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Abstract

The ITS2 gene class shows a high sequence divergence among its members that have complicated its annotation and its use
for reconstructing phylogenies at a higher taxonomical level (beyond species and genus). Several alignment strategies have
been implemented to improve the ITS2 annotation quality and its use for phylogenetic inferences. Although, alignment
based methods have been exploited to the top of its complexity to tackle both issues, no alignment-free approaches have
been able to successfully address both topics. By contrast, the use of simple alignment-free classifiers, like the topological
indices (TIs) containing information about the sequence and structure of ITS2, may reveal to be a useful approach for the
gene prediction and for assessing the phylogenetic relationships of the ITS2 class in eukaryotes. Thus, we used the TI2BioP
(Topological Indices to BioPolymers) methodology [1,2], freely available at http://ti2biop.sourceforge.net/ to calculate two
different TIs. One class was derived from the ITS2 artificial 2D structures generated from DNA strings and the other from the
secondary structure inferred from RNA folding algorithms. Two alignment-free models based on Artificial Neural Networks
were developed for the ITS2 class prediction using the two classes of TIs referred above. Both models showed similar
performances on the training and the test sets reaching values above 95% in the overall classification. Due to the
importance of the ITS2 region for fungi identification, a novel ITS2 genomic sequence was isolated from Petrakia sp. This
sequence and the test set were used to comparatively evaluate the conventional classification models based on multiple
sequence alignments like Hidden Markov based approaches, revealing the success of our models to identify novel ITS2
members. The isolated sequence was assessed using traditional and alignment-free based techniques applied to
phylogenetic inference to complement the taxonomy of the Petrakia sp. fungal isolate.
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Introduction

Standard alignment methods are less effective for the functional

prediction of gene and protein classes that show a high primary

sequence divergence between their members [3]. Thus, the

implementation of stochastic models [4], the modification of the

original similarity matrixes among the aligned sequences, and the

addition of other steps in the alignment procedures [5,6], have

been strategies adopted to improve the classification of divergent

gene/protein functional classes. On the other hand, several

alignment-free methods have been developed as an alternative to

traditional alignment algorithms for gene/protein classification at

low sequence similarity level [1,7,8].

The internal transcribed spacer 2 (ITS2) eukaryotic gene class is

one of the cases showing a higher sequence divergence among its

members, which have traditionally complicated ITS2 annotation

and limited its use for phylogenetic inference at low taxonomical

level analyses (genus and species level classifications). Despite the

ITS2 high sequence variability, the ITS2 structure has been

considerably conserved among all eukaryotes [9]. This fact has

been considered for the implementation of homology-based

structure modelling approaches to improve the ITS2 annotation

quality and also as a tool for eukaryote phylogenetic analyses at

higher classification levels or taxonomic ranks [6,9,10]. Thus, the

ITS2 database (http://its2.bioapps.biozentrum.uni-wuerzburg.de)

was developed holding information about sequence, structure and

taxonomic classification of all ITS2 in GenBank [11]. However,

due to ITS2 high sequence variability, the annotation pipeline

implemented in the aforementioned resource requires the use of a

specific score matrix in the BLAST search [11] and more recently,

the use of HMM for the identification and delineation of the ITS2

sequences [10,12]. Although alignment based methods have been

exploited to the top of its complexity to tackle the ITS2 annotation

and phylogenetic inference [10,11], no alignment-free approach

has been able to successfully address these issues so far. The use of

simple alignment-free classifiers like the topological indices (TIs)

containing also information about the sequence and structure of

ITS2 can be another useful approach for the prediction and
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phylogenetic analyses of the ITS2 class in eukaryotes. Such TIs are

determined by our methodology entitled Topological Indices to
BioPolymers ‘‘TI2BioP’’ where the spectral moments are

calculated from different graphical approaches representing the

structure of the biopolymers: DNA, RNA and proteins [1,2].

TI2BioP is now available at http://ti2biop.sourceforge.net/ as a

public tool for the calculation of two different TIs, one class

derived from the ITS2 artificial 2D structures generated from

DNA strings (Nandy structures) [13,14] and the other class

resulting from the secondary structure inferred with RNA folding

algorithms (Mfold) [15]. These alignment-free classifiers were used

to build linear and Artificial Neural Networks (ANN)-models for

classifying the ITS2 members among positive and negative sets

and also to estimate the ITS2 phylogeny at higher classification

levels.

The ANN-models provided the highest classification accuracy

(95.9 and 97.5%) during the training step compared to the linear

models for Nandy-like and Mfold structures, respectively. A very

similar ANN performance was obtained for the test set for both

structural representations. These results support that the identifi-

cation of gene signatures tend to be better when assessed with non-

linear models. We also showed the utility of the artificial secondary

structure when the correct 2D structure is not available (i.e. the

physiological structure that occurs on the cell) and can only be

obtained by predictions based on free energy minimizations.

The performance of our two alignment-free models based on

ANN was also compared with several profile Hidden Markov

Models (HMMs) generated from alignments performed with

CLUSTALW [16], DIALIGN-TX [17] and MAFFT [18] using

different training sets, to classify the test set and to identify a new

fungal member of the ITS2 class. Moreover, a BLASTn search

against NCBI was carried out to give more reliability to the gene

annotation and to assess taxonomically related hits to our query

fungal sequence. ITS2 is the standard gene target for fungal

identification and taxonomy at the species level [19]. This new

ITS2 sequence was isolated by our group (GenBank accession

number FJ892749) from an endophytic fungus belonging to the

genus Petrakia. Members of this fungal genus have been hard to be

placed taxonomically and are potential producers of bioactive

compounds [20]. The Petrakia sp. strain was morphologically

identified and its ITS2 sequence was used to carry out traditional

and alignment-free phylogenetic analyses to support its taxonomic

characterization.

The alignment-free models identified the new query sequence as

a member of the ITS2 class with high significance, while the

profile HMMs showed a poor performance in doing so. We

demonstrated that our TIs are useful not only in sequence

identification but also in molecular evolutionary inferences. The

alignment-free tree built based on TIs provided similar phyloge-

netic relationships among the different classes of the Ascomycota

phylum in respect to the traditional phylogenetic analysis (i.e.

based on evolutionary distances derived from a multiple alignment

of DNA sequences). Both analyses placed the Petrakia genus inside

the Pezizomycotina subphylum and the Dothideomycetes class.

Methods

1. Computational methods. Topological Indices to
BioPolymers (TI2BioP)

TI2BioP allows the calculation of the spectral moments derived

from inferred and artificial 2D structures of DNA, RNA and

proteins [21]. Consequently, it is feasible to carry out a structure-

function correlation using such sequence/structure numerical

indices. The calculation of the spectral moments as sequence

descriptors is performed according to the TOPS-MODE approach

[22] implemented in the ‘‘MODESLAB’’ software [23] and the

draw mode for sequence representation was retrieved from the

MARCH-INSIDE methodology [24,25,26]. TI2BioP can also

import files containing 2D structure inferred by other professional

softwares like the RNASTRUCTURE [15]. We propose for the

first time to fold the ITS2 genomic sequences into an artificial

secondary structure based on Nandy’s representation for DNA

strings [13]. This graph groups purine and pyrimidine bases on a

Cartesian system assigning to X and Y axes each nucleotide-type,

respectively. The representation was carried out by adding to the

coordinates (0, 0) of the Cartesian system the k-th nucleotide of the

DNA sequence. The value (1, 0) if the (k+1)-th nucleotide is

Guanine (rightwards-step); (21, 0) if Adenine (leftwards-step); (0,

1) if Cytosine (upwards-step) or (0, 21) if the (k+1)-th nucleotide is

Thymine or Uracil (downwards-step).

Figure 1 depicts the 2D Cartesian representation of the 558 bp

genomic DNA fragment from Petrakia sp. ef08-038 (accession

number FJ892749) comprising the ITS2 with its boundaries

(fig. 1A) and only the ITS2 (fig. 1B). The figure also shows the

ITS2 sequence (without its boundaries) folded as DNA (fig. 1C)

and RNA (fig. 1D) by the Mfold program.

In the study, a total of 4,355 out of the original 5,092 ITS2

sequences from a wide variety of eukaryotic taxa (http://its2.

bioapps.biozentrum.uni-wuerzburg.de) shared similar secondary

structure features and were used as positive dataset.

The negative set or control group comprises diverse but

structurally related genomic sequences to the ITS2 class: the

untranslated regions (UTRs) of eukaryotic mRNAs. They are non-

coding regions with divergence among the eukaryotes but showing

a more conserved secondary structure when are transcribed into

RNAs [27]. A non-redundant subset containing 6,529 and 8,128

of the 59- and 39-UTRs’ sequences from the fungi kingdom,

respectively, was selected from the eukaryotic mRNAs database:

UTRdb (http://www.ba.itb.cnr.it/UTR/). The sequence diversi-

ty among the ITS2 and UTRs datasets was explored compara-

tively using the Needleman-Wunsch (NW) [28] and Smith-

Waterman (SW) [29] algorithms. See in supporting information

(S) the NW & SW analyses (File S1 and figure S1).

Training and test series were randomly selected. The members

of the test set were selected taking out at random the 20% of the

overall data (19,012 cases). The remainder of the cases was used to

train the model. Sequences with ambiguity at least in one

nucleotide position were removed from both groups. Each ITS2

and UTR sequence retrieved was labeled respecting its original

database ID code; see File S2.

All sequences (positive and negative sets) were pseudo-folded

into a Cartesian system by TI2BioP to obtain the artificial

secondary structures as it was described above. On the other hand,

they were also used to infer optimized DNA secondary structures

by the Mfold algorithm implemented in the RNASTRUCTURE

4.0 software [30] (fig. 1C). The structural optimization is based on

the minimization of the folding energy (lowest DG). Spectral

moments (mk) introduced previously by Estrada et al. (1996)

[31,32] were applied to codify the new structural information

contained into the artificial secondary structures and into the

inferred secondary structures of both the ITS2 and UTRs

sequences.

1.1. Calculation of TIs irrespective of sequence

similarity. The topological indices called ‘‘spectral moments’’

were calculated as the sum of the entries placed in the main

diagonal of the bond adjacency matrix (B) for the DNA/RNA

sequences. B is a square matrix of n6n row and column where its

non-diagonal entries are ones or zeroes if the corresponding bonds
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or edges share or not one nucleotide. Thus, it set up connectivity

relationships between the nucleotides in certain DNA/RNA

graph. The different powers of B give the spectral moments of

higher order.

In the DNA/RNA artificial secondary structure, the number of

edges (e) in the graph is equal to the number of rows and columns

in B but may be equal or even smaller than the number of bonds

in the nucleotide sequence. The main diagonal entries of B were

weighted with the average of the electrostatic charge (Q) between

two bound nodes. The charge value q in a node is equal to the sum

of the charges of all nucleotide placed on it. The electrostatic

charge of one nucleotide was derived from the Amber 95 force

field [33]. Thus, it is easy to carry out the calculation of the

spectral moments of B in order to numerically characterize the

pseudo-folding (pfmk) of DNA/RNA sequences.

pf mk~Tr Bð Þk
h i

ð1Þ

Where Tr is called the trace and indicates the sum of all the values

in the main diagonal of the matrices kB = (B)k, which are the

natural powers of B.

In order to illustrate the calculation of the spectral moments, an

example is developed below. The 2D Cartesian network of the

Figure 1. The ITS2 region (in black) with its boundaries ordered 59upstream: a short end corresponding to the 18S rDNA (in red),
the ITS1 (in green), the 5.8S rDNA and 39downstream: a short fragment of the 28S rDNA (in pink) (A). The ITS2 region pseudo-folded
into the 2D-Cartesian system (B). The ITS2 sequence folded as a DNA and RNA structure by the Mfold program, respectively (C and D).
doi:10.1371/journal.pone.0026638.g001
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sequence (AGCTG) is showed in the figure 2D and its bond

adjacency matrix is depicted in the figure 2C; note that the central

node contains both Guanine and Thymine nucleotides. The

calculation of the spectral moments up to the order k = 3 is also

defined below on the figure 2. The q values are represented in

the matrix as the nucleotides symbols (G = 0.24, A = 0.22,

C = 0.19, T and U = 0.21).

Expansion of expression (1) for k = 1 gives the pfm1, for k = 2 the
pfm2 and for k = 3 the pfm3. The calculation of the spectral

moments up to order three from this DNA graph is described

below.

pf m1~Tr B½ �~Tr
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pf m3~Tr Bð Þ3
h i

~Tr

0:335 1 1
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1 1 0:320

2
664

3
775
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1
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3

~ 2:038ð Þ3z 2:041ð Þ3z 2:033ð Þ3
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TI2BioP version 1.0 H arrange automatically the DNA/RNA

sequences into a 2D Cartesian network [21] and also import the

connectivity table (ct files) generated by the RNASTRUCTURE

4.0 software. Ct files contain information about the connection

between nucleotides in the secondary structure generated with

thermodynamic models [30]. Thus, it is possible to perform the

calculation of the spectral moments (mfmk) based on folding

thermodynamics parameters for the positive and negative sets.

Another two additional TIs defined as Edge Numbers and Edge

Connectivity were introduced for these two DNA/RNA structural

approaches; see File S2 for more details.

2. Building up alignment free-models with TIs
2.1. Variable screening. We used the Feature Selection and

Variable Screening module of the Data Mining menu from

STATISTICA software [34] to select a subset of predictors that is

most strongly related to the dependent (outcome) variable of

interest regardless of whether that relationship is simple (linear) or

complex (nonlinear). The algorithm for selecting those variables is

not biased in favor of a single method for subsequent analyses;

further post-processing algorithms were applied, based on linear

and non-linear modeling methods.

2.2. Alignment-free models for ITS2 classification. Linear

models. The General Discrimination Analysis (GDA) was

carried out for building up linear models for ITS2 alignment-free

identification [35,36,37,38]. The most significant predictors

obtained from the variable screening method for each structural

approach were used to fit linear discriminant functions. Both subsets

of TIs were standardized in order to become equally scaled to allow

an effective comparison between the regression coefficients [39].

The model performance was evaluated by several statistical

measures: accuracy, area under the Receiver Operating Charac-

teristic (ROC) curve, commonly known as AUC with a value of 1.0

for a perfect predictor and 0.5 for a random predictor and the F-

score (it reaches its best value at 1 and worst score at 0) [40].

2.3. Alignment-free models for ITS2 classification. Non-

linear models. Artificial Neural Networks (ANN). We used

ANN method for ITS2 classification using the same series of TIs as

Figure 2. Building the 2D-Cartesian map for the (A) DNA fragment AGCTG. (B) The coordinates for each nucleotide in the Cartesian system.
(C) The definition of the bond adjacency matrix derived from (D) the 2D-Cartesian map. Note that all edges of the graph are adjacent, thus all non-
diagonal entries are ones.
doi:10.1371/journal.pone.0026638.g002
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input variables and only one output variable (ITS2 membership).

We used the Multilayer Layer Perceptron (MLP) due to its ability

to model functions of almost arbitrary complexity showing a

simple interpretation as a form of input-output model. To select

the right complexity of the network, we tested different topologies

to the MLP while checking the progress against a selection set to

avoid over-fitting during the two-phase (back propagation/

conjugate gradient descent) training algorithm [41]. The

selection set was extracted at random from the training set

(10%) by also generating random numbers. The test set was the

same used for GDA representing an external subset (not used

during training algorithms) to check the final network

performance.

The optimal cutoff for ITS2 gene classification for ANN-models

was defined by determining on the ROC-curve the model’s

parameter values (‘accept’ and ‘reject’ classification thresholds)

giving the nearest point (optimal operating point) to the (0,1)

coordinates. This point constitutes the ideal condition for ITS2

classification (most balanced solution where both specificity and

sensitivity are maximized). The optimal operating point was

determined by computing the slope S that considers the

misclassification costs for each class. The point was found by

moving the straight line with slope S from the upper left corner of

the ROC plot (0, 1) down and to the right until it intersects the

ROC curve.

3. Alignment-based models for ITS2 classification. Profile
Hidden Markov Models (HMM)

Three training subsets were selected to build up several profile

HMMs for ITS2 gene classification: (i) 134 sequences extracted

representatively from the original training set (2802 ITS2

sequences) to represent evenly the whole range of sequence

similarity while retaining representative members from all the

eukaryotic taxa within the training set (this sampling was based on

the sequence similarity clustering carried out in File S1); (ii) 80

sequences representative of the fungal kingdom selected following

a similar procedure as described in (i); and (iii) 2802 ITS2

sequences used to train the alignment-free models. In addition,

three different multiple sequence alignments (MSA) algorithms

were used to align these subsets: CLUSTALW [16], DIALIGN-

TX [17] and MAFFT [18]. Due to the low similarity level

amongst the ITS2 sequences, we have used DALIGN-TX and

MAFFT that are expected to outperform CLUSTALW in such

conditions. DALIGN-TX is a segment-based multiple alignment

tool improved for sets of low overall sequence similarity and the

MAFFT program is able to identify homologous regions among

distantly related sequences. Performing a good alignment is a

crucial step to generate a profile HMM with high classification

power.

CLUSTALW and DIALIGN-TX were run using the default

parameters. In the case of MAFFT the iterative alignment option

(L-INS-I) was used [29,42].

Alignments were edited in every case as follows: aligned

positions were removed from both ends until gaps were observed

in less than 10% of the aligned sequences. Thus, we removed non-

informative positions from the multiple alignments that could

deteriorate the resulting HMM. Edited alignments were used as

input for hmmbuild release 2.3.2 [43], which generated the profile

HMMs. During the profile HMMs generation step the fast option

of the hmmbuild program was used with a default value equal to 0.5.

This option assigns the insert state to every column in the alignment

containing gaps in at least half of the sequences. In this way, the

resulting HMMs do not make an explicit use of the sequence

distribution (i.e. nucleotides frequencies) of positions with high

amount of gaps but rather consider them as insertion states.

The obtained profile HMMs allowed to classify members of the

test set, as well as the newly isolated ITS2 sequence from Petrakia

sp. (see below) using hmmsearch. An optimal cutoff for the ITS2

classification was determined by running each profile HMM at 20

different E-values (0.1–10). The E-value that maximizes both

sensitivity and specificity was selected as the optimal classification

cutoff. The performance of these models at the optimal

classification cutoff was compared to that of the alignment-free

models described above (sections 2.2.2 and 2.2.3).

4. Phylogenetic analyses
We defined an empirical threshold of ITS2 representatives with

more than 60% of sequence similarity with our query fungus

(Petrakia sp. ef08-038) among the members of the Ascomycota

phylum for the phylogenetic analysis. This allowed the retrieval of

an ITS2 subset comprising 16 sequences that encompassed several

classes from the subphyla Pezizomycotina (Dothideomycetes,

Lecanoromycetes, Leotiomycetes and Sordariomycetes), while

the remaining cases were either taxonomically characterized as

mitosporic Ascomycotas (asexual species that produce conidia

namely mitospores) or unclassified Ascomycotas. The 16 ITS2

sequences plus our query sequence (FJ892749) were aligned with

the CLUSTAL W setting a Gap Open Penalty (GOP) of 20 and a

Gap Extension Penalty (GEP) of 10. The final alignment was

edited removing end gaps and the phylogenetic analyses were

conducted in MEGA4 software [19]. Neighbour-joining (NJ) trees

were generated from different sequence distance matrices from (1)

alignment and (2) alignment-free approaches:

1. NJ trees based on different evolutionary distances computed

using Jukes-Cantor (JC), Kimura 2-parameter (K2P) and

Maximum Composite Likelihood (MCL) substitution models

were obtained using the MEGA4. In addition, the Minimum

Evolution (ME) method was assessed on the JC and K2P

distance matrices. The bootstrap support (BS) values for nodes

were computed from 1000 replicates.

2. A NJ tree was built based on the hierarchic clustering that uses

the Euclidean distance matrix as a multidimensional measure

to form the sequences clusters. Euclidean distance (Ed) was

computed from the TIs values of the same seventeen ITS2

sequences mentioned above and the complete linkage or

furthest neighbor was used as cluster method.

Euclidean distance x,yð Þ~
X

i

xi{yið Þ2
( )1=2

ð2Þ

The quality of this numerical taxonomy was tested (i)

performing the Joining Tree Clustering with different distance

metrics (City-block, Chebychev, and Power distance), (ii) using

other cluster methods (Single linkage, Unweighted pair-group

average and the Ward’s method), and (iii) calculating the

cophenetic correlation coefficient.

5. Experimental section
Petrakia strain was isolated from leaves of Acer psedoplatanus. The

plant material was collected in Kaiserslautern, Germany. It was

cut and surface-sterilized by immersion in 70% ethanol for 1 min,

5% NaOCl for 3 min and 70% ethanol for 1 sec followed by a

wash in sterile distilled water. Samples were then cut into small

fragments and plated onto 2% malt agar with penicillin G and
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streptomycin sulfate (each 200 mg/l). The mycelial culture was

deposited in the culture collection of the Institute of Biotechnology

and Drug Research (IBWF), Kaiserslautern.

DNA extraction was performed as described previously by

Sacks [44]. The entire ITS (ITS1, 5.8S rDNA, and ITS2) region

was amplified for ITS sequence analysis. The primers used for

amplification were ITS5 (59-GGAAGTAAAAGTCGTAACA-

AGG) and ITS4 (59- TCCTCCGCTTATTGATATGC) accord-

ing to White et al. [45]. Their method was used with slight

modifications: A GeneAmp PCR System 9700 was employed

(Applied Biosystem, Foster City, CA, USA). The PCR amplifica-

tion cycle consisted of 30 s at 94uC, 1 min at 50uC, and 1 min at

72uC. PCR products were sequenced by MWG Biotech (Ebers-

berg, Germany) with the same primers used for the amplification.

Each sequence was obtained in duplicate from each of two

separate PCR amplifications.

Results and Discussion

6. Predicting eukaryotic ITS2 sequences with alignment-
free classifiers

Two classes of predictors comprising 18 TIs each were

calculated by the TI2BioP methodology for 19,012 genomic

sequences (4,355 ITS2 and 14,657 UTRs): the spectral moments

series (m0- m15) of the bond adjacency matrix between the

nucleotides arranged into the Cartesian space (pfmk) and between

the nucleotides connected into the Mfold structures (mfmk). Other

two additional TIs were computed (the Edge Numbers and the

Edge Connectivity) for each class. The spectral moments are

structural-based TIs that describe electronically the nucleotide

connectivity at different orders in these two structural approaches.

The Nandy-like structure is determined by the sequence order and

DNA/RNA nucleotide composition. The 2D structure obtained

by the Mfold software depends also of the primary sequence but its

folding is driven by the optimization of thermodynamics

parameters (lowest folding free energy-DG0).

In order to select the most significant predictors for both

datasets (Nandy-like and Mfold structures), we carried out a

feature selection as a preliminary variable screening method before

the model building. We found that the four most significant

variables (p,0.01) were the Edge Connectivity, the pfm0, pfm1, and
pfm2 for Nandy’s structures and for Mfold structures the mfm0, mfm5,
mfm7 and mfm15 (figure 3).

These two sets of four variables were used as input predictors to

build classification linear models based on the GDA implemented

in the STATISTICA software [34]. The alignment-free classifiers

based on Nandy-like structures provided classification accuracy in

training and test of 84.87 and 84.95%, respectively. The AUC and

F-score for the test set were of 0.919 and 0.687, respectively. In

contrast, the TIs derived from the Mfold structures showed a

better classification performance. Its accuracy level was notably

higher in training (94.17%) and in the test subset (94.26%). The

same was true for the AUC and F-score statistics that reach values

of 0.983 and 0.960, respectively. These facts point out that the TIs

calculated from the 2D topology predicted by folding thermody-

namics rules are more effective classifiers than the TIs derived

from artificial structures. However, the former takes much more

computational and procedure cost than for the TIs obtained from

the Cartesian graphical approach. The 2D Cartesian TIs have

been useful for protein and RNA structure descriptors when

higher structural levels are not available [46,47,48]. Thus, we

evaluate non-linear methods on both data sets with the aim to

improve the classification performance, especially for the pseudo-

folding TIs. The Artificial Neural Networks (ANN), particularly

the Multilayer Layer Perceptron (MLP) was selected as the most

popular ANN architecture in use today [49].

6.1 Artificial Neural Networks (ANN) in the prediction of

the ITS2 class. The MLP was tested at different topologies

using the four predictors already selected for each secondary

structural approach as input variables. From the same training set

used to develop the discriminant function, an independent data set

(the selection set) was selected. This subset was chosen randomly

taking out the 20% of the training set being not used in the back

propagation algorithm. Thus, 12,168 cases were used for the

training, 3,042 represented the selection subset and the 3,802 cases

were evaluated in external validation to set the comparison.

Figure 3. Predictor importance according the variable screening analysis for the Nandy and Mfold structures. E.C.I. (Edege
Connectivity Index).
doi:10.1371/journal.pone.0026638.g003
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The Table 1 shows the different MLP topologies used to select

the right complexity of the ANN in both datasets, the performance

on training, selection and test progress were examined as well as its

errors. The best models were the MLP profiles number 3 and 1

(highlighted in bold) for Nandy and Mfold datasets, respectively,

which showed the best accuracy on training, selection and test sets,

minimizing its respective errors. These ANN-models showed a

higher accuracy level in classifying the training and test sets in

respect to the linear models. The TIs calculated from the Mfold

structures provided a better ANN performance on the data

classification than when derived from the Nandy graphical

approach. Although, ANN-based models showed an analogue

behaviour in respect to the linear models (Mfold . Nandy); the

classification performances of both structural approaches are more

similar and higher when a non-linear function is applied (Table 1).

This suggests that the identification of gene signatures tend to be

better assessed with non-linear models and we further showed the

utility of the artificial but informative folding of the biopolymeric

sequences for gene/protein class identification [24,50,51].

The classification results derived from our two best alignment-

free approaches to classify ITS2 membership is showed in Table 2
and File S3. The structural TIs based on the folding

thermodynamics rules provide a more accurate description of

the DNA/RNA structure, which is supported by the classification

results (Table 2). The 2D topology of these molecules is affected

by the primary information and by the possible hydrogen

interactions between nucleotides forming the stems and loops;

therefore a better functional classification performance is achieved.

Although the Nandy-like representation is less accurate in the

classification due to its artificial nature, it takes into account the

sequence order information and the nucleotide composition,

which are important features for the recognition at a genome scale

of genes that do not encode a protein [52,53]. Thus, the utility of

this easy structural approach is reflected in the excellent

discrimination achieved between these two distinct DNA/RNA

functional classes with divergence among its members but sharing

common structural features.

We carried out a 10-fold cross validation to examine the

classification performance of our alignment-free models. This

validation procedure is easier to implement and provides reliable

results in the validation of a predictive model at low computational

cost [54]. Thus, the original data set was divided at random into

10 subsets containing the same number of cases. Of the 10 subsets,

a single subset was retained as a prediction subsample for testing

the model, and the remaining nine subsets were used as the

training data. Since a selection subset is also needed to check the

training algorithm, it was selected from the training set at random

(10%). The cross-validation procedure is then repeated 10 folds or

rounds using each of the 10 subsets for prediction exactly once, in

such way ensures that all cases were predicted and used in

training. Afterwards the average values for the accuracy,

sensitivity, specificity for training and test sets, as well as the

AUC were calculated to provide a single estimation from the 10

folds (Table 2).

We plotted the ROC curve for each fold from the cross-

validation procedure on the test set. In each fold or round, the

curve presented an area higher than 0.5 (figure 4). According to

the ROC curve theory random classifiers have an area of only 0.5.

This result confirms that the present model is a significant classifier

relatively to those working at random. In the plotting, the ROC

curves for the ANN-models (MLP-1 and 3) on the test set were

included to show visually its classification performance similarity

Table 1. Testing different topologies for the MLP on the ITS2 classification using TIs from Nandy and Mfold DNA structures.

Nandy structure

Profile Train Accuracy Selection Accuracy Test Accuracy Train Error Selection Error Test Error

1 MLP 4:4-4-1:1 0.946 0.948 0.946 0.232 0.226 0.230

2 MLP 4:4-3-1-1:1 0.946 0.949 0.945 0.225 0.219 0.224

3 MLP 4:4-2-2-1:1 0.959 0.958 0.956 0.178 0.180 0.187

4 MLP 4:4-1-3-1:1 0.949 0.950 0.948 0.199 0.198 0.200

5 MLP 4:4-3-1:1 0.946 0.948 0.946 0.232 0.226 0.230

6 MLP 4:4-2-1-1:1 0.772 0.769 0.768 0.419 0.422 0.422

7 MLP 4:4-1-2-1:1 0.946 0.949 0.945 0.216 0.210 0.215

8 MLP 4:4-2-1:1 0.946 0.948 0.946 0.232 0.225 0.230

9 MLP 4:4-1-1:1 0.946 0.949 0.945 0.233 0.226 0.231

Mfold structure

1 MLP 4:4-4-1:1 0.976 0.975 0.973 0.140 0.138 0.145

2 MLP 4:4-3-1-1:1 0.968 0.968 0.967 0.158 0.155 0.162

3 MLP 4:4-2-2-1:1 0.942 0.954 0.943 0.207 0.196 0.204

4 MLP 4:4-1-3-1:1 0.941 0.955 0.943 0.206 0.194 0.203

5 MLP 4:4-3-1:1 0.969 0.970 0.967 0.159 0.155 0.162

6 MLP 4:4-2-1-1:1 0.957 0.961 0.960 0.176 0.170 0.172

7 MLP 4:4-1-2-1:1 0.943 0.955 0.944 0.205 0.193 0.202

8 MLP 4:4-2-1:1 0.943 0.956 0.944 0.205 0.193 0.202

9 MLP 4:4-1-1:1 0.941 0.940 0.945 0.209 0.211 0.199

Accuracy and error rates on training, selection and test sets.
doi:10.1371/journal.pone.0026638.t001
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with the 10-fold cross validation (figure 4). Thus, the similarity in

the prediction performance between the 10-fold cross validation

procedure and the reported ANN-models shows the robustness of

our models. The validity of this type of procedures in structure-

function relationship studies based on ANN-models has been

demonstrated before [55,56,57].

We found an optimum cutoff for ITS2 gene classification using

an ‘‘acceptance’’ threshold of 0.475 that provides a sensitivity of

0.929 and a specificity of 0.986 for our best predictive model (based

on M-fold’ TIs). Moreover, for the other alignment-free model that

used Nandy-like’s TIs, the ‘‘acceptance’’ classification threshold was

0.529 showing a sensitivity of 0.838 and a specificity of 0.988.

Although ANN-based models are more complex than linear

functions, the architecture of these networks is rather simple since

they use just four predictors and one hidden layer made up of four

neurons for the case of the TIs calculated from Mfold structures

and two layers with the same amount of neurons for the Nandy

structural approach (figure 5). Thus, the ANN-models based on

the TI2BioP methodology are effective and simple tools to search

an ITS2 sequences among the diversity of this DNA/RNA class in

a wide variety of eukaryotic taxa.

7. Hidden Markov Models in the classification of the ITS2
class. A comparative study

Hidden Markov Models (HMM) has been widely used for

classification purposes of DNA and protein sequences [58]. Their

simplicity and high performance have made them the core of the

popular database Pfam [4]. Profile HMMs generates predictive

models in which classification performance can be easily evaluated

in terms of accuracy, sensitivity and specificity. Nine profile HMMs

from members of the ITS2 class were built up using three MSA

algorithms (CLUSTALW, DIALIGN-TX and MAFFT) with

different training sets. The classification measures for both the

profile HMMs and the alignment-free models are shown in Table 3.

As shown in Table 3, all the profile HMMs obtained for the

ITS2 classification provide a lower performance in respect to the

alignment-free approaches. Nevertheless, we obtained generally

some improvements in the sensitivity on the ITS2 classification

when the E-value cutoff was increased (File S6) and when the

profile HMMs based on improved MSA algorithms was applied.

The use of a wider training set comprising 2802 ITS2 sequences

also improved the classification performance for the profile HMMs

based on DIALIGN-TX and MAFFT algorithms since this dataset

better captures the vast diversity of the ITS2 class. However, the

ITS2 query sequence from Petrakia sp. was identified with a higher

significance level when a fungi-specific dataset aligned with

MAFFT was considered for building the models (Table 3).

We provide information about the MSA handled with

CLUSTALW, DIALIGN-TX and MAFFT (File S4) and the

ITS2 profile HMMs generated with the aforementioned MSA

algorithms on the three training sets described in section 2.3

(File S5).

Table 2. Classification results derived from the ANN-models (MLP-3 and 1) for Nandy and Mfold structures respectively in training,
selection and test series.

Nandy structure Training Selection Test

ITS2 CG ITS2 CG ITS2 CG

ITS2 class 2434 128 575 31 770 38

Control Group (CG) 368 9238 87 2349 121 2863

Total 2802 9366 662 2380 891 2911

Sensitivity (Sv) (%) 86.86 86.85 86.42

Specificity (Sp) (%) 98.63 98.70 98.35

Accuracy (Acc) (%) 95.95 96.12 95.58

AUC 0.984 0.985 0.980

F-score 0.939

10-fold CV Sv Sp Acc Sv Sp Acc AUC

Average 84.79 98.85 95.64 84.59 98.87 95.59 0.978

Mfold structure Training Selection Test

ITS2 CG ITS2 CG ITS2 CG

ITS2 class 2592 102 604 19 825 35

Control Group (CG) 210 9264 58 2361 66 2876

Total 2802 9366 662 2380 891 2911

Sensitivity(Sv) (%) 92.50 91.24 92.59

Specificity (%) 98.91 99.20 98.79

Accuracy (%) 97.57 97.53 97.31

AUC 0.994 0.995 0.994

F-score 0.960

10-fold CV Sv Sp Acc Sv Sp Acc AUC

Average 92.37 99.01 97.50 92.26 98.97 97.44 0.993

10-folds Cross Validation (CV) procedure on training and test sets.
Numbers in bold highlight well-classified cases.
doi:10.1371/journal.pone.0026638.t002
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We explain the low performance of the profile HMMs on the

poorly informative multiple alignments used for its creation.

Neither the use of a specific nor of an extended training set aligned

with an improved MSA (e.g. MAFFT) assures a good classifica-

tion; the maximum sensitivity obtained on the test set was only

66.66% (Table 3). This result is in line with the one previously

obtained by developers of the ITS2 database [10], which reported

the use of more conserved 5.8S and 28S rRNAs adjacent to the

ITS2 in order to obtain an useful profile HMM. All together, these

results reinforce the usability of our alignment-free models that

additionally require less sequence information compared to

classical alignment-based approaches.

As a practical validation, a novel ITS2 genomic sequence was

isolated from a fungal isolate as a part of its taxonomic

characterization. This ITS2 sequence was used to evaluate the

ability of the ANN-models and the profile HMMs to identify a

novel member of this gene class and also its use into the traditional

and alignment-free phylogenetic assessment.

8. Experimental results. Annotation of a novel ITS2
member using several predictive models

We selected the fungal genus Petrakia that lives inside plants of

the genus Acer, which can be a latent pathogen agent of these plants

and a potentially producer of bioactive compounds [59]. Members

of the Petrakia genus are placed inside the Ascomycota phylum

despite the absence of a defined ascus (a microscopic sexual

structure in which nonmotile spores, called ascospores, are

formed). These fungi that produce conidia (mitospores) instead

of ascospores were previously described as mitosporic Ascomycota

[53]. However, its taxonomy identification has been a problem at

the species level. Thus, a polyphasic approach involving

mycological culture with molecular detection [60] to determine

the presence of fungi in plants is needed.

Our fungal isolate showed all morphological characteristics of a

mitosporic Ascomycota/ genus Petrakia such as: aerial mycelium,

cover entire plate of Malt Extract Agar medium, conidiophores

forming dark sporodochium, conidia pigmented, many-celled,

muriform, with several cylindrical projections [61] (figure 6A).

However, the species could not be unequivocally determined and

therefore an attempt to perform a low level-phylogenetic analysis

supported on the ITS2 biomarker was required to complement the

fungus detection.

We isolated a genomic DNA fragment of 558 bp comprising the

entire (ITS1, 5.8S rDNA, and ITS2) region with shorts ends at

59and 39positions corresponding to the 18S and 28S rDNA

conserved genes, respectively (figure 6B). The PCR product was

Figure 5. The architecture of the ANN-models (MLP-3 and MLP-
1) for Nandy and Mfold structures, respectively. It represents
four input variables, four neurons in two layers (Nandy) and four in one
layer (Mfold) and only one output variable (from the left to the right).
doi:10.1371/journal.pone.0026638.g005

Figure 4. ROC-curves for the 10-fold cross validation procedure of both ANN-models (Nandy and Mfold structures) on the test set.
The curve for the reported model in each case is represented by a yellow discontinuous line.
doi:10.1371/journal.pone.0026638.g004
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sequenced and registered at the GenBank Database (accession

number FJ892749). The ITS2 region was delineated by alignment

methods [62] using the conserved 5.8S and 28S rDNA flanking

fragments. Then, the ITS2 region was selected to evaluate the

predictability of our alignment-free models based on the TI2BioP

methodology and also by predictive alignment procedures.

We selected the ANN-based models for the ITS2 classification

since they show the highest classification rate for both structural

approaches. Both alignment-free models allowed a successfully

prediction of the Petrakia ITS2 sequence with a confidence level of

0.996 and 0.990 for the Mfold and Nandy-like structures,

respectively (Table 3). Despite the high divergence among the

ITS2 sequences, the models were able to identify a new fungal

ITS2 sequence from a dataset made up of divergent UTR

sequences with similar structural features but functional different.

We also demonstrated that Nandy-like structures provide patterns

that are useful for gene class discrimination. These 2D artificial

maps for DNA/RNA provides information about the connectivity

of the nucleotides, but also accounts for the content of purines

(GA) and pyrimidine (CT) in the rDNA molecules, which can be

observed in the tendency of occupying certain quadrant in the

Cartesian system (figure 1). The variations in the content of

nucleotides have been also used in the genomic recognition of non-

protein-coding RNAs [52].

By contrast, profile HMMs generated with different MSA

algorithms and different training sets showed in general a poor

classification performance on the ITS2 sequence of Petrakia sp.

Only the profile HMMs based on MAFFT classified it correctly

(Table 3). Despite that the alignment-free methods and the profile

HMMs based on MAFFT recognized our query ITS2 sequence

with significance, a BLASTn search (E-value cutoff = 10e210)

against the NCBI database was carried out to support the

annotation of the newly isolated sequence by looking for hits

belonging or related to the Petrakia genus. We retrieved the second

best hit (HQ433006) from an uncultured fungus from the

Ascomycota phylum. The score (172) and sequence similarity

(89%) between our query and this hit were significant (E-

value = 4e-40). However, the BLAST search did not find any hit

from the Petrakia genus except our own submission (first hit). This

confirms that Petrakia genus is not well-represented at NCBI and

has not been deeply studied yet either taxonomically or as a source

of novel secondary metabolites.

9. A comparative phylogenetic analysis
The lack of other ITS2 sequences from different species of the

genus Petrakia (with the exception of our sequence submission at

the GenBank) precluded performing a phylogenetic analysis at the

species level (low-level analysis). We classified our fungal isolate as

a mitosporic Ascomycota/Petrakia sp. according to its mycological

culture features, as there is not a report with a detailed taxonomy

about this genus namely in the NCBI dedicated ‘Taxonomy’

Table 3. Comparative analysis for the classification performance on the test set and Petrakia sp. ITS2 sequence using nine profile-
HMMs built up with CLUSTALW, DALIGN-TX and MAFFT algorithms with different training sets.

ALIGNMENT BASED MODELS

Training set (source and number of
sequences)

Sequence Alignment
(processing) Method

Optimal Classification
Cutoff (E-value) Sensitivity/Specificity (%)

Prediction on the
ITS2 Petrakia sp.*

Representative fungi (80 sequences) CLUSTALW 2.0 15.82/100 No significant hit

DALIGN-TX 9.0 18.18/100 No significant hit

MAFFT 5.0 20.20/100 0.02

Representative eukaryotes (134 sequences) CLUSTALW 2.0 13.92/100 No significant hit

DALIGN-TX 0.1 6.95/100 No significant hit

MAFFT 2.0 3.59/100 No significant hit

Eukaryotes (2802 sequences) CLUSTALW 8.0 12.69/100 No significant hit

DALIGN-TX 0.8 35.58/100 No significant hit

MAFFT 4.0 66.66/100 1.0

ALIGNMENT-FREE MODELS

Training set (source and number of
sequences) 2D Structural Approach

Optimal Classification
Cutoff (Accept/Reject) Sensitivity/Specificity (%)

Prediction on the
ITS2 Petrakia sp.

Eukaryotes (12168 sequences) Nandy structure Accept . 0.529 83.80/98.80 0.990

Mfold structure Accept . 0.475 92.90/98.60 0.996

The classification results of our alignment-free models (Mfold and Nandy) when using an optimal cutoff are also provided.
*Classification performance at optimal cutoff in every case (E-value).
doi:10.1371/journal.pone.0026638.t003

Figure 6. Conidia of Petrakia sp. from 7 days culture on Malt
Extract Agar (6400) (A). Isolation of a novel ITS2 genomic sequence
from Petrakia sp. (1) 1 Kb ladder (Gibco BLR), (2) Genomic DNA from the
Petrakia isolate, (3) PCR reaction with the ITS5 and ITS4 primers (B).
doi:10.1371/journal.pone.0026638.g006
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database (http://www.ncbi.nlm.nih.gov/tanonomy). Further-

more, there is no specification about its subphylum and class

[63]. These fungal species was initially placed into a separate

artificial phylum ‘‘the Deuteromycota’’ along with asexual species

from other fungal taxa but currently asexual ascomycetes are

identified and classified based on morphological or physiological

similarities to ascus-bearing taxa, as well as based on phylogenetic

analyses of DNA sequences [64]. So, a higher-level phylogenetic

study involving Ascomycota members haring ITS2 sequence

similarities with Petrakia may complement its taxonomy relatively

to the ascus-bearing taxa. First, we assumed that our fungal isolate

belonged to the Pezizomycotina subphylum, the largest within

Ascomycota phylum. Our inference agree with a recent classifi-

cation found in the ‘‘The dictionary of the Fungi’’ [65].

Two different types of distance trees were built: (1) a traditional

one based on multiple alignments of ITS2 sequences and (2)

another irrespective of sequence similarity supported by the

TI2BioP methodology. Both phylogenetic analyses, the traditional

and the alignment-free clustering, showed that the Petrakia isolate is

similar to the Dothideomycetes class members (figure 7 and 8).

Dothideomycetes is the largest and most diverse class of

ascomycete fungi. They are often found as pathogens, endophytes

or epiphytes of living plants sharing some morphological features

described above for the Petrakia genus [66]. In addition, Petrakia sp.

was placed by the two different computational taxonomic

approaches near to the mitosporic Ascomycota Ampelomyces sp.DSM

2222 supporting the mycological characterization of the query

fungus. Ampelomyces sp.DSM 2222 is taxonomically placed among

the Dothideomycetes class and inside the mitosporic Lepto-

sphaeriaceae family producing conidia as Petrakia sp. We only show

the NJ-tree based on the K2P substitution model to illustrate the

tree topology and the BS values for each node that support our

phylogenetic inferences (figure 7). Similar tree topologies and BS

support were obtained with other evolutionary distance matrices

and the ME method (see section 2.4) (figure S2).

Furthermore, we evaluate the stability of our results on the NJ-

tree clustering: (i) by measuring the influence of several alignment-

free distances (City-block, Chebychev, and Power distance) in

addition to the Euclidean distance, (ii) by assessing other clustering

methods (Single linkage, Uweighted pair-group average and the

Ward’s method) and (iii) by calculating the cophenetic correlation

coefficient for the clustering depicted in the figure 8. The

topologies of the alignment-free trees based on different distance

metrics are quite similar as well as the positions of the taxa in

respect of our query fungus along the four trees (figure S3).

Similar outcomes were obtained when different clustering methods

were computed using the Euclidean distance to plot the trees

(figure S4). These two facts support the consistency of our

original alignment-free clustering despite the difficulty to perform

a statistical significance testing, as unlike many other statistical

procedures, cluster analysis methods are mostly used when we do

not have any a priori hypotheses. One way to measure the validity

of the cluster information generated by the linkage function is to

compare it with the original proximity data generated by the

pairwise distance (Euclidean) function. If the clustering is valid, the

linking of objects in the cluster tree should have a strong

correlation with the distances between objects in the distance

vector. The cophenet function compares these two sets of values

and computes their correlation, returning a value called the

cophenetic correlation coefficient (ccc) [18]. We retrieve a ccc

value for the furthest-neighbor clustering of 0.87 showing an

strong correlation (the closer the value of the ccc is to 1, the better

the clustering solution). The cophenet function was used to

evaluate the clustering method using the other distance metrics

mentioned above. The ccc values for the City-block, Chebychev,

and Power distances were 0.84, 0.82 and 0.80, respectively,

showing consistency in the clustering solution.

The tree topologies obtained for both approaches are somewhat

similar as well as the sub-topologies within the Ascomycota classes,

specially the Petrakia’s location among the Dothideomycetes.

Moreover, Phyllactinia moricola (outgroup) is placed far from the rest

of the members (inner group). Therefore, the NJ clustering based

on the Euclidean distance matrix computed from our alignment-

free indices largely agrees with the traditional NJ distance tree,

which have a phylogenetic meaning since is based on evolutionary

distances.

These findings support the importance of including ITS2

structural information when assessing the phylogenetic relation-

ships at higher levels in eukaryote evolutionary comparisons.

Although the Euclidean distance is simply a sort of geometric

Figure 7. Neighbor-joining tree based on the ITS2 sequences using the substitution Kimura 2-parameter (K2P).
doi:10.1371/journal.pone.0026638.g007
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distance in a multidimensional space with no phylogenetic

meaning, it led to an effective hierarchical biological clustering

with an evolutionary approach because it was derived from the TIs

containing both sequence and structural information.

Conclusions
Topological indices containing information about ITS2 sequenc-

es and structures are effective to produce ANN-models with a high

prediction power despite the sequence diversity of this class. The use

of artificial but informative DNA/RNA secondary structures is a

less-costly alternative for the ITS2 classification when higher

structural levels are not available or the correct structure is only

rarely found by standard RNA folding algorithms. TI2BioP

provided simplicity and reliability to ANN-models to search a novel

ITS2 member, performing even better than the profile HMMs built

up with optimized MSA algorithms for low overall sequence

similarity. In addition, our alignment-free approach is effective to

construct hierarchical distance-trees containing relevant biological

information with an evolutionary significance.

Supporting Information

File S1 Exploring ITS2 and UTRs sequence diversity by

Needleman-Wunsch and Smith-Waterman procedures.

(DOC)

File S2 IDs, training and prediction series, values of the TIs

predictors for the ITS2 and UTR sequences.

(XLS)

File S3 Classification results derived from ANN-models on the

training, selection and test set for the two structural approaches.

(XLS)

File S4 MSA performed by several algorithms (CLUSTALW,

DIALIGN-TX and MAFFT) using three different training sets

(File S4.1–4.9).

(RAR)

File S5 ITS2 profile HMMs generated with the MSA showed in

File S4 (File S4.1–4.9).

(RAR)

File S6 ROC analysis for each profile HMM at 20 different E-

values (0.1–10).

(XLS)

Figure S1 Pair wise comparison (all vs all) for the ITS2 and

UTRs sequences evaluated in this study using the Needleman-

Wunsch (NW) (in light gray) and Smith-Waterman (SW) (in dark

gray) alignment algorithms.

(TIF)

Figure S2 Neighbor-joining trees based on JC (in black) and

MCL (in red) substitution models and ME trees based on the JC

(in green) and K2P (in blue) evolutionary distances.

(TIF)

Figure S3 Neighbour-joining trees built with different align-

ment-free distance metrics: Euclidean (in black), City-block (in

blue), Chebychev (in red) and Power (in green) distances. Each

taxa is labeled for a number as follow: (1) FJ892749 Petrakia sp.

ef08-038, (2) 1835168 Pyrenophora avenae [Dothideomycetes], (3)

2735013 Ampelomyces sp.DSM 2222 [Dothideomycetes], (4)

11191992 Microsphaeropsis amaranthi [mitosporic Ascomycota], (5)

20531622 leaf litter ascomycete strain its301 [unclassified Ascomycota],

(6) 32442335 Botryosphaeria corticola [Dothideomycetes incertae

sedis], (7) 45502431 Cenococcum geophilum [Dothideomycetes], (8)

13242223 Caloplaca chlorina [Lecanoromycetes], (9) 11993310

Rinodina bischoffii [Lecanoromycetes], (10) 29725499 Cladia aggregata

[Lecanoromycetes], (11) 19070580 Pseudocyphellaria granulata [Le-

canoromycetes], (12) 25136312 Graphium pseudormiticum [Sordar-

iomycetes], (13) 3420858 Oidiodendron scytaloides [Leotiomycetes

incertae sedis], (14) 28974832 Tricladium splendens [mitosporic

Ascomycota], (15) 5442303 Salal mycorrhizal UBCtra179 [unclassi-

fied Ascomycota], (16) 18644046 Mollisia minutella [Leotiomycetes],

(17) 1843420 Phyllactinia moricola [Leotiomycetes].

(TIF)

Figure 8. Neighbor-joining tree clustering based on the Euclidean distance calculated from the TIs values.
doi:10.1371/journal.pone.0026638.g008
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Figure S4 Joining-tree clustering using different methods for the

linkage of the Euclidean distance: Complete linkage (in black),

single linkage (in blue), unweighted pair-group average (in red) and

the Ward’s method (in green). Taxa are labeled by numbers as in

the figure S3.

(TIF)
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