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The Morita—Baylis—Hillman reaction of acrylamide, as an activated alkene, has seen little development due to its low reactivity. We

have developed the reaction using isatin derivatives with acrylamide, DABCO as a promoter and phenol as an additive in acetoni-

trile. The corresponding aza version with acrylate and acrylonitrile has also been developed resulting in high product yields.

Introduction

The Morita—Baylis—Hillman (MBH) reaction is an important
carbon—carbon bond-forming reaction [1-3]. It involves the
coupling of an activated alkene with an electrophile (usually
aldehydes or imines) in the presence of a catalyst (Figure 1).
The reaction is organocatalytic, atomically economical and
operationally simple in nature. Most importantly, it results in
the synthesis of densely functionalized molecules, also called
MBH adducts. These are versatile synthons as they constitute
several functionalities within close proximity, which aids in
further synthetic transformations. Thus, as expected, the reac-
tion has emerged as a powerful synthetic tool. It has seen expo-
nential growth in several directions involving not only the
application of the MBH adducts, but in the development of
reaction as well [4-8].
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Figure 1: MBH reaction and some selected activated alkenes.
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Although a very useful reaction, it does have some limitations
such as a slow reaction rate, and is effected by electronic para-
meters and steric effects. Although the reaction has been well-
explored with aldehydes, the reaction with ketones is somewhat
problematic. For a successful reaction to occur, the ketones
require activation either by the presence of an a-activating
group [9,10], the use of Lewis acid [11] or application of high
pressure [12].

Similarly, in the case of activated alkenes, the acryl system
shows differences in reactivity upon slight structural modifica-
tions. In such a system, the enone and acrylonitrile are more
reactive, while with the acrylate reaction is relatively slow.
Furthermore, there is a decrease of reactivity with acrylamide
due to the reduced Michael acceptor tendency of alkene, which
retards the attack of the catalyst on alkene, thus hindering the
initiation of a reaction (Figure 1). Thus acrylamide has least
contributed to the success of this reaction in the last four
decades. In an effort to address the slow reaction rate of acryl-
amide, Hu et al. [13] used dioxane/water in a 1:1 ratio, while
Aggarwal et al. [14] used quinuclidine in methanol to carry
out the MBH reaction of acrylamide. Connon et al. [15]
utilized phenol and/or a HyO/-BuOH 7:3 system for rate accel-
eration and Guo et al. used aryl activation [16,17]. Other reports
made use of reactive aldehyde [18], post-MBH modifications
[19], an organometallic approach [20] and other strategies
[21,22].

With comparatively few reports with respect to the significant
literature on other activated alkenes in the MBH field, acryl-
amide thus requires further development and expansion of its
scope. This is especially relevant given the fact that they have
been extensively used in drug design [23,24], polymer chem-
istry [25,26] and are popular synthetic templates [27,28]. For
further comparison to other acryl systems, acrylamide also
offers extra valencies at nitrogen, which can be used for
appending other functionalities/groups for intramolecular trans-
formations. Other reports have used this feature for the develop-
ment of an intramolecular MBH reaction: Corey et al. (total
synthesis) [29], Pigge et al. (ruthenium complexes as an elec-
trophile) [30], and Basavaiah et al. [31,32].

Isatin has been the favored template not only for the spectrum
of biological activities it provides, but also with respect to the
development of methodologies [33]. In the field of MBH, it has
been used both for reaction development [34-39] and applica-
tion of its MBH-derived adduct [40-42] including spiro frame-
works [43-46]. It is therefore anticipated that the development
of the MBH reaction using acrylamide and isatin would not
only expand the scope of acrylamide, but would also contribute

to the expansion of the synthetic potential of isatin.
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Results and Discussion

Initially N-phenylacrylamide (1a) was selected as a substrate for
the development of the MBH reaction. This approach, together
with the activation of acrylamide (by delocalization of lone pair
electrons of nitrogen), was implemented in an attempt to
directly vary the electronic properties of the acryl system and to
expand the substrate scope. The reaction between la and
N-methylisatin (2a) was carried out in the presence of DABCO
using acetonitrile as the solvent (Table 1, entry 1). Although the
reaction was slow and produced low yield (31%), the formation
of the product 3aa with starting material remaining was never-
theless positive. In order to find the best conditions, several
reactions were carried out. Increasing the reaction time to
5 days resulted in 56% yield (Table 1, entry 2). An increase in
the loading of acrylamide (2 equiv, in order to generate more
enolate) was helpful and resulted in 71% yield (Table 1, entry
3). The use of phenol [36,47-49] as a mild acid (Table 1, entry
4), further increased the yield to 92%. A further increase in the
reaction time (5 days) and addition of more phenol (5 equiv,
Table 1, entry 5 and entry 6) did not affect the yield.

Table 1: Results of the reaction of 1a with 2a.2

I|3h
0 Ph " HN. O
| conditions
fe - A
N \i\ 0
\ N
2a 1a 3aa\
Entry 2a Catalyst Solvent  Time Yield®
(equiv) @ (%)
1 1 DABCO MeCN 2 31
2 1 DABCO MeCN 5 56
3 2 DABCO MeCN 2 71
4° 2 DABCO MeCN 2 92
5¢ 2 DABCO MeCN 5 91
69 2 DABCO MeCN 4 88
7¢ 2 DABCO THF 2 71
8¢ 2 DABCO Dioxane 2 76
9¢ 2 TPP MeCN 10
10° 2 DMAP MeCN 2 70
11¢ 2 DMAP MeCN 4 74
12¢ 2 DMAP THF 2 82
13¢ 2 DMAP DCM 2 79
14¢ 2 DMAP Dioxane 2 68
15¢ 2 DMAP DMF 2
16%¢€ 2 DMAP THF 1 73
17¢¢€ 2 DMAP MeCN 1 65

aAll reactions were carried out at rt with 0.5 mmol of 2a using 2 equiv
of catalyst in 0.5 mL of the designated solvent. Plsolated yields.

©2 equiv of PhOH was used. 95 equiv of PhOH was used. ®Reaction
was performed at 55-60 °C.
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With the goal to reduce synthesis time, other catalysts along
with different solvents were tested, but none led to a better
result. The use of TPP as a catalyst required longer time and
even after 10 days, TLC showed considerable amounts of
starting material (Table 1, entry 9). The use of DMF as a
solvent did not result in a pure product (Table 1, entry 15).
Although heating to 55-60 °C did reduce the reaction time, this
was accompanied by the generation of impurities along with a
reduction in yield (Table 1, entry 16 and entry 17). Finally,
using two equivalents of acrylamide, DABCO and phenol each
(using acetonitrile as a solvent) at rt was identified as the best
condition (Table 1, entry 4).

Given these optimized conditions, the substrate scope for the
developed protocol (Scheme 1) could be evaluated. It was found
that the reaction was compatible with various substrates
including different N-protected groups (methyl (3aa), benzyl
(3ba) and propargyl (3ca)) on isatin and different substitutions
on the periphery of the aryl group of isatin as well as acryl-
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amide. Electron-withdrawing groups resulted in a higher reac-
tion rate (3ad, 3da, 3ea, one day each and 3ed 0.5 day). The
reaction was found to work well with electron-rich (4-methyl,
2-methoxy), electron-deficient (3-chloro) and neutral aryl
groups on acrylamide. Similarly, 5-chloro and 5-bromo-substi-
tution on isatin gave similar yields in a similar time. The com-
pound 3ea resulted in a single crystal [50], which further

confirmed the structure (Figure 2).

After establishing the synthetic potential of the protocol, the aza
version of the corresponding reaction using Boc imine 4a and
acrylamide as an activated alkene system was investigated.
Accordingly, 4a was reacted with N-phenylacrylamide (1a) in
the presence of DABCO and MeCN as a solvent. However, the
reaction mixture resulted in complicated TLC results. A change
of substrate (NV-benzyl-protected isatin), catalyst (DMAP) or
other solvents (THF, DCM, dioxane), gave no different result.
However, remarkably, when the activated alkene was changed
from acrylamide to methyl acrylate, formation of required aza-

SN RSJ
RSJ_ !
= DABCO (2 equiv)
PhOH (2 equiv) HN__O
HN__O MeCN
2a-e 1 HO
Ta-d [ R
R'=H, Cl, Br o
R2 = Me, Bn, propargyl N
R3 = H, 4-Me, 2-OMe, 3-Cl 3aa—ed R?
; [ j i ;/\ Cl
HN__O HN. _O
HO HO
X
N (L o
@ o
= Me
3aa 3ba 3ca 3ab 3ac 3ad
2d, 92% 2d,91% 2d, 79% 2d, 89% 2d, 90% 1d, 94%
| x Cl
P4
HN (0]
HO
N Br
(0]
7 N
Me
3da 3db 3dc 3ea? 3eb? 3ed
1d, 93% 2d, 83% 2d, 87% 1d, 88% 2d, 76% 0.5d, 90%

Scheme 1: Substrate scope of the MBH reaction for various isatin and acrylamide derivatives. All reactions were carried out at rt with a 0.5 mmol
isatin derivative in acetonitrile (0.5 mL). Yields presented are isolated yields. 2Acetonitrile (0.75 mL) was used for better dissolution.
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Figure 2: ORTEP diagram of 3ea (ellipsoids are drawn at 50% proba-
bility).

MBH product Saa in high purity and in 91% yield in just
3 hours of reaction (Table 2, entry 1) was achieved.

Encouraged by these results, the focus was shifted to the devel-
opment of this aza-Morita—Baylis—Hillman reaction using
isatin-derived ketimines [51-53]. This reaction could also lead
to the construction of tertiary benzylic amines [54-57] and
would help in the development of yet another fundamental reac-
tion with commonly used Michael acceptors and inexpensive
catalysts. As mentioned earlier, the application of the MBH
adduct has greatly contributed to the success of the MBH reac-
tion, as it necessitated quick access to these adducts for the
rapid development of other methodologies. Optimization of the
conditions and parameters revealed DABCO as a superior cata-
lyst (Table 2). The reduction in the loading of methyl acrylate
and catalyst, or dilution of the solutions did not have any major
effect on time or yield. Thus, DABCO (0.25 equiv) along with

Beilstein J. Org. Chem. 2014, 10, 2975-2980.

Table 2: Results of the MBH reaction of 4a.2
Os_OMe

NBoc
| OMe BocHN
O

(\ o)
N
I‘\/Ie 7 N

e

conditions
4a 5aa M
Entry  Catalyst Methyl acrylate Time  Yield®
(equiv) (equiv) (h) (%)
1 DABCO/1.0 10 3 91
2 TPP/1.0 10 24 74
3 DMAP/1.0 10 48 61
4 DABCO/0.5 10 4 96
5¢ DABCO/1.0 5 3 93
6d DABCO/1.0 3 3 95
7¢ DABCO/0.5 5 3 92
gd DABCO/0.5 3 4 91
g9d DABCO/0.25 3 6 95

aAll reactions were carried out at rt with 0.5 mmol 4a. Plsolated yields.
CAcetonitrile (0.25 mL) was used. Acetonitrile (0.5 mL) was used.

methyl acrylate (3 equiv) in acetonitrile as a solvent was identi-
fied as the best condition (Table 2, entry 9). Next, the reaction
on different substrates was further explored. The protocol was
found to work consistently, delivering the product with a short
reaction time and in high yields (Scheme 2). The reaction scope
was expandable to other activated alkene (acrylonitrile) and to
other isatin derivatives with substituents on nitrogen (methyl,
benzyl) and on the aryl ring (H, 5-chloro).

WG
NBoc EWG BocHN
R! [r 3 equiv R!
O - (0]
N DABCO (0.25 equiv) N
‘R2 MECN, rt i:\,z
4a—c 5aa—cb
R! = H, CI EWG = COgMe, CN
R2 = Me, Bn

CO,Me

2

CN
BocHN BocHN
COsMe COsMe CN CN
BocHN BocHN BocHN BocHN
9 cl o cl
0 N 0 o) N o)
N —) N N —) N
Me Me Me Me

5aa 5ba
6 h, 95% 8 h, 89%

3h,91%

5ab 5bb 5cb
4 h, 93% 6h, 77% 3 h, 78%

Scheme 2: Substrate scope of the aza-MBH reaction for various isatin derivatives. All reactions were carried out at rt with 0.5 mmol of isatin deriva-
tive in acetonitrile (0.5 mL) and yields are isolated yields.
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Conclusion

We have developed the Morita—Baylis—Hillman reaction of
acrylamide with isatin derivatives. The reaction is facile and
high yielding. However, the aza version of the reaction with
N-phenylacrylamide as a substrate was not successful and led to
a complicated reaction mixture. In contrast, the corresponding
reaction with acrylate and acrylonitrile was very facile, clean
and high yielding. We are currently investigating the develop-
ment of the aza version with acrylamide and isatin-derived

imine.
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