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Abstract: Natural (microbial) communities are complex ecosystems with many interactions and cross-
dependencies. Among other factors, selection pressures from the environment are thought to drive
the composition and functionality of microbial communities. Fermented foods, when processed using
non-industrial methods, harbor such natural microbial communities. In non-alcoholic fermented
foods the fermenting microbiota is commonly dominated by 4–10 species of bacteria, which make
them suitable model systems to study ecosystem assembly and functioning. In this study, we
assess the influence of the environment on the composition of microbial communities of traditional
fermented products from Africa. We compare differences between microbial communities that are
found in similar products but come from different countries, hypothesizing they experience different
environmental selection pressures. We analyzed bacterial community composition in 36 samples of
various cereal-based fermented foods from Benin, Tanzania and Zambia using 16S rDNA amplicon
sequencing. The differential abundance analysis indicates that the bacterial communities of fermented
foods from the three countries are dominated by mostly lactic acid bacteria belonging to the genera of
Lactobacillus, Weisella and Curvibacter. The samples from Zambia contain the most dissimilar microbial
communities in comparison with samples from Benin and Tanzania. We propose this is caused by
the relatively low temperature in Zambia, suggesting that indeed environmental selection can shape
community composition of fermenting microbes.

Keywords: Munkoyo; Mawè; Aklui; Togwa; traditional fermentation; species sorting; 16S rDNA
amplicon sequencing

1. Introduction

Microbial communities as ecosystems are widespread and diverse: they are rep-
resented by, e.g., stromatolites, soil, microbial communities of the gut or skin in hu-
mans/animals and contain a variety of different species. Selection pressures from the
environment have been suggested to influence the community structure of these ecosys-
tems in a process called species sorting [1]. However, systematic studies on what types
of selection pressures are most relevant for specific ecosystems are limited in number [2].
The reason is that natural communities are too complex, and many factors affect their
composition. Recent studies showed that traditional fermented foods could be used as a
suitable model system to study the dynamics of community composition and functionality
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of microbial ecosystems: such communities are diverse, but still manageable in terms of
tracking their composition, as well as factors which affect their composition [1,2].

During food fermentation, micro-organisms such as bacteria or yeast convert raw
materials into food products with increased nutritional value, prolonged shelf-life and
enhanced sensory properties. While food fermentation is a very old practice [3], many
well-known fermented foods such as yoghurt and beer are now manufactured under highly
controlled (industrial) conditions using a defined starter cultures containing few microbial
species [4]. In contrast, fermented foods contain microbial communities of high microbial
species diversity [5]. This rich microbial diversity contribute to probiotic properties of the
fermented foods. In addition, these traditional foods are highly resistant to spoilage [6].

Despite the lack of controlled conditions, the composition of microbial communi-
ties in the traditionally fermented foods is stable; the microbial community composition
eventually reaches a steady state from batch to batch. This is caused by the process of
back-slopping: the addition of starter culture by transferring some of an old batch to fresh
raw material. Co-adapted, evolutionarily fit microbes from the previous cycle dominate
the new batch, and repeated cycles result in adapted, evolutionarily stable communities.
In the absence of sample exchange between producers, microbial ecosystems from the
different producers evolve independently [6]. Previous work has shown that initial dif-
ferences between microbial community structure at the start of a fermentation cycle does
not significantly impact the final community structure [7], and that processing practice is
an important driver of microbial community composition [8]. Work based on laboratory
experiments has suggested that processing temperature is a key factor, which can drive
microbial community composition [9]. This implies that the environment, where fermenta-
tion takes place, may be important in shaping microbial community structure—this idea
has inspired the present work.

To address a question on the role of the environment in shaping bacterial community
structure, we compared bacterial communities of samples of similar foods from different
countries. In this study, a total of 36 samples of five cereal-based traditionally fermented
products were bought from local markets in Benin, Tanzania and Zambia. The products
were made according to the traditional steps of mixing the cereal with water, boiling
the mixture (except in the case of the fermented dough mawè, which is not boiled) and
subsequent fermentation assisted by plant-derived enzymes for around 48 h. Dissimilarities
among the samples included different geographic locations and seasons, and different
amylase enzyme sources. For some of the samples from Zambia, the amylases came from
Rhynchosia roots, as opposed to the products from Benin and Tanzania where malted cereal
or sweet potato peel was used. We hypothesized that differences between the countries
would translate to different selection pressures, and that we would find dissimilar microbial
communities in the samples from the different countries.

To profile the microbial communities in the product samples, DNA was extracted
and regions of the marker-gene 16S rDNA were amplified and sequenced. The amplicon
sequences corresponding to the different samples formed the basis of the bioinformatics
analysis. The novel, and one of the most accurate bioinformatics pipelines for amplicon
sequencing data, QIIME2 was used to perform major data-processing steps [10,11]. The
amplicon sequences were dereplicated and transformed into amplicon sequence variants
(ASVs) and later mapped to bacterial genera. These were used as input for R-packages
that estimated alpha diversities, beta diversities between the samples and differential
abundances of ASVs and genera in samples across countries of origin.

2. Materials and Methods
2.1. Sampling, DNA Extraction and Sequencing

Traditionally fermented foods were bought from local markets in Benin, Tanzania
and Zambia. All foods were produced at non-industrial scale and without the use of
defined starter cultures. Twelve samples from each country accounted for 36 samples
total. The foods bought in Tanzania were Togwa, and in Zambia the foods were Munkoyo.
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The samples from Benin were more diverse, comprising three Aklui samples, four Mawè
samples and five Akpan samples. All products were cereal-based, either maize or millet (full
metadata in Supplementary Materials Table S1). DNA was extracted following previously
designed protocol [6]. One mL of sample was centrifuged at high speed. Next, 500 µL
of TESL (TESL is (25 mM Tris, 10 mM EDTA, 20% sucrose, 20 mg/mL lysozyme), 10 µL
mutanolysin and 100 µL lysozyme were added to the pellet, followed by incubation at
36 ◦C and light shaking. Next, 500 µL of GES reagent was added (GES is 5 M guanidium
thiocyanate, 100 mM EDTA, 0.5% sarkosyl), and the mixture was cooled on ice for five
minutes. After that, cold ammonium acetate was added and the mixture was kept on ice
for 10 min. The mixture was then centrifuged, the supernatant was collected and further
purified by adding chloroform-2-pentanol in a 1:1 ratio, and spinning at 12,000 RPM. The
DNA in supernatant was precipitated by adding 0.1 Volume of 3 M sodium acetate and
2.5 Volume of 100% ethanol and storing the mixture overnight at 20 ◦C. Next, the mixture
was spun for 20 min at 12,000 RPM at 4 ◦C. The supernatant was removed and the DNA
pellet was washed out using 1 mL of cold 70% ethanol. The sample was then spun for
10 more minutes at 12,000 RPM at 4 ◦C and the resulting supernatant was again removed.
Finally, the DNA pellet was air dried for 10 min at room temperature and dissolved in
10 mM tris pH 7.5. DNA QC, library preparation and paired-end Illumina MiSeq sequencing
was performed by LC Sciences. Universal primers 338F and 806R designed to target the
V3—V4 region of the 16S rDNA generated an amplicon length of about 469 basepairs (bp)
in length. LC Sciences provided the paired-end sequence reads in non-multiplexed format,
stored in two FASTQ files per sample.

2.2. Data Processing

The paired-end sequence reads were processed using plugins of ‘Quantitative Insights
Into Microbial Ecology’ 2: QIIME2 version 2019.4 [10]. This package was installed on a
local server into a conda environment supported by Miniconda3. It supports two mature
interfaces: a Linux command line interface and a Python 3 Application Programmer
Interface (API), referred to as the Artifact API. The latter was used in this project. Here,
‘Artifacts’ correspond to QIIME2 Python objects that contain data and metadata (in the
command-line environment, they correspond to compressed files with data and metadata).
QIIME2 was used for de-noising, dereplication, taxonomic classification and phylogenetic
inference.

2.2.1. Sequence-Quality, Denoising and Dereplication

The overall sequence quality information in the FASTQ-files was visualized using
demux version 1.24.0, a QIIME2 plugin that also supports demultiplexing. The demux-
visualizer ‘summarize’ was used to build a visualization-Artifact with plots of sequence
quality (Supplementary Materials Figure S1). The plots were used as a visual guide in
the succeeding step: de-noising the sequences. De-noising was performed using ‘Divisive
Amplicon Denoising Algorithm’ 2: DADA2 version 2019.4.0 [12]. DADA2 performed trun-
cation, trimming, chimera removal and dereplication. The sequence truncation conserved
the first 290 bp of the forward reads and the first 205 bp of the reverse reads, informed by
the sequence quality plots.

The first 20 bp were trimmed off for both forward and reverse reads. Other DADA2 pa-
rameters were left to the default. Dereplication constitutes the merging of identical or highly
similar sequences into single ‘features’, each with a distinctive feature ID, representative
DNA sequence and a number of corresponding sequences (frequency or count). No further
clustering was performed.

2.2.2. Taxonomic Classification

The taxonomies of the ASVs were estimated using a Naïve Bayes classification model.
Training data was downloaded from the Ribosomal Database Project (RDP), version 16 [13].
Three methods from the plugin ‘feature-classifier’ version 2019.4.0 [14] were used for the tax-
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onomic classification: extract-reads, fit-classifier-naïve-bayes and fit-classifier-sklearn [15].
Extract-reads were used to extract read-like fragments from the RDP reference sequences,
based on the forward and reverse primers. These read-like sequence fragments and the
RDP reference taxonomies represented the independent and dependent variables used
to fit the Naïve Bayes classifier. The classifier was fit to the read-like sequence fragments
and the corresponding RDP taxonomies using fit-naïve-bayes function. By providing the
representative sequences of the ASVs to the classifier, the taxonomic classifications of the
ASVs were obtained with a minimal confidence of 70% (below which, taxonomy was
declared undetermined).

2.2.3. Phylogenetic Inference

Phylogenetic relationships of the representative ASV sequences were inferred in two
steps: multiple sequence alignment (MSA) and phylogenetic tree construction. MSA was
performed using ‘Multiple sequence Alignment using Fast Fourier Transform’: MAFFT
version 7 [16]. Positional conservation and gap filtering of the MSA, also known as ‘mask-
ing’, was performed using Mask with the default parameters: maximum gap frequency
1.0 and minimum conservation 0.4 [17]. The masked MSA was used as input for boot-
strap supported phylogenetic tree construction with IQTree-Ultrafast Bootstrap version
2019.4.0 [18,19]. The specified random seed value (applied for reproducibility) was 42. The
nucleotide substitution model was determined automatically with Modelfinder and the
number of generated bootstrap replicates was 1000 [20]. Splits with bootstrap supports
below 50% were removed from the phylogenetic tree by the merging of those splits. This
was performed in R 3.6.1 using collapseUnsupportedEdges from the R-package ‘ips’, short
for ‘interfaces to phylogenetic software’, version 0.0.11 [21].

2.3. Statistical Analysis

The acquired ASVs, taxonomic assignments and phylogenetic inferences were used
for the statistical analysis of the sample microbiomes. All the analysis was performed
in R version 3.6.1. The primary packages used for the analysis were phyloseq version
1.28.0 [22], vegan version 2.5–6 [23] and DESeq2 version 1.24.0 [24]. For most of the analysis,
the community data was assigned to a phyloseq-object dubbed, which stored the data in
four categories: the ASV-table; the sample data (metadata); the taxonomy table; and the
representative DNA sequences.

2.4. Rarefaction

Rarefaction curves were attained using the function ‘rarecurve’ from phyloseq; ‘rarecurve’
was provided with the transpose of the ASV-table from the community data and step size
for sample sizes was set to 50. The community data was rarefied using ‘rarefy_even_depths’
from phyloseq. The random seed value was set to 123, sample size to 90% of the smallest
sample size, and random sampling was performed without replacement.

2.5. Alpha and Beta Diversities

The alpha diversities of the microbial community samples were visualized using
the ‘plot_richness’ function of the phyloseq package. The phyloseq object was submitted
as ‘physeq’, country was specified as variable to map the horizontal axis ‘x’, and two
alpha diversity measures were specified under ‘measures’: Richness; corresponding to the
number of unique ASVs present in a sample and Shannon; corresponding to the ‘Shannon
diversity index’. The Shannon diversities incorporated the relative proportions of the
distinct ASVs according to Equation (1), where s was the number of ASVs present in a
sample and pi was the proportion of amplicons that belonged to the ith ASV of the sample.

H′ = −
s

∑
i=1

pi ln(pi) (1)
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The Shannon diversity index favors a high richness, and proportional abundance
equality [25]. In order to visualize the datapoints in boxplots, ‘geom_boxplot’ from the
ggplot2 R-package was added to the plot command. Differences between country diver-
sities were investigated using Mann–Whitney U testing. The wilcox.test function in the
stats package (version 3.6.1) was used in an unpaired setting and with approximate p-value
computation.

The beta diversity among the 35 microbial community samples was visualized by
calculating pairwise distances between samples, and by visualization of the multidimen-
sional results using dimension reduction (ordination) and dendrogram visualization of
inferred sample clusters. The distances between the samples were computed using the
distance function from the Phyloseq package on the phyloseq object. The distance method
specified was Unifrac [26]. The ordination was performed using the ordinate function
from the Phyloseq package on the phyloseq object. The ordination method specified was
Non-parametric Multidimensional Distance Scaling, or NMDS [27]. Hierarchical complete
linkage clustering was performed on the Unifrac distance matrix [28], using ‘hclust’ from
the ‘stats’ R-package version 3.6.1.

2.6. PERMANOVA

Permutational analysis of variance, PERMANOVA, [29], was performed using the
‘adonis’ function from the vegan R package [23]. The Unifrac dissimilarity matrix was
specified as the dependent variable, and the countries as the independent, categorical
variable (Equation (2)).

Uni f rac dissimilarities ∼ Country (2)

For the three PERMANOVA’s each comparing two countries, separate phyloseq objects
with only the two countries were obtained using ‘subset_samples’ from the phyloseq
package. The Unifrac distances were calculated for the subsampled phyloseq objects
and the PERMANOVA’s were specified the same way as previously. Multiple testing
correction was performed by adjusting the alpha value according to Bonferroni correction
(Equation (3)) [30].

αCorrected =
α

Ntests
(3)

2.7. Differential Abundancy Analysis

Venn-diagrams representing the overlapping and unique ASVs and genera were con-
structed using ‘venn.diagram’ from the R-package VennDiagram version 1.6.20. Differential
abundancy analysis was performed using the R-package DESeq2 [24]. A few steps were per-
formed to make the community data stored in the phyloseq object compatible with DESeq2.
First, the phyloseq object was transformed using ‘transform_sample_counts’ from the phy-
loseq package, in order to add pseudo-counts of one to each cell in the ASV-table (this was
required to prevent division-by-zero errors in the DESeq analysis). The conversion from
phyloseq object to DESeq object was performed using the function ‘phyloseq_to_deseq2’,
with the phyloseq object as data and ‘Country’ specified as independent variable. Next, the
differential abundance analysis was run on the community data using the function DESeq
from the DESeq2 package. Results were extracted for all three country combinations using
the ‘results’ function from DESeq2, and an alpha value of 0.01 was used, applicable to the
Benjamini–Hochberg adjusted p-values [31]. Using cbind, the taxonomic classifications
of the phyloseq object were attached to the differential abundance object. The above was
performed a second time, but this time on the 480 most abundant ASVs (accounting for
98% of the total abundancy), and the ASVs agglomerated to genera using the ‘tax_glom’
function from the phyloseq package.
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3. Results
3.1. Amplicon Sequence Variants (ASVs)

The 35 samples with a total of 597,755 amplicon sequences were analyzed and merged
into 1127 Amplicon Sequence Variants (ASVs) by DADA2 [12]. Table 1 shows ASV distri-
bution. The mean ASV frequency (number of amplicons corresponding to a single ASV)
was more than fifteen times as high as the median ASV frequency, and the most frequent
ASV accounted for slightly over twelve percent of the total abundance. These numbers
emphasized that most ASVs had a low frequency, and a small minority of ASVs accounted
for most of the total abundance.

Table 1. ASV distribution. All 597,755 amplicon sequences were assigned to 1127 different ASVs. The
distribution of observations per ASV was highly skewed as the mean value was more than fifteen
times as high as the median value.

Minimum First Quartile Median Third Quartile Mean Maximum

1 12 34 113 ~530 73,787

3.2. Rarefaction

To compare the samples based on their differential ASV abundances, the samples were
rarified, namely, normalized to a fixed number of amplicons. After rarefaction, all samples
corresponded to 4518 amplicon observations, selected randomly with replacement from
the original, larger samples. A side-effect of the rarefaction was the removal of 57 low-
abundance ASVs, as those were no longer present after subsampling. The rarefaction left a
total of 1061 ASVs and 158,130 amplicon observations in the rarified ASV-table (Table 2).

Table 2. Amplicons and ASVs before and after rarefaction. Rarefaction through sub-sampling resulted
in an equal number of amplicon observations in each sample. This reduced the total number of
amplicons considerably and resulted in the removal of 57 low-abundance ASVs.

# Amplicons Total # Amplicons in Samples Number of ASVs

Before rarefaction 597,755 5021–44,710 1127
After rarefaction 158,130 4518 1070

The rarefaction curves (a.k.a. taxon sampling curves) of the samples were plotted
before and after rarefaction to visualize the relationships between the numbers of amplicons
and the numbers of ASVs in the samples. These relationships were assumed to be linear if
only small fractions of the true number of ASVs were discovered, and asymptotic if most
ASVs present in the samples were discovered, as novel ASV discoveries would become
more rare [32]. The rarefaction curves of both the original samples and the smaller rarified
samples followed asymptotic growth (Figure 1), indicating that the samples represented
the microbial diversities adequately.

3.3. Community Composition

The 1061 ASVs in the 35 samples were classified into 182 different genera. Analogous
to the ASVs frequency distribution; a small number of abundant genera accounted for
a large portion of the total observations. Whereas half of the genera corresponded to
20 observations or less, the mean genus abundance was more than 40 times this with
~838 observations (Table 3).
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Figure 1. Rarefaction curves before and after sample rarefaction. Every curve corresponds to a single
sample. Red curves correspond to Benin samples, green curves correspond to Tanzanian samples
and blue curves correspond to Zambian samples. The curves were obtained by plotting the number
of unique ASVs corresponding to random subsamples of increasing size (incrementation step size:
50 amplicons). All curves appear to follow asymptotic growth.

Table 3. Genera distribution. All 182 genera had at least one ASV, and at least one corresponding
amplicon assigned to them. Although half of the genera were assigned to 20 amplicons or less,
the much higher mean value of ~838 observations per genus reveals that a small number of genera
account for most of the observations. The most abundant genus (‘Maximum’ frequency) corresponded
to nearly one-fourth of all the observations.

Minimum First Quantile Median Third Median Mean Maximum

1 4 20 157 ~838 35,696

The most abundant genus was Lactobacillus, with more than 35,000 observations, or
about 23% of the total abundancy. The second most abundant genus was Weisella, adding
another 16%, followed by Curvibacter. The top-three genera alone accounted for more than
half of all the observations, and the fifteen most abundant genera account for almost 88%.
The list of most abundant genera was composed of lactic acid bacteria such as Lactococcus,
Weisella, Streptococcus and Leuconostoc, as well as proteobacteria such as Curvibacter and
Acetobacter (Figure 2).

Phylogenetic relationships between bacterial groups in studied samples were esti-
mated. The analysis was conducted in two steps: multiple sequence alignment (MSA) and
phylogenetic tree construction. A phylogenetic tree based on amplicon sequences com-
bined with SATé-enabled phylogenetic placement (SEPP) technique [14,19] allowed for the
insertion of amplicon reads into a robust phylogenetic tree. For consistency, a phylogenetic
tree using the RDP 16s rDNA training sequences and based on 92% abundance genera was
created. The data shown on Supplementary Figures S2 and S3.
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Figure 2. Abundant genera frequencies (counts of the number of sequence reads found). These fifteen
genera account for almost 88% of the total bacterial abundance. Key players were ASVs that were
classified as lactic acid bacteria such as Lactobacillus, Weisella and Streptococcus, and proteobacteria
such as Curvibacter and Acetobacter.

3.4. Alpha and Beta Diversity in Microbial Communities

Alpha diversity corresponds to the biodiversity within a sample. Here, we applied
two methods to represent alpha diversity: richness and Shannon diversity. Richness, or
‘Observed’, corresponded to the number of distinct ASVs present in the samples. The
Shannon diversities incorporated the relative proportions of the distinct ASVs, favoring
a high richness, and proportional abundance equality [25]. The richness and Shannon
diversities were calculated and visualized in boxplots for the three different countries
(Figure 3). The richness indicated a significantly (Mann–Whitney U-test) higher diversity
for samples from Benin compared to samples from Tanzania (p = 0.01) and samples from
Zambia (p = 0.001), while samples from Tanzania and Zambia were not significantly
different. All richness values for Tanzania were within the range of the richness values of
Zambia. The Shannon diversity revealed less variation between the plots, and no significant
differences in diversities between countries (p-values based on these and more diversity
measures in Supplementary Table S1).
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Figure 3. Alpha diversities per country according to species richness (Observed) and Shannon
diversity. The boxplots portray the highest diversity in the Beninese samples, and the lowest diversity
in the Zambia samples. The species richness was significantly higher for the Benin samples compared
to the Tanzanian and Zambian samples, while Tanzania and Zambia were not significantly different
in terms of sample richness. The Shannon diversities revealed no significant difference between the
countries.

Beta diversity refers to the difference in diversity between different samples. The beta
diversity among the 35 microbial community samples was inferred from computed Unifrac
distances [26]. These sample distances were visualized using NMDS ordination [27] and a
hierarchical clustering dendrogram. In the NMDS ordination (Figure 4), the samples from
Zambia were generally separated from the samples from Benin and Tanzania along the
horizontal axis, while samples from Benin and Tanzania were generally separated along
the vertical axis.
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Figure 4. NMDS ordination based on Unifrac sample distances. The samples from Zambia (blue,
square) were generally separated from the other samples along the horizontal axis. The samples from
Benin (red, circle) and Tanzania (green, triangle) were generally separated along the vertical axis.

A complete linkage hierarchical clustering dendrogram revealed similar patterns
(Figure 5), being defined by five large clusters. Most samples from Benin were found in the
same cluster (the branch on the right), with the exception of B7 and B11. Most samples from
Zambia were also located in the same cluster (third major branch from the left), with the
exception of four samples that clustered with Tanzanian samples. Samples from Tanzania
were the most scattered across the dendrogram. A contrasting feature of the dendrogram
compared to the NMDS ordination plot, was the close proximity between Zambian samples
Z3 and Z11 and Tanzanian samples T7 and T8 (left of the dendrogram). In the NMDS
ordination plot, these pairs were stretched across the plane.

Of the 11 pairs of samples at the tips of the dendrogram, ten consisted of samples from
the same country. The one exception was between the samples B10 and T5 (Figure 5).
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Figure 5. Clustering dendrogram based on Unifrac sample distances. Here, the branches are labelled
by sample ID, of which the capital letter corresponds to the first letter of the country. The dendrogram
revealed that samples from the same country tended to cluster together, and that the samples from
Zambia were much more dispersed than the other samples.

3.5. PERMANOVA Differential Abundance Testing

In order to quantify the significance of the variation within and between countries,
PERMutational ANalysis Of Variance, PERMANOVA [29], was performed on the microbial
community data. Four PERMANOVA’s were performed, one incorporating samples from
all the countries, and three comparing pairs of countries to each other. The following zero
hypotheses and alternative hypotheses applied to the PERMANOVA’s (α = 0.05):

Hypothesis 0 (H0). The centroids and the dispersions (as defined by Unifrac dissimilarities) are
equivalent for the countries.

Hypothesis a (Ha). The centroids, or the dispersion, or both, are not equivalent between the
countries.

The first PERMANOVA incorporating all three countries revealed that ~18.5% of the
total variation resided between the different countries (Table 4). The remaining variation
(~81.5%) corresponded to the sum of the variation within the three countries individually.
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The resulting F-value (and degrees of freedom) resulted in a low probability value of
0.001 << α, leading to rejection of the zero hypothesis. The two PERMANOVA’S comparing
samples from Zambia to samples from Benin and Tanzania resulted in similar statistics
as the first PERMANOVA, whereas the PERMANOVA comparing samples from Benin to
samples from Tanzania revealed a lower fraction of between-group variation, and as a result
a lower F-value and higher probability value. Bonferroni multiple testing correction for the
three pairwise tests [30], resulted in αCorrected

∼= 0.017. This threshold implied significant
probability values and rejection of H0 for all three comparisons, but the H0 probability in
the comparison between Benin and Tanzania samples was far higher than for the other
two comparisons. These results revealed that the (centroids or dispersion or both of the)
bacterial communities were not equivalent between the countries, and that samples from
Zambia deviated most from the samples from the other two countries (Supplementary
Tables S1–S7).

Table 4. PERMANOVA results summary. Orange (darker) cells correspond to low values and yellow
(lighter) cells correspond to high values relative to other values in the respective row. All models that
incorporated the samples from Zambia were characterized as significant between-group variation.
The only PERMANOVA that yielded no significance was Benin vs. Tanzania.

All Countries Benin vs. Tanzania Benin vs. Zambia Tanzania vs. Zambia

Between group variation 0.185 0.072 0.179 0.183

Within group variation 0.815 0.928 0.821 0.817

Total variation 1 1 1 1

F value 3.628 1.634 4.582 4.933

Pr (>F) 0.001 0.015 0.001 0.001

3.6. Differential ASV Abundance Analysis

The significant difference between bacterial communities from different countries
should be reflected in the presence and abundance of ASVs and genera in the samples.
A Venn diagram of the ASVs revealed that the great majority; about 84%, was unique to
the respective country of origin (Figure 6). The number of genera unique to the respective
country of origin accounted for a more modest proportion of the total number of genera,
about 54% (Figure 6).
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In order to assess how many of the 887 unique ASVs were significantly differentially
abundant (DA), a differential abundance analysis was performed (Table 5). With the use of
DESeq2 [24], the significant DA ASVs between different pairs of countries were identified.
The analysis revealed that samples from Benin and Tanzania had 52 DA ASVs, whereas the
comparisons between Benin and Zambia resulted in 91 DA ASVs, and the comparisons
between Tanzania and Zambia resulted in 80 DA ASVs (Table 3). Most of the DA ASVs
in the two comparisons with Zambia resulted from a low abundance or absence of the
respective ASVs in Zambia.

Table 5. Number of overabundant ASVs in country-wise comparisons. Each row displays numbers
of differentially abundant ASVs in a comparison. The country comparison is defined in the first
two columns. Column ‘A’ represents the numbers of ASVs that were overrepresented in country
A, compared to country B. Column ‘B’ represents the opposite. The second column from the right
represents the total numbers of differentially abundant ASVs, and the right-most column displays
the total number of ASVs of the two countries, shared or otherwise.

Country A Country B Overabundant
ASVs in A

Overabundant
ASVs in B

Total Differentially
Abundant ASVs

Total Number of
ASVs

Benin Tanzania 30 22 52 858

Benin Zambia 60 31 91 803

Tanzania Zambia 53 27 80 654

Comparing Benin with Tanzania revealed both less DA ASVs, and more balanced
distributions of respective overabundance (a 3:2 ratio as opposed to a 2:1 ratio found in the
comparisons involving Zambia).

A more restrained DESeq2 analysis, in which only the 480 most abundant ASVs
(accounting for 98% of the total abundance) were incorporated, resulted in three distinct
genera overrepresented in the samples from Zambia: Aeromonas, Enterobacter and Raoultella.
These genera are all part of the class Gammaproteobacteria, and Enterobacter and Raoultella
share the same family: the Enterobacteriales. Bacteria from all three genera are classified as
mesophiles; thriving in moderate temperatures [33,34], and 22 genera were underabundant
in samples from Zambia compared to samples from Benin, Tanzania or both. Most of these
genera corresponded to mesophilic bacteria.

Consequently, the underabundance in Zambia could not be explained by classifi-
cations of the optimal growth temperatures alone. There were three exceptions to this.
Acetobacter and Aquabacterium genera classified as thermotolerant and thermophilic, respec-
tively [35–37], were found to be overabundant in samples from Benin, compared to samples
from both Tanzania and Zambia. Another thermophilic genus Ralstonia, was similarly
overabundant in Benin compared to Tanzania and Zambia, but also in Tanzania compared
to Zambia. Ralstonia was the most striking example of relative abundance of thermophilic
or thermotolerant genera being most abundant in the warmest environments and vice
versa. All three thermophiles appeared to be favored under higher temperature conditions
present in the samples from Benin, and to a lesser extent Tanzania (Figure 7).
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Figure 7. Temperature and thermophiles abundancies. The stacked bar charts represent the abun-
dance of the three thermophilic and thermotolerant genera (y-axis on the left). The line represents the
temperature of the locations of the samples (y-axis on the right). All three thermophiles appeared to
favor the higher temperature samples from Benin, and to a lesser extent Tanzania.

4. Discussion

The main hypothesis to motivate our study was that different environments in differ-
ent countries would shape the bacterial community composition in otherwise comparable
cereal-based traditional fermented foods processed in these countries. Our results, based
on bacterial community profiles of 36 samples from three countries, provide support for
this hypothesis. The traditional fermented foods from Zambia proved to harbor a signifi-
cantly different microbial community than those from Benin and Tanzania (Supplementary
Tables S5–S7).

There were two environmental or processing variables unique to the samples from
Zambia: temperature and enzyme source. As shown in the results, the temperature of 16 ◦C
at the time of sampling in Zambia was much lower than the temperatures at the times of
sampling in Benin and Tanzania (29 and 25 ◦C, respectively). It could be hypothesized that
the differences in bacterial communities between countries found in this study were caused
by the presence of plant root material in some of the Zambian samples. The roots would
bring soil-based bacteria into the starter culture. Previous studies have demonstrated this to
be the strongest influence on the development of the microbial communities [38]. However,
not all Zambian samples contained this root material and samples with added root material
were not significantly different compared to Zambian samples without added root material
(Supplementary Tables S1 and S7).

The result that differences in temperature could be the main force resulting in com-
munities with different bacterial community structure is in line with earlier work that had
found that raw materials and associated composition of the microbiota did not determine
the final microbial community composition [7,9,39]. This work experimentally analyzed the
microbial community composition before and after fermentation in traditional maize based
fermented food Munkoyo [7]. Other previous studies showed that environmental selection
of different pH did affect microbial community composition—this is work performed with
Mabisi [8]. Thus, apparently, the selective forces of the fermentation environment have a
great impact. In the design of our study, we chose to focus on the potential effect of the
environment by sampling similar foods at climatically different locations. The survey based
approach, which we used in the present study, complements the more directed experiments
that were reported previously.
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The results and analysis that suggest a correlation between temperature and ther-
mophile abundancies should be interpreted with caution. Most genera were associated
with mesophilic bacteria, and the vast majority of differentially abundant genera were
underrepresented in the samples from Zambia. Therefore, in the list of differentially abun-
dant genera, any genera associated with thermophiles would most likely be found to be
underrepresented in Zambia. Furthermore, the thermophilic properties were based on
reports for specific species or strains that were part of the genus. It was not clear in the
study, which species or strain the ASVs and genera corresponded to. There was no data on
pH, humidity, exact preparation steps, time of sampling, or the fermentation duration.

One way to test temperature dependence of the microbial communities in the fer-
mented products, would be to collect a number of samples in the summer and the same
amount in the winter in the same place, the same producer and the same production
process. Based on the conclusions of this study, the samples taken in the winter should be
significantly different from the samples in the summer. In an analogous study, samples
with and without roots added could be compared. In this study, no significant difference
was found between samples from Zambia with added root material and without. The
differential abundance analysis of the ASVs provides the information for the construction
of a species co-occurrence network [40]. Such a network would connect ASVs that are
found together much more or much less often than would be predicted by chance. Such
a network allows the modelling of cooperation and inhibition of bacteria within the com-
munities. The presence of one species of bacteria may be used to predict the presence of
associated bacteria in the co-occurrence network. Some genera that were highly abundant
in samples from Benin and Tanzania, were completely absent in the samples from Zambia.
Genera that were differentially abundant across samples form interesting candidates for
species distribution modelling [41]. A species distribution model (otherwise known as an
ecological niche model) is a statistical equation based on species observation locations and
environmental data. The abundance count values would have to be converted to binary
species occurrence data with specified thresholds. Environmental data such as production
details and local weather would constitute the environmental data. The resulting models
could be used to form predictions of the occurrence of the ASVs in new products, and
provide insight into the importance of different environmental factors, similar to linear
regression modelling.

While not a specific objective of our work, it is interesting to note that through our cul-
ture independent approach of 16S amplicon sequencing, we did not detect any pathogenic
bacteria, at least not at an abundance of >0.5%. This is in line with other (published and
unpublished) work where similarly no pathogens were found in mature fermented foods at
the end of a fermentation cycle [42]. One of the key properties of (traditional) fermentation
is the lowering of pH. Prolonged exposure to low pH suppresses most pathogens to low
and acceptable levels 2 [43,44]. This does not mean that pathogens are surely completely
absent. Specific isolation and selective plating could reveal presence of pathogenic bacteria
at low levels.

QIIME2 proved to be an effective tool for the initial data processing in this project. It
allowed for reproducible results in data provenance, and the Jupyter Notebook environ-
ment allowed for a more presentable workflow compared to the traditional command-line
environment. The results from QIIME2 were formatted in universal file types such as
biom-files for 12 feature-tables and nwk-files for phylogenetic trees. These advantages
allowed for a separation of processes where the initial, computationally expensive steps
were performed by QIIME2 on server, and the downstream, computationally inexpensive
steps were performed on local PC’s using opensource R-packages. The results confirm the
hypothesis that traditionally fermented products from different countries harbor signifi-
cantly different microbial communities. Samples from Zambia deviate the most from the
other samples. This deviation was evident in the lower alpha diversity on average and
the higher dispersion of diversity (Figure 4), the tendency for samples to cluster together



Microorganisms 2022, 10, 1354 16 of 18

(Figures 5 and 6), the PERMANOVA’s involving Zambia (Table 3, columns 1, 3 and 4) and
the differential abundance analysis (Table 3 and Figure 7).

The use of the 16S rDNA gene restricted microbial diversity so that we could only
detect bacteria, mostly, in a genus level. As a consequence, a study of this type leaves
out potentially significant players in the microbial community such as yeasts and bacte-
riophages. Another challenge of the study was the high variability between samples of
the same category. Samples within the countries differed in main ingredients and enzyme
source, and the names of the producers were not documented. Seven out of the twelve
samples from Zambia were produced with root-based enzymes, and two out of the eleven
included samples from Benin contained millet instead of maize. Products from Tanzania
had all the same ingredients but with different ratios. Such variation allows for additional
analysis within individual countries, but also further complicates the interpretation of data
that is, even under controlled conditions, stochastic in nature [8,45].

In conclusion, our results show that environmental selection pressure can shape mi-
crobial community structure in natural microbial communities derived from traditional
cereal-based fermented foods. This highlights that traditional fermentation can be viewed
as a natural ecological process, which has implications for the development of starter
cultures. For instance, our results suggest that once selection pressures (environmental
conditions, substrates, processing conditions) are uniform, this will result in foods with
a similar microbial community composition, suggesting similar product properties. The
effect of these selection pressures should now be validated in directed sampling or (field)
experiments with treatments contrasting fermentation temperature and other environ-
mental parameters while controlling for factors such as processing procedure and raw
materials. In this way, further research in this direction to test these ideas would further
bridge fundamental insight of ecology to the application of (traditional) fermentation [2].
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