been developed [66].
The assays are termed high-GC PCR and low-GC PCR assays. The developed PCR assays
detected DNA samples from more than 150 isolates and strains of chordopoxviruses. The
detection approach is based on conventional PCR, and PCR amplicons are evaluated by
TaqI RFLP patterns. In a similar line of work, a real-time PCR assay for the universal
detection of orthopoxviruses was reported [64]. The system was reported to be able to
detect poxviruses excluded in a previous study [66] as well as those from the subfamily
Entomopoxvirinae. This assay targets a 100 bp highly conserved sequence in the D6R gene of
poxviruses. The specificity of the assay for vertebrate samples is 99.8%, while it is 99.7%
for arthropod samples. The system is 100% sensitive for vertebrate samples and 86.6%
sensitive for arthropod samples. The detection limits are reported to be 100 or 1000 copies
per reaction, depending on the poxvirus species.

3.2.5. Detection Based on Isothermal Amplification

More than ten types of different isothermal amplification methods have been reported
and demonstrated for nucleic detection [13]. Loop-mediated isothermal amplification
(LAMP) and recombinase polymerase amplification (RPA) are well-explored isothermal
nucleic acid amplification based virus detection methods [67]. The LAMP technology relies
on two internal primers called the forward internal primer (FIP) and the backward internal
primer (BIP), two outer primers known as the forward outer primer (F3) and the backward
outer primer (B3), and a DNA polymerase with strand displacement activity [67]. The
reaction is carried out at 60–65 ◦C. The amplification reaction is accelerated by using two
loop primers, the forward loop (LF) and the backward loop primer (LB) [68]. The annealing
of the FIP, which has two target sequences (separated by a spacer) complementary to the
two different regions of the template, initiates strand synthesis and elongation (Figure 4A).
Subsequently, the F3 primer displaces the FIP strand, producing a single-stranded DNA
(ssDNA) strand that is used as a template by the BIP (Figure 4B). The BIP, which also has
two target sequences complementary to the template DNA at two different regions, starts
the strand elongation of the ssDNA template, which is later displaced by the B3 (Figure 4C).
The 5′ and 3′ ends of the template DNA have inward complementary sequences, forming a
stem-looped DNA that is exponentially amplified by loop primers (Figure 4C,D). LAMP-
based MPXV-clade-specific assays have been developed where West African (the assay
named W-LAMP) and Congo Basin MPXV (the assay named C-LAMP) clades are selec-
tively detected [69]. A turbidimeter is used to analyze the LAMP reaction, and restriction
digestion is used to confirm the LAMP products. A LAMP-based method for rapid MPXV
detection was recently posted on a preprint server [70]. The assay was developed to detect
MPXV clades. The method shows satisfactory sensitivity and response times.

Although promising, the LAMP needs a 60-minute reaction time and six primers.
Furthermore, primer design is relatively complex. To overcome these limitations, RPA has
been proposed as an attractive alternative [71] (Figure 5). The RPA signal is detected by gel
electrophoresis, real-time monitoring [72], or lateral flow assay [72]. In the case of real-time
detection, the fluorogenic probe, along with the primers, is added to the reaction system
where cleavage of the probe by exonuclease leads to a fluorescent signal. RPA-based MPXV
detection shows satisfactory results with reduced assay times and reagent costs [73].
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Table 1. Summary of MPXV diagnostic methods.

Sr. No Assay Name Target
Gene Primers’ Sequences Probes’ Sequences Detection Limit Real-Sample

Analysis References

1 HA-PCR HA gene Forward: 5′-CTGATAATGTAGAAG AC -3′

Reverse: 5′-TTGTATTTACGTGGGTG-3′ NA Not reported Yes [52]

2 ATI-PCR ATI-gene Forward: 5′-AATACAAGGAGGATCT-3′

Reverse: 5′-CTTAACTTTTTCTTTTTCTTTCTC-3′ NA Not reported Yes [53]

3 MPXV PCR
assay ATI-gene Forward: 5′-GAGAGAATCTCTTGATAT-3′

Reverse: 5′-ATTCTAGATTGTAATC-3′ NA Not reported Yes [55]

4 Real-time PCR B6R
Forward:
5′-ATTGGTCATTATTTTTGTCACAGGAACA-3′

Reverse: 5′-AATGGCGTTGACAATTATGGGTG-3′
5′-MGB/DarkQuencher-
AGAGATTAGAAATA-3′-FAM ∼10 viral copies (2 fg) Yes [56]

5 Real-time PCR G2R Forward: 5′-CACACCGTCTCTTCCACAGA -3′

Reverse: 5′-GATACAGGTTAATTTCCACATCG -3′
5′-FAM AACCCGTCGTAA
CCAGCAATACATTT-3′-BHQ1

∼8.2 genome copies
(1.7 fg) Yes [62]

6 Real-time PCR G2R Forward: 5′-TGTCTACCTGGATACAGAAAGCAA-3′

Reverse: 5′-GGCATCTCCGTTTAATACATTGAT -3′
5′-FAM-CCCATATATGCTAAA
TGTACCGGTACCGGA-3′-
BHQ1

∼40.4 copies (9.46 fg) Yes [62]

7 Real-time PCR F3L

Forward: 5′-CTCATTGATTTTTCG
CGGGAT A-3′

Reverse: 5′-GACGATACTCCTCCT
CGTTGGT-3′

5′-6FAM-CATCAGAATC
TGTAGGCCGT-MGBNFQ-3′

11–55 fg
(50–250 copies) Yes [74]

8 Real-time PCR N3R

Forward: 5′-AACAACCGT CCTACA
ATTAAA CAACA-3′

Reverse: 5′-CGCTATCGAACCATT
TTTGTAGTCT-3′

5′-6FAM-TAT AAC GGC GAA
GAA TAT ACT-MGBNFQ-3′

11–55 fg
(50–250 copies) Rodents [74]

9 Real-time PCR B7R Forward: 5′-ACGTGTTAAACAATGGGTGATG-3′

Reverse: 5′-AACATTTCCATGAATCGTAGTCC-3′
5′-TAMRA-
TGAATGAATGCGATAC
TGTATGTGTGGG-3′-BHQ2

50 copies per reaction Yes [75]
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Table 1. Cont.

Sr. No Assay Name Target
Gene Primers’ Sequences Probes’ Sequences Detection Limit Real-Sample

Analysis References

10 C-LAMP D14L

FIP-C: 5′-TGGGAGCATTGTAACTTAT
AGTTGCCCTCCTGAACACATGACA-3′

F3-C: 5′-TGGGTGGATTGGACCATT-3′

BIP-C: 5′-ATCCTCGTATCCGTTAT
GTCTTCCCACCTATTTGCGAATCTGTT-3′

B3-C: 5′-ATGGTATGGAATCCTGAGG-3′

LOOP-F-C:
5′-GATATTCGTTGATTGGTAACTCTGG-3′

LOOP-C-C:
5′-GTTGGATATAGATGGAGGTGATTGG-3′

N/A 102.4 copies
per reaction Yes [69]

11 C-LAMP ATI

FIP-W: 5′-CCGTTACCGTTTTTACAAT
CGTTAATCAATGCTGATATGGAAAAGAGA-3′

F3-W: 5′-TACAGTTGAACGACTGCG-3′

BIP-W: 5′-ATAGGCTAAAGACTAGAAT
CAGGGATTCTGATTCATCCTTTGAGAAG-3′

B3-W: 5′-AGTTCAGTTTTATATGCCGAAT-3′

LOOP-F-W:
5′-GATGTCTATCAAGATCCATGATTCT-3′

LOOP-C-W: 5′-TCTTGAACGATCGCTAGAGA-3′

N/A 103 copies per reaction Yes [69]

12 RPA G2R

Forward: 5′-AATAAACGGAAGAGATA
TAGCACCACATGCAC-3′

Reverse:
5′-GTGAGATGTAAAGGTATCCGAACCACACG-3′

5′-ACAGAAGCCGTAAT
CTATGTTGTCTATCGQ
TFCCTCCGGGAACTTA-3′

16 DNA molecules/µL Yes [73]
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4. Wastewater-Based Epidemiology of MPXV

Wastewater epidemiology (WWE) is a relatively new approach and has the potential
to achieve many ambitious objectives, such as determining the exposure of a particular
community to an illicit drug, persistent pollutant, or any other hazardous material [76].
Wastewater fingerprinting might be a valuable tool to determine the viral load in a particular
population in an epidemic outbreak where people share a sewage system, and water could
be collected from a common sewage sampling point [77]. The unabated SARS-CoV-2
pandemic and the current multicountry MPXV outbreak indicate that the global healthcare
system needs innovative disease monitoring tools such as smart diagnostics based on
artificial intelligence, Internet of Things (IoT), machine learning, big data, and other related
approaches. MPXV has been detected in various body fluids, such as urine, semen, saliva,
nasopharynx fluid, serum, plasma, feces, and vaginal fluid [3,78]. The virus from infected
individuals may be released into the environmental waters from skin flakes; by showering,
urinating, or defecating; or from the release of seminal fluid in the water. Based on this
assumption, Eline et al. recently assayed wastewater samples for MPXV detection in the
Netherlands using PCR. The authors detected MPXV in many samples. How MPXV enters
into the water is unknown. Further, animal reservoirs of MPXV may also contribute virus
to the environmental waters. Further studies are needed to ascertain that the detected
MPXV DNA is really from a human source. Another report also described MPXV DNA
detection in environmental water samples [79]. In both reports, MPXV DNA in the solid
fraction of wastewaters was reported to be higher than in the liquid fractions and could be
used as a sample for virus detection. Since wastewater is a complex matrix, developing a
standard method for wastewater-based virus detection seems challenging. Whether MPXV
is persistent and infective in the water bodies is still unknown. These challenges need to be
considered while developing detection tools for WWE applications.

5. WHO’s Sample Collection Guidelines

According to the WHO’s guidelines [51], the specimen type can be: (a) skin lesion
material, including swabs of lesion exudate, lesion roofs, and lesion crusts; (b) oropharyn-
geal swabs; (c) rectal and or genital swabs; (d) urine; (e) semen; (f) whole blood; (g) serum;
or (h) plasma. Skin lesion material is the recommended specimen for diagnosis purposes.
In addition, the oropharyngeal swab is encouraged for the laboratory confirmation of the
cases. However, care is needed when drawing conclusions from results obtained using
an oropharyngeal swab since limited data are available for this specimen type [51]. While
serum and plasma samples are used for research purposes, they can be obtained for diag-
nostic applications in combination with skin lesion material. The rest of the specimen types,
including rectal and genital swabs, urine, semen, and whole blood, are recommended to be
collected for research purposes and are subject to ethics guidelines. The samples can be
refrigerated (for 7 days) or frozen at −20 ◦C or below (for 60 days).

6. Conclusions and Prospects

The re-emergence of MPXV is a clear indication that the timely detection of viruses is
instrumental in controlling the onset and spread of outbreaks. PCR is the gold standard for
nucleic acid detection. Although sensitive and selective, the PCR-based MPXV detection
approaches may not be feasible for resource-constrained settings. Isothermal nucleic acid
amplification techniques are emerging alternatives. The development timeline of MPXV
diagnostics indicates that limited progress has been made towards innovations in MPXV
diagnostics, highlighting an obvious research gap. The WHO recommends the development
of point-of-care (POC) devices. Internet of medical things (IoMT)-based POC devices have
attracted substantial attention [80]. IoT-based MPXV detection might be a promising
approach. For instance, the IoT-based detection of COVID-19 using LAMP technology has
been demonstrated with satisfactory performance [81]. Similarly, another field-deployable
RT-LAMP-based device for onsite virus inactivation and detection was also reported [82].
These advanced approaches can be extended to MPXV diagnostics. Although a number
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of nucleic acid methods based on LAMP technology have been developed, this approach
requires a high temperature and six primers.

Alternatively, RPA technology can be equipped with smartphones for field applications
since RPA requires two primers and the reaction can be performed at 37–42 ◦C. Although
promising, the approach has some limitations. For instance, RPA, like PCR, can be inhibited
by a high concentration of genomic DNA [83]. Furthermore, multiplex detection using
RPA might be challenging, as RPA primers for different genes or targets compete for the
RPA proteins. The problems can be solved by integrating RPA with microfluidic platforms
where multiplex detection can be performed in separate microfluidic compartments [84,85].
The use of multiple quantum dots for different targets and coupling with DNA barcodes
could be a fascinating approach to develop a POC detection system where MPXV could be
distinguished from the rest of the poxviruses. Further, a separate solid-phase amplification
can also overcome the problems of RPA-based multiplex detection [86]. Though RPA can be
performed at a relatively low temperature, the approach still requires special temperature
handling, which may limit its POC applications. To overcome this limitation, alternative
strategies could be helpful, such as the use of hand warmers to control the temperature [87].

Wearable devices have found increased applications in recent years [88]. A compre-
hensive understanding of MPXV’s current clinical manifestations [89] and the integration
of this information with smartphone apps and smartwatches might be helpful in develop-
ing screening systems for presymptomatic cases. For instance, Mishara et al. reported a
comprehensive study where physiological data from smartwatches were used to predict
COVID-19 presymptomatic cases [90]. Inspired by this work, many machine learning algo-
rithms have been reported in recent studies [91,92] and are equally important for MPXV
detection. It is important to know the virus’s infectiousness status after infection. The
available methods solely predict the presence or absence of the virus or virus particles. A
method for determining the virus’s infectiousness in infected patients or environmental
samples could be a valuable addition to MPXV research. For this, immunodiagnostic
methods may contribute to some extent, but they have certain limitations, especially poor
selectivity for MPXV. The antigen detection methods are rapid and cost-effective but less
sensitive. The same applies to MPXV immunodiagnostics. Therefore, novel MPXV antigen
detection methods will be developed in the near future. Due to MPXV’s genome identity
with other orthopoxviruses, finding a unique antigen is a daunting challenge. The E8L
protein of MPXV is a membrane protein and is a potential target for vaccines. Recently,
non-cross-reactive epitopes for MPXV were reported within the E8L protein via a computa-
tional approach [93]. It is anticipated that E8L-binding peptides could also be discovered
in a similar way and could be used as a biosensing layer for the specific detection of MPXV.
Further, the E8L-binding aptamers and nanobodies [94] can make valuable contributions.
To the best of our knowledge, the MPXV entry receptor is still unknown; the discovery
of the MPXV entry receptor and the development of MPXV sensors based on the entry
receptor could be useful future developments. Novel MPXV biosensors could be developed
based on photonics [95], quantum dots [96], electrochemiluminescence [97], electrochemical
transduction, lab on a chip [30], CRISPR technology [98,99], and other approaches [100–103].
Introducing smart diagnostic systems based on WWE is anticipated to be a good future
work to detect asymptomatic cases.

Since genome sequence data provide detailed information about the phylogenetic
origin, mutations, and genomic recombination of a pathogen, in addition to PCR, it is
recommended to perform the sequencing of as many samples as possible. The PCR assays
developed for previous MPXV outbreaks should be reverified for the recent outbreak in
order to ascertain that new mutations do not affect the target region of the PCR assays.
Nucleic acid amplification tests are very sensitive and are prone to contamination; standard
operating procedures (SOPs) should be strictly followed while performing these assays or
developing a new technique. Most of the MPXV cases are concentrated in certain regions.
The unavailability of real samples may hamper the clinical validation of the tests under
development. In this regard, the transport of inactivated samples from hotspot countries
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should be considered to expedite the validation of the MPXV detection systems. Initially,
most of the SARS-CoV-2 diagnostic tools were developed by repurposing the assays de-
veloped for previous coronavirus outbreaks. The same strategy should be considered for
MPXV detection. Although MPXV is a re-emerging virus, research on MPXV detection is
still not well-explored, providing room for future developments, and should be considered
by the scientific community to prevent further spread of this virus.
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