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a REQUIMTE/Faculty of Science, Chemistry Department, University of Porto, 4169-007, Portugal
b Unit of Bioinformatics & Connectivity Analysis (UBICA), Institute of Industrial Pharmacy, and Department of Organic Chemistry, Faculty of Pharmacy,

University of Santiago de Compostela, 15782, Spain
a r t i c l e i n f o

Article history:

Received 22 July 2008

Received in revised form

11 November 2008

Accepted 22 November 2008
Available online 6 December 2008

Keywords:

Input-coded multi-target QPDR

Star graph

Cancer theoretical model

Clinical proteomics

GDA method
93/$ - see front matter & 2008 Elsevier Ltd. A

016/j.jtbi.2008.11.017

esponding author. Tel.: +34 981563100; fax:

ail addresses: muntisa@gmail.com (C.R. Mu
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a b s t r a c t

The cancer diagnostic is a complex process and, sometimes, the specific markers can interfere or

produce negative results. Thus, new simple and fast theoretical models are required. One option is the

complex network graphs theory that permits us to describe any real system, from the small molecules

to the complex genetic, neural or social networks by transforming real properties in topological indices.

This work converts the protein primary structure data in specific Randic’s star networks topological

indices using the new sequence to star networks (S2SNet) application. A set of 1054 proteins were

selected from previous works and contains proteins related or not with two types of cancer, human

breast cancer (HBC) and human colon cancer (HCC). The general discriminant analysis method

generates an input-coded multi-target classification model with the training/predicting set accuracies

of 90.0% for the forward stepwise model type. In addition, a protein subset was modified by single

amino acid mutations with higher log-odds PAM250 values and tested with the new classification if can

be related with HBC or HCC. In conclusion, we shown that, using simple input data such is the primary

protein sequence and the simples linear analysis, it is possible to obtain accurate classification models

that can predict if a new protein related with two types of cancer. These results promote the use of the

S2SNet in clinical proteomics.

& 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Cancer is a leading cause of death worldwide, accounted for
around 13% of all deaths in 2007 (WHO, 2008). Two of the leading
types of cancer are the human breast cancer (HBC) and the human
colon cancer (HCC). The estimated new cancer cases and deaths in
US for 2008 shows that HBC will affect 26% of the women (15%
will die) and HCC will involve 10% of the men/women (8% men
and 9% women will die) (Jemal et al., 2008). Therefore, simple and
fast theoretical method can be very useful in the detection of
cancer diseases.

The actual work will use the protein quantitative proteome-
disease relationship (QPDR) (Ferino et al., 2008), similar to
quantitative structure-activity relationship (QSAR) (Devillers and
Balaban, 1999). QPDR is one of the widely used analyse for
predicting the protein properties and, in the present study, is
using the macromolecular descriptors, named topological indices
ll rights reserved.
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(TIs), obtained with the graph theory. The branch of mathematical
chemistry dedicated to encode the DNA/protein information in
graph representations by the use of the TIs has become an intense
research area (Agüero-Chapin et al., 2006; Bielinska-Waz et al.,
2007; Liao and Wang, 2004; Liao and Ding, 2005; Randic, 2000;
Randic and Basak, 2001; Randic and Balaban, 2003; Randic et al.,
2000). The graphic approaches of the biological systems study can
provide useful insights in QSAR studies (González-Dı́az et al.,
2006, 2007c; Prado-Prado et al., 2008), protein folding kinetics
(Chou, 1990), enzyme-catalyzed reactions (Chou, 1989; Chou and
Forsen, 1980; Chou and Liu, 1981; Kuzmic et al., 1992), inhibition
kinetics of processive nucleic acid polymerases and nucleases
(Althaus et al., 1993a, b; Althaus et al., 1994, 1996; Chou et al.,
1994), DNA sequence analysis (Qi et al., 2007), anti-sense strands
base frequencies (Chou et al., 1996), analysis of codon usage (Chou
and Zhang, 1992; Zhang and Chou, 1994) and in complicated
network systems investigations (Diao et al., 2007; Gonzalez-Diaz
et al., 2007a, 2008). Recently, the ‘‘cellular automaton image’’
(Wolfram, 1984, 2002) has also been applied to study hepatitis B
viral infections (Xiao et al., 2006a), HBV virus gene missense
mutation (Xiao et al., 2005b), and visual analysis of SARS–CoV
(Gao et al., 2006; Wang et al., 2005), as well as representing
complicated biological sequences (Xiao et al., 2005a) and helping
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to identify protein attributes (Xiao and Chou, 2007; Xiao et al.,
2006b). We have chosen the TIs for these QPDR models based on
the previous work results with similar QSAR/QPDR models. Even if
the TIs cannot be always interpreted, they demonstrate to encode
the information that permits to create accurate QSAR/QPDR models.

Other interesting fields to apply the graph theory are the
oncology and clinical proteomics. A classification model for
discriminating prostate cancer patients from control group with
connectivity indices where constructed by González-Dı́az et al.
(2007b). Vilar’s group designed a QSAR model for alignment-free
prediction of HBC biomarkers based on electrostatic potentials of
protein pseudofolding HP-lattice networks (Vilar et al., 2008).

The actual work is proposing a new cancer/non-cancer
classification model based on protein embedded/non-embedded
star graph TIs such are the trace of connectivity matrices, Harary
number, Wiener index, Gutman index, Schultz index, Moreau–
Broto indices, Balaban distance connectivity index, Kier–Hall
connectivity indices and Randic connectivity index. This classifi-
cation can predict two types of cancer: HBC and HCC. The primary
protein sequence is transformed in connectivity star graph’s TIs
that are used by a statistical linear method in order to construct
an input-coded multi-target classification model.
2. Materials and methods

2.1. Protein set

Two sets of protein primary sequences are used: a set of 189
HBC/HCC cancer proteins (Sjoblom et al., 2006) and 865 non-
cancer proteins (Dobson and Doig, 2005; Dobson et al., 2004). The
list of cancer-related proteins in our work is the same with the list
obtained by the Sjoblom group after the experimental analysis of
13,023 genes in 11 breast and 11 colorectal cancers.
Fig. 1. (A) The non-embedded star graphs for PRPS1 and (B) the embedded star

graphs for PRPS1.
2.2. Star graph TIs

Each protein sequence was transformed in a star graph, where
the amino acids are the vertices (nodes), connected in a specific
sequence by the peptide bonds. The star graph is a special case of
trees with N vertices where one has got N�1 degrees of freedom
and the remaining N�1 vertices have got one single degree of
freedom (Harary, 1969). Each of the 20 possible branches (‘‘rays’’)
of the star contains the same amino acid type and the star centre
is a non-amino acid vertex.

A protein can be represented by diverse forms of graphs, which
can be associated with distinct distance matrices. The best
method to construct a standard star graph is the following: each
amino acid/vertex holds the position in the original sequence and
the branches are labelled by alphabetical order of the 3-letter
amino acid code (Randic et al., 2007). The graph is embedded if
the initial sequence connectivity in the protein chain is included.
Figs. 1A and B present the non-embedded/embedded star graphs
of PRPS1 using the alphabetical order of one-letter amino acid
code. Thus, the primary structure of protein chains are trans-
formed in the correspondent Star graphs invariant TIs. The
resulted graphs are not depending on the three-dimensional
structure or the shape of the protein.

The comparison of the graphs is made by using the correspond-
ing connectivity matrix, distance matrix and degree matrix. The
matrices of the connectivity in the sequence and in the star graph
are combined in the case of the embedded graph. These matrices
and the normalized ones are the base of the TIs calculation.

The conversion of the amino acid sequences in star graph TIs
was made by using sequence to star networks (S2SNet) application,
developed by our group (Munteanu and Gonzáles-Diáz, 2008).
S2SNet is based on wxPython (Rappin and Dunn, 2006) for the GUI
application and has Graphviz (Koutsofios and North, 1993) as a
graphics back-end. The present calculations are characterized by
embedded and non-embedded TIs, no weights, Markov normal-
ization and power of matrices/indices (n) up to 5. The results file
contains the following TIs (Todeschini and Consonni, 2002):
�
 Trace of the n connectivity matrices (trn) or the spectral
moments:

trn ¼
X

i

ðMn
Þii; (1)
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where n ¼ 0–power limit, M ¼ graph connectivity matrix (i* i

dimension); ii ¼ ith diagonal element;

�
 Harary number (H) or the reciprocal distance sum index:

H ¼
X
ioj

mij=dij, (2)

where dij are the elements of the distance matrix and mij are
the elements of the M connectivity matrix;

�
 Wiener index (W) or the sum of the numbers of edges in the

shortest paths in a graph between all pairs of amino acids in a
protein:

W ¼
X
ioj

dij, (3)
�
 Gutman TI (S6):

S6 ¼
X

ij

degi � degj=dij, (4)

where degi are the elements of the degree matrix;

�
 Schultz TI (non-trivial part) (S):

S ¼
X
ioj

ðdegi þ degjÞ � dij. (5)
�
 Balaban distance connectivity index (J) or average distance sum
connectivity index (measures the graph ramification):

J ¼ ðedges� nodesþ 2Þ �
X
ioj

mij � sqrt
X

k

dik �
X

k

dkj

 !
, (6)

where nodes+1 ¼ AA numbers/node number in the star
graph+origin, Sk dik is the node distance degree;

�
 Kier–Hall connectivity indices (nX):

0X ¼
X

i

1=sqrtðdegiÞ, (7)

2X ¼
X

iojok

mij �mjk=sqrtðdegi � degj � degkÞ (8)

3X ¼
X

iojokom

mij �mjk �mkm=sqrtðdegi � degj � degk � degmÞ, (9)

3X ¼
X

iojokomoo

mij �mjk �mkm �mmo=sqrtðdegi � degj

� degk � degm � degoÞ, (10)

5X ¼
X

iojokomoooq

mij �mjk �mkm �mmo �mmq=sqrtðdegi

� degj � degk � degm � dego � degqÞ, (11)
�
 Randic connectivity index (1X):

1X ¼
X

ij

mij=sqrtðdegi � degjÞ, (12)

These TIs and other derivate ones will be used in the next step to
construct a cancer/non-cancer classification model by linear
statistical methods.
2.3. Statistical analysis

An input-coded multi-target classification model was created
with general discriminant analysis (GDA) method (Kowalski and
Wold, 1982; Van Waterbeemd, 1995), STATISTICA 6.0 package
(StatSoft.Inc., 2002). This model can predict if a protein is HBC or
HCC-related using a single equation. For this reason, in addition to
the 30 star graph embedded and non-embedded TIs are
introduced other two types of continuous predictors (attributes)
encoded specific information about each cancer types as follow-
ing: 30 products of the HBC/HCC cancer probability with the
embedded/non-embedded TIs (pTI ¼ probHBC/HCC*TI) and 30 dif-
ferences between the same TIs and the average of the TIs for each
type of cancer [dTI ¼ TI–average(TI)HBC/HCC]. The cancer probabil-
ities represent the fractions of proteins HBC/HCC-related from the
entire Sjöblom’s proteins (cancer proteins) and have values of
0.639 (HBC) and 0.361 (HCC). For each protein there are two cases
corresponding to both types of cancer. The dependent variable
(CancerOrNot) takes 1 for cancer and 0 for non-cancer and the
cross-validation (CV) variable has two values (train and val). The
best CV methods to examine a predictor are the following:
independent dataset test, subsampling test, and jackknife test
(Chou and Zhang, 1995). Chou and Shen (2007, 2008) have shown
that only the jackknife test has the least arbitrariness . Thus, the
jackknife test has been increasingly used by investigators to
examine the accuracy of various predictors (Chen and Li, 2007a, b;
Diao et al., 2007; Ding et al., 2007; Jiang et al., 2008; Li and Li,
2008; Lin, 2008; Niu et al., 2006; Xiao and Chou, 2007; Zhang
et al., 2008; Zhou et al., 2007). In the actual work, the independent
data test is used by splitting the data at random in a training
series (train, 75%) used for model construction and a prediction
one (val, 25%) for model validation (the CV column is filled by
repeating 6 train and 2 val). All independent variables are
standardized prior to model construction.

The general QPDR formula contains embedded and non-
embedded TIs, pTIs and dTIs:

C=nC2score ¼ c0 þ
X

i¼1!n

ci � TIi þ
X

j¼n!m

cj � pTIj

þ
X

k¼m!0

ck � dTIk, (13)

where C/nC�score is the continue score value for the cancer/non-
cancer classification (HBC or HCC), c1–cn are the TIs coefficients
(n ¼ number of TIs), cn–cm pTIs coefficients (nom; m–n ¼ number
of pTIs), cm–c0 dTIs coefficients (mo0; 0–m ¼ number of dTIs)
and c0 is the independent term. We inspected the percentage of
good classification and the number of variables to be explored in
order to avoid over-fitting or chance correlation. The forward

model type was tested for the embedded, non-embedded and
both data, including TIs, pTIs, dTIs and all indices.

In addition, the Dobson’s set is use to select a subset of 61 non-
cancer proteins with cancer probability between 0.3 and 0.5 in
order to proceed 17 single amino acid mutations with log-odds
PAM250 (Dayhoff, 1978) greater or equal with 2 (see Table 1). The
best classification model predicted the probability of presence in
HBC/HCC cancer for any of these mutated proteins and the results
were analysed with two-way joining clustering analysis method
(tw-JCA) from STATISTICA (StatSoft.Inc., 2002).
3. Results and discussions

Fifteen classification models were tested with the aim of
finding the best GDA equation which is able to discriminate
between proteins related with HBC and HCC. The attributes
include 30 embedded/non-embedded star graph TIs obtained
with S2SNet application and other 60 composed predictors, pTIs
and dTIs. The values obtained for the training/predicting accura-
cies with the forward stepwise method are presented in Table 2.

The forward stepwise selection variable method conjugated
with the embedded TIs and dTIs provides the best results for our
data set with values of correctly classified compounds of 89.9%,
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90.3% and 90.0% for the training, CV and full sets, respectively, and
using only six/five parameters/variables (Eq. (14)). The embedded
TIs have the name of the non-embedded ones plus ‘‘e’’ as suffix.
The simple linear mathematical form of the model has been
chosen in the absence of prior information.

C=nC2score ¼ � 4:4þ 1:7 � tr 3eþ 124:8 � Se

� 126:5 � dJeþ 48:6 � dX2e� 45:9 � X5e (14)

N ¼ 2102; Rc ¼ 0:54; U ¼ 0:70,

F ¼ 132:20; po0:001,

where N is the number of cases (C and nC), Rc is the canonical
regression coefficient, U is the Wilk’s statistics, F is the Fisher’s
statistics and p is the p-level (probability of error).

The above results are typically considered as excellent in the
literature for LDA–QPDR/QSAR models (Castillo-Garit et al., 2008;
Estrada and Molina, 2001; Marrero-Ponce et al., 2004; Morales
et al., 2006; Vilar et al., 2008). In order to check the variation of
this model with the training/CV sets, we carried on a CV study by
using ten totally random sets, including the initial one from the
actual model (with the same 75% training and 25% CV). The
classification values are presented in Table S1 from the supple-
Table 1
Single amino acid mutations and the corresponding log-odd PAM250 value..

Original AA Mutated AA log-odd PAM250 Notation

D N 2 D-N/2DN

E Q 2 E-Q/2EQ

F L 2 F-L /2FL

H N 2 H-N/2HN

H R 2 H-R/2HR

L I 2 L-I/2LI

M I 2 M-I/2MI

Q D 2 Q-D/2QD

V L 2 V-L/2VL

V M 2 V-M/2VM

W R 2 W-R/2WR

E D 3 E-D/3ED

H Q 3 H-Q/3HQ

K R 3 K-R/3KR

M L 4 M-L/4ML

V I 4 V-I/4VI

Y F 7 Y-F/7YF

Table 2
Training/predicting accuracies of Cancer (C)/non-cancer (nC) models using embedded (

Star graph type Attributes Train

nC (%) C (%) Total (%)

nE pTI 90.4 69.4 88.5

TI, pTI 90.4 68.1 88.3

dTI 86.0 79.9 85.4

TI, dTI 88.1 74.3 86.9

TI, pTI, dTI 91.1 66.0 88.8

E pTIe 92.3 70.1 90.3

TIe, pTIe 92.7 69.4 90.6

dTIe 88.1 78.5 87.3

TIe, dTIe 91.4 75.7 89.9

TIe, pTIe, dTIe 93.1 68.1 90.8

nE and E pTI, pTIe 90.2 70.1 88.4

TI, TIe, pTI, pTIe 92.3 68.8 90.1

dTI, dTIe 90.3 78.5 89.2

TI, TIe, dTI, dTIe 90.9 72.9 89.3

TI, TIe, pTI, pTIe, dTI, dTIe 92.3 68.8 90.1
mentary material and show an average of 90.2% for training and
89.2% for CV. These values demonstrate the stability of the model
with the selection of the classification sets.

In order to illustrate the performance of the approach when
applied to a single set of cancer related proteins (e.g. either breast
or colon), we obtained two equations, one for HBC and other for
HCC. Therefore, we have to consider that the Eq. (14) represents an
input-coded multi-target classification model that can evaluate if
a protein is HBC or HCC-related by using the HBC or HCC average
Je and X2e values (contained in the dJe and dX2e differences).
Eq. (14) can be reduced to two different equations, one for each
type of cancer (HBC and HCC):

HBC=nHCC2score ¼ � 19:8þ 1:7 � tr 3eþ 124:8 � Se2Je

þ 0:2 � X2e� 45:9 � X5e, (14a)

HCC=nHCC2score ¼ � 20:8þ 1:7 � tr 3eþ 124:8 � Se2Je

þ 0:2 � X2e� 45:9 � X5e. (14b)

The detailed classification results for each type of cancer obtained
with Eqs. (14a), (14b) are presented in Table 3.

A similar input-coded multi-target classification model was
obtained by using the forward stepwise method and the embedded
pTIs and provides values of correctly classified compounds of 90.3,
91.0 and 90.5 for the training, CV and full sets, respectively (using
seven/six parameters/variables) (Eq. (15)).

C=nC2score ¼ � 4:1� 118:6 � p tr 0eþ 80:7 � p tr 2e

þ 1:4 � p tr 3eþ 100:3 � pSe

� 101:4 � pJeþ 39:7 � pX2e, (15)

N ¼ 2102; Rc ¼ 0:58; U ¼ 0:66,

F ¼ 135:08; po0:001.

In order to evaluate if a protein is HBC or HCC-related, it is
necessary to use the HBC or HCC probability inside the pTIs
products. The classification values obtained for the individual
equations are presented in Table 3. The equations obtained are the
following:

HBC=nHBC2score ¼ � 5:6� 0:3 � tr 0eþ 0:8 � tr 2e

þ 0:6 � tr 3eþ 0:2 � X2e (15a)
E) and non-embedded (nE) star graph TIs, pTIs and dTIs..

Cross-validation Total Eq. vars.

nC (%) C (%) Total (%) nC (%) C (%) Total (%)

91.4 66.0 89.1 90.7 68.6 88.7 4

90.8 66.0 88.5 90.5 67.5 88.4 5

87.0 74.5 85.9 86.2 78.5 85.5 2

88.9 72.3 87.4 88.3 73.8 87.0 4

91.8 61.7 89.1 91.3 64.9 88.9 6

93.1 70.2 91.0 92.5 70.2 90.5 6

93.3 70.2 91.2 92.8 69.6 90.7 6

88.3 76.6 87.2 88.2 78.0 87.3 4

91.8 74.5 90.3 91.5 75.4 90.0 5

93.3 66.0 90.8 93.1 67.5 90.8 8

91.2 68.1 89.1 90.5 69.6 88.6 4

92.0 66.0 89.7 92.2 68.1 90.0 8

90.6 76.6 89.3 90.4 78.0 89.2 6

91.4 72.3 89.7 91.1 72.8 89.4 7

92.2 70.2 90.3 92.3 69.1 90.2 8
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HCC=nHCC2score ¼ � 5:6� 0:2 � tr 0eþ 0:5 � tr 2e

þ 0:3 � tr 3eþ 0:1 � X2e, (15b)

Eqs. (14), (15) show similar results when the input data is
containing probability of cancer (products with TIs) or the TIs
averages for each type of cancer (differences with TIs). In general,
in the case of embedded, non-embedded and both indices, we
obtained better results with dTIs compared with the pTIs (not
mixed with the original TIs). This difference can be explained by a
superior recover of the cancer-related protein sequence informa-
tion in the case of the differences between the original TIs and the
average of them for each type of cancer (dTIs) compared with the
products of the original TIs and the cancer type probability (pTIs).
Thus, we can conclude that the average of star graph structure for
each type of cancer (dTIs) is described better the actual QPDR
model compared with the composition of the data sets for each
type of cancer that generates the cancer probabilities. In addition,
Table 2 shows that better results are obtained using the original
TIs and the derived ones (pTIs and dTIs) compared with the
isolated TIs/pTIs/dTIs. This difference can be explained be the fact
that each set of indices can contains different parts of the protein
Table 3
Accuracy of input-coded multi-target and individual HBC and HCC classification

models based on the embedded TIs (TIe+dTIe and pTIe)..

Eq. Cancer Correct Incorrect Accuracy (%)

TIe, dTIe
14 Both 307 1795 90.0

14a HBC 168 880 91.8

14b HCC 139 915 88.2

pTIe
15 Both 277 1825 90.5

15a HBC 170 878 91.8

15b HCC 107 947 89.2

Fig. 2. Graphical representation of two-way joining cluste
information that is cancer-related. Therefore, the use of all these
indices will sum all this information in a better QPDR model.

Another interesting aspect is the type of the indices (original or
derived from the original) that are more frequent in all models
presented in Table S2 from supplementary material. Thus, we can
observe the importance of the Wiener index (W) and Kier–Hall
connectivity index X5 for the models based on the non-embedded
TIs. The embedded TIs models contain more frequent the trace of
the graph/sequence connectivity matrixes tr 3 and the non-trivial
part of the Schultz TI S (W is based on the distance matrix, X5 and
S on the degree matrix, and tr 3 on the connectivity matrix). The
most important type of index that is present in both embedded
and non-embedded TI equations is J, the Balaban distance
connectivity index based on the node distance degree informa-
tion. In order to compare two equations with the same number of
r analysis of the HBC probability after the mutations.

Fig. 3. Graphical representation of reduced values of the reordered data matrix by

tw–JCA method for HBC probability after the mutations.
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Fig. 4. Graphical representation of two-way joining cluster analysis of the HCC probability after the mutations.

Fig. 5. Graphical representation of reduced values of the reordered data matrix by tw–JCA method for HCC probability after the mutations.
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TIs, we have chosen the embedded models with pTIe and {TIe,
pTIe} that contain six variables and reduced the common terms
(based on tr 3, S and J). Thus, we can observe that the addition of
the TIe to the pTIe will shift the preference from the low order
traces (p tr 0e, p tr 2e) and Kier–Hall index (pX2e) to high order
trace (tr 5e), Harary number (He) and Gutman TI (S6e).

The first embedded TIs & dTIs model was chosen to estimate
the cancer probability for proteins mutants of non-cancer-related
proteins. These values were analysed with tw-JCA using 61
mutated proteins and 17 types of single amino acid mutations.
In the case of HBC, we obtained 215 data groups, called input
blocks. To detect the larger variability regions (mutants) we
computed a tw-JCA partition of input blocks (rearrange of blocks)
setting the threshold value of variability at StDv/2 (see Fig. 2). The
value obtained was 0.059. The 215 input blocks are regrouped, for
similarity, into 11 output blocks (see Tables S3 and S4 in the
supplementary material). We can observe that the proteins with
number 24 to number 48 are very susceptible to become HBC-
related proteins for all studied mutations. The plot corresponding
to the reduced values of the reordered data matrix (Table S4) is
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presented in Fig. 3. On the other hand, we carried out the same
study for the HCC mutated proteins and found different
susceptible proteins, with visible lower probability to be HCC-
related (Fig. 4). The 184 input blocks were regrouped, for
similarity, into 11 output blocks (StDv/2 ¼ 0.050) (see Tables S5
and S6 in the supplementary material). The reduced data from
Table S6 are presented as a plot in Fig. 5. The tw-JCA partition
obtained in this way is statistically significant as reported by other
authors that used this method to reach similar goals (Ferino et al.,
2008).
Fig. 6. Graphical representation of two-way joining cluster analysis of the proba

Fig. 7. Graphical representation of two-way joining cluster analysis of the proba
One interesting non-cancer chain protein is 1QRK B, the human
coagulation factor XIII with strontium bound in the ion site (Fox
et al., 1999), with eight single amino acid mutations that present
HBC probability up to 71% as following: 70.8% for V-L, 68.8%
for V-I, 62.0% for L-I, 59.3% for D-N, 58.3% for E-Q, 55.9% for
F-L, 54.8% for E-D and 51.0% for V-M. The most persistent
mutation (log-odd PAM250 ¼ 4), valine (V) to isoleucine (M), can
be considered as the most dangerous one. The main calcium/
strontium binding site within each monomer involves the main
chain oxygen atom of Ala-457, and also the side chains from
bility of the mutated HBC-related proteins to turn into non-cancer proteins.

bility of the mutated HCC-related proteins to turn into non-cancer proteins.
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residues Asn-436, Asp-438, Glu-485, and Glu-490. The mutations
of Glu (E) in Q and D can affect the capacity of binding metals and
the normal biological activity. This coagulation factor XIII is a
transglutaminase which stabilizes blood clots by covalently cross-
linking fibrin, being essential for normal haemostasis. FXIII
deficiency due to the genetic mutations results in a life-long
bleeding disorder with added complications in wound healing and
tissue repair (Anwar et al., 1998). In addition, the abundant
fibrinogen present in the tumor connective tissue might con-
tribute to the structural integrity of breast or colon tumor tissues
(Costantini et al., 1991; Takahashi et al., 2000; Yee et al., 1994). We
can observe that, in general, the natural mutations with higher
PAM250 values are less frequent even for 1QRK B (Y-F with
PAM250 of 7 is absent) because we cannot create a direct relation
between the PAM250 natural amino acid mutation frequency and
the influence of the mutations in these types of cancer.

The probability for a cancer-related protein to turn into a non-
cancer one was studied too. For each type of cancer, ten HBC/HCC-
related proteins where mutated using the same PAM250 values.
The tw-JCA plots are presented in Fig. 6 (for HBC) and Fig. 7 (for
HCC), and correspond to data in Tables S7 and S8 from the
supplementary material. The results did not show important
probability to obtain a HBC/HCC-related protein by using single
PAM250 natural mutations. Activin beta E (INHBE, C_5) has the
highest probability (around 50%) to turn into a HBC-related
protein after almost all the mutations (Fig. 6 and Table S7).
4. Conclusions

This study is proposing two cancer/non-cancer input-coded
multi-target classification models for HBC and HCC using the star
network TIs of the protein amino acid sequences. The results
prove the excellent predictive ability (90.0%) of the simple and fast
star network TIs and GDA statistics linear models in the case of
the actual protein model. In addition, the prediction of cancer
probability for mutated proteins was calculated. The human
coagulation factor XIII (1QRK B), that normally do not generate
HBC, if suffer several mutations, can become a HBC-related
protein.

This work can help in oncology proteomics or serve as a model
for other studies. In addition, S2SNet application is demonstrating
his capacity to transform simple protein sequences in TIs and to be
the base of numerous protein studies.
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