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Abstract 
In this article, we discuss the development of prognostic machine learning (ML) models for COVID-19 progression, by 
focusing on the task of predicting ICU admission within (any of) the next 5 days. On the basis of 6,625 complete blood count 
(CBC) tests from 1,004 patients, of which 18% were admitted to intensive care unit (ICU), we created four ML models, by 
adopting a robust development procedure which was designed to minimize risks of bias and over-fitting, according to refer-
ence guidelines. The best model, a support vector machine, had an AUC of .85, a Brier score of .14, and a standardized net 
benefit of .69: these scores indicate that the model performed well over a variety of prediction criteria. We also conducted 
an interpretability study to back up our findings, showing that the data on which the developed model is based is consistent 
with the current medical literature. This also demonstrates that CBC data and ML methods can be used to predict COVID-19 
patients’ ICU admission at a relatively low cost: in particular, since CBC data can be quickly obtained by means of routine 
blood exams, our models could be used in resource-constrained settings and provide health practitioners with rapid and 
reliable indications.

Keywords COVID-19 · Prognostic models · Machine learning · eXplainable AI · Complete blood count

1 Introduction

The coronavirus SARS-CoV-2 has infected over 300 mil-
lion individuals and killed almost six million people in the 
first 2 years since it first appeared. Artificial intelligence 
approaches supporting different healthcare activities have 
drawn increasing interest as a way to curb the spread of this 
unprecedented pandemic. Nonetheless, the development of 
prognostic models, either to predict ICU admission or other 
outcomes, or to stratify patients according to risk, has yet to 
yield clearly useful results: recent studies report significant 
limitations (in terms of bias or overfitting) in existing solu-
tions [2, 3, 35].

To address and overcome these shortcomings, we report 
the results of a retrospective study in which we developed 

some machine learning (ML) prognostic models to predict 
ICU admission, which may be viewed as a sign of illness 
severity. Our study, which is a follow-up to a previous 
successful pilot [11], grounds on one of the most reliable 
datasets for COVID-19 that is freely available (on Zenodo 
https:// zenodo. org/ record/ 40813 18#.X_ 1UDxYo- Uk) for 
analysis to date, as it was directly curated by one of the 
most important Italian laboratories. Due to its widespread 
use in various diagnostic and monitoring activities, from 
this dataset, we extracted a limited collection of features 
of standard blood tests that are both affordable and easy to 
execute, the so-called complete blood count (or CBC). This 
choice is supported by the vast literature showing important 
correlations between these parameters and the COVID-19 
course and prognosis [12, 23].

We considered various ML algorithms, and adopted a 
development pipeline aimed at minimizing data leakage and 
the risks of bias and overfitting. A support vector machine 
(SVM) model showed very good performance, in terms of 
discrimination, calibration, and utility. Furthermore, an 
explainable AI study backs up the model comprehensibil-
ity, showing its potential to help clinicians make better deci-
sions during the care and treatment of COVID-19 patients by 
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providing them with interpretable clues. To our knowledge, 
this is the first study to use ML methods to predict COVID-
19 ICU admission based only on CBC values while adhering 
to rigorous reporting and replicability standards [4, 19].

2  Methods

The study protocol (BIGDATA-COVID19) was approved 
by the Institutional Ethical Review Board in agreement with 
the World Medical Association Declaration of Helsinki. In 
what follows, we report the ML methodology, as well as the 
results, based on the IJMEDI checklist [4] for the reporting 
and evaluation of ML studies.

2.1  Data understanding

The dataset used for this retrospective study encompasses 
the results of routine blood tests of 1,361 patients, regularly 
admitted to the hospital emergency department for COVID-
19 of the San Raffaele Hospital (OSR), Milan (Italy). The 
data collection was performed between February 19, and 
May 31, 2020, i.e., at the height of the first wave of the 

epidemic in Italy. All patients admitted to the ED in the time 
period were initially included for analysis.

The data, which was manually extracted from the OSR 
laboratory system by one of the authors, represent the entire 
population of patients admitted into the emergency depart-
ment (ED) of the hospital (which was COVID center in 
the Milan area) during the first wave of the pandemic and, 
therefore, we assume it is representative of the COVID-19 
population at that time in that catchment area.

For each patient who stayed at the hospital for at least 
24 h, multiple observations were considered (approximately 
one for each day of hospital stay), each one corresponding 
to a single time window.

As covariate features, we selected a set of 22 variables: 
namely gender, age, and the complete blood count (CBC), 
including the leukocyte formula (analyzed through a Sysmex 
XN 9000 haematology analyzer).

In total, the dataset extracted from the EHR encompassed 
11,103 unique records for 1,361 unique patients. The dataset 
is publicly available on Zenodo1. The distribution of missing 
values in the dataset is reported in Fig. 1.

Fig. 1  Percentage of missing 
values in the dataset

1 https:// zenodo. org/ record/ 40813 18#.X_ 1UDxYo- Uk

https://zenodo.org/record/4081318#.X_1UDxYo-Uk
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In order to avoid excessive bias due to imputation proce-
dures, records with more than 30% of missing feature val-
ues were excluded from further analysis. As a result, a total 
of 6,625 records associated with 1,004 unique patients (5.8 
records for patient on average, largest number of records 31) 
were included in the study.

In regard to the target (i.e., admission to the ICU, as an 
indicator of prognostic worsening), we considered the event 
that the patients entered in the ICU within the following 5 
days: that is, for each record (corresponding to a day d of 
hospital stay, for a given patient p), the target variable was 
set to 1 if the patient p under consideration was admitted in 
ICU within days d and d + 5 . Otherwise, the target variable 
was set to 0.

The descriptive statistics for the included patients are 
reported in Table 1. A total of 4,492 records were associated 
with male patients (502 patients), while 2,133 records were 
associated with female patients (502 patients). The mean 
time of hospitalization for men was 10.7 days, while for 
women it was 7.9 days. 78% of the patients who had to be 
transferred to the ICU within 5 days were men, while 22% 
were women. In particular, out of the total number of men, 
7% were admitted to the ICU, while out of the total number 
of women, approximately 3% were admitted to the ICU. The 
maximum time span from admission to discharge was 31 
days. In regard to the age distribution, 1.23% of the patients 

( N = 12 ) were aged less than or equal to 18 years, while the 
remaining 98.77% of the patients were of majority age. The 
dataset was strongly imbalanced: only 18.3% of the records 
were associated with ICU admission.

In order to assess the presence of significant differences 
among the records associated with ICU admission and the 
other records, we applied a descriptive clustering approach. 
Namely, for each time window (thus, between 0, i.e., admis-
sion date, and 31), we performed clustering using 2 clus-
ters. The Gaussian mixture algorithm was selected for this 
purpose. Prior to clustering, the dataset was normalized by 
applying record-wise L2 normalization, so as to re-scale 
the different subsets of the data independently. Then, after 
applying clustering to each time window, we compared the 
percentage of patients admitted to the ICU in the two clus-
ters. Fisher’s exact test was applied for this comparison, 
using a confidence level equal to 95% (i.e., � = 0.05 ). For 
each time step, we also computed the Silhouette index as a 
measure of clustering fitness (i.e., the higher the Silhouette 
index, the better the obtained clustering). The results of the 
clustering analysis are reported in Table 2. Furthermore, in 
Fig. 2, we report the distribution of two features (which have 
been shown to be strongly correlated with COVID-19 prog-
nosis [16, 29]) within the two clusters. As shown in Table 2, 
for the first 10 time windows, most of the comparisons (7 out 
of 10) reported a significant difference among the induced 

Table 1  Distribution of the demographic and CBC predictive features

Feature Unit of measure Mean Std Min-max range 25–75% Missing (%)

Mean corpuscular volume (MCV) 109∕L 88.26 6.90 [54.7, 121.5] [85, 92.4] 0
Neutrophils count (NE) % 70.69 14.97 [9.4, 99.6] [61.2, 82.4] 0
Platelets (PLT) 109∕L 269.41 125.44 [10, 1019.5] [180, 337] 0
Red blood cells (RBC) 1012∕L 4.21 0.75 [1.75, 7.12] [3.7, 4.73] 0
Mean platelet volume (MPV) fL 10.74 1.07 [7.8, 15.6] [10, 11.32] 3.03
Mean corpuscular hemoglobin (MCH) pg/Cell 29.09 2.60 [15, 65.7] [28.1, 30.5] 0
Monocytes count (MOT) 109∕L 0.67 0.38 [0, 4.8] [0.4, 0.9] 0
Basophils count (BAT) 109∕L 0.03 0.05 [0, 0.7] [0, 0] 0
Erythrocyte distribution width (RDW) CV% 14.36 2.36 [6.71, 31.8] [12.9, 15.1] 0.16
Neutrophils count (NET) 109∕L 6.63 4.58 [0.3, 47.4] [3.5, 8.4] 0
Eosinophils count (EO) % 1.83 2.50 [0, 34.8] [0.1, 2.5] 0
Hemoglobin (HGB) g/dL 12.20 2.11 [4.8, 19.7] [10.6, 13.7] 0
Lymphocytes count (LY) % 18.69 12.01 [0.1, 76] [9.4, 25.3] 0
Eosinophils count (EOT) 109∕L 0.15 0.28 [0, 5] [0, 0.2] 0
White blood cells (WBC) 109∕L 8.89 5.15 [0.7, 111.1] [5.6, 10.9] 0
Basophils count (BA) % 0.44 0.35 [0, 3.4] [0.2, 0.6] 0
Mean corpuscular hemoglobin concentra-

tion (MCHC)
g Hb/dL 32.96 1.47 [25.9, 58.7] [32.1, 33.9] 0

Hematocrit (HCT) % 36.95 5.91 [16.8, 59.7] [32.7, 41.1] 0
Lymphocytes count (LYT) 109∕L 1.40 1.55 [0, 82.8] [0.8, 1.7] 0
Monocytes count (MO) % 8.35 3.93 [0, 38.9] [5.5, 10.7] 0
Age Years 64.76 15.47 [0, 100] [55, 77] 0
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clusters, while the significance of the tests decreased when 
increasing the length of hospital stay, due to small sample 
sizes. In particular, for the last 3 time windows, the obtained 
clusterings were not sufficiently well separated (one of the 
two clusters encompassed a single record). Due to these pos-
itive results, the information about clustering was included 
as an additional feature for the development of classification 
models (see Section 2.2).

2.2  Data preparation

As an initial step before development of the machine learn-
ing models, the complete dataset was randomly split into a 
training set (encompassing 80% of the records) and a test 
set (encompassing the remaining 20% of the records). The 
data split was performed so that all records pertaining to any 
given patient were in the same split, to avoid data leakage. 

As described below (see Section 2.3), training and hyper-
parameter optimization of the models were performed on the 
training set (based on a nested cross-validation procedure), 
while the final evaluation was performed on the separate 
hold-out test set.

Since the dataset was affected by missing data, 
imputation was applied, as a preliminary step to model 
development. Imputation was performed by means of 
an iterative multivariate imputation approach, based on 
the Bayesian ridge estimator, in order to better account 
for potential correlations in the distribution of the fea-
tures. While imputation was performed contextually to 
model training (see Section 2.3), in order to avoid data 
leakage, we first assessed the potential bias induced 
by the imputation procedure. To do so, we compared 
the distributions of the features before imputation and 
after imputation, for 50 different random imputations, in 
order to assess for any statistically significant difference 
among the distribution of the features. The comparison 
was performed by means of the Kolmogorov-Smirnov 
test, for each feature, using a confidence level of 95% 
(i.e., � = 0.05 ). The null hypothesis (i.e., the two distri-
butions are not significantly different) was considered 
as a proxy for the absence of imputation-induced bias. 
In order to correct for multiple comparisons, the Benja-
mini-Hochberg procedure was applied. All comparisons 
were associated with a p-value greater than 0.05. Thus, 
the null hypothesis could not be rejected, and the impu-
tation procedure was considered unbiased.

As mentioned in the previous section, based on the 
results of the descriptive clustering analysis, we created 
an additional categorical variable with the following 
classes: low presence ICU, high presence ICU, not sig-
nificant, and low sample. In order to avoid data leakage, 
the assignment of these categories was performed based 
on the training set. In particular, the clustering procedure 
was repeated on the training set to obtain a clustering 
for each time window. Based on the results of Fisher’s 
exact test, the low presence ICU and high presence ICU 
categories were created when, in a given time window, 
there was a significant difference among the two clus-
ters. In particular, the cluster with the highest percent-
age of ICU admissions was assigned the high presence 
ICU label. As for the category not significant, it denotes 
the fact that the difference between the two clusters was 
not significant. Finally, the category low sample was 
assigned to the records in the time windows 29, 30, and 
31. The category assignments in the test set were then 
determined based on the distance between each instance 
in the latter and the centroids of the clusters as identified 
in the training set. Together with the time window, the 
clustering category was used as an additional feature for 
developing the ML models.

Table 2  Results of the 
Silhouette index and Fisher 
exact test for comparing the 
proportion of ICU admissions 
in the two clusters, for each time 
window

Time window p value Silh

0 0.0002 0.75
1 0.0166 0.72
2 0.0674 0.73
3 0.0205 0.72
4 0.0235 0.74
5 0.0215 0.73
6 0.0645 0.74
7 0.0582 0.73
8 0.0494 0.74
9 0.0121 0.73
10 0.1118 0.75
11 0.2558 0.75
12 0.2077 0.74
13 0.4504 0.75
14 0.2454 0.75
15 0.1161 0.74
16 0.3942 0.75
17 0.0782 0.74
18 0.0515 0.73
19 1 0.72
20 0.0864 0.72
21 0.2182 0.73
22 0.4357 0.71
23 0.2728 0.70
24 0.0872 0.74
25 0.5271 0.72
26 0.5294 0.73
27 0.3016 0.75
28 0.6631 0.71
29 NA 0.74
30 NA 0.74
31 NA 0.76
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2.3  Modeling

In regard to model development, we considered 4 different 
families of ML models, namely decision tree (DT), XGBoost 
(XGB), multi-layer perceptron (ML), and support vector 
machine (SVM).

As mentioned in the previous sections, the training and 
hyper-parameter selection of the ML algorithms were per-
formed on the training set, based on a nested k-fold cross-
validation (CV) procedure with 7 folds for the outer CV and 
5 folds for the inner CV. In particular, for each iteration of 
the outer CV, the dataset was split in 6 folds (i.e., 86% of the 
training set, 69% of the complete dataset) used for training 
and hyper-parameter selection, and 1 fold (i.e., 14% of the 
training set, 11% of the complete dataset) used for testing. 
For each iteration of the inner CV, on the other hand, the 
considered part of the dataset was split in 4 folds used for 
training (i.e., 69% of the training set, 55% of the complete 
dataset) and 1 fold used for hyper-parameter selection (i.e. 
17% of the training set, 14% of the complete dataset). For 
both the outer and inner CV, the split was performed so as 
to guarantee that all records pertaining to any given patients 
were assigned to the same fold to avoid data leakage.

The training procedure encompassed an imputation step, 
a standardization step (for all models except XGBoost), and 
an imbalance-correction step. In particular, the imputation 
model (as previously mentioned, an iterative multi-vari-
ate procedure based on the Bayesian ridge estimator) was 
trained together with the classification models within the 
nested CV procedure: the parameters of the imputation mod-
els were estimated on the training folds (of the inner CV) 
and applied on the remaining folds. Regarding the imbal-
ance-correction step, the SMOTE algorithm was applied on 
the training folds of the nested CV procedure and during the 
final training of the models.

Hyper-parameter optimization was performed through a 
randomized model-based search procedure using the Optuna 
framework [1], assigning a budget of 100 evaluations to 
each model and optimizing for F2 score (in order to weigh 
more the under-represented positive class). The full range 
of evaluated hyper-parameter settings is reported in Table 3.

The nested CV procedure was also used to assess the stabil-
ity of the ML algorithms. To this purpose, we evaluated the 
average and standard deviation of the performances (according 
to different metrics, namely accuracy, sensitivity, specificity, 
AUC, and F2 score) of the algorithms, on both the training and 

Fig. 2  Scatter plot of the lym-
phocytes and neutrophils counts 
for the patients in the severity 
and normal clusters (see Sec-
tion 2.2)
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test folds of the outer CV. In particular, the width of the 95% 
confidence intervals (centred around the average) was con-
sidered as a measure of stability (i.e., the smaller the C.I., the 
higher the stability). Confidence intervals were computed by 
means of the bootstrap with 50 re-samplings. After the nested 
CV procedure, the models were re-trained (using the hyper-
parameters selected during the nested CV) and calibrated 
(using isotonic regression) on the whole training set. The final 
models were then evaluated on the separate test set in terms 
of different metrics, namely accuracy, sensitivity, specificity, 
precision, AUC, and F2 score. These are defined as:

(1)accuracy =
TP + TN

TP + TN + FP + FN

(2)sensitivity =
TP

TP + FN

(3)specificity =
TN

TN + FP

(4)precision =
TP

TP + FP

(5)F2 = 5
precision ⋅ sensitivity

4 ⋅ precision + sensitivity

where TP, FP, TN, and FN are, respectively, the number 
of true positives, false positives, true negatives, and false 
negatives.

The models were also evaluated in terms of their calibra-
tion (through the Brier score and calibration curves) as well 
as their utility (through the standardized net benefit (sNB) 
and decision curves). The Brier score and sNB are respec-
tively defined as:

where n is the number of cases, (xi, yi) represents the features 
and label for case i, h(xi) is the confidence score associated to 
the positive class (i.e., ICU admission) for case i, � =

TP+FN

n
 , 

and � ∈ [0, 1] is a probability threshold representing the rela-
tive cost of false-positive predictions. In regard to this latter 
parameter, we considered the cost of ICU admission to be 
$100000 (i.e., the daily cost for ICU patients, as estimated by 
FAIR Health [10]), and the benefit for the same prediction 
to be $900000 (i.e., the estimated value of life for a person 
with a remaining life-span of 18 QALY [20], based on the 
average life-span in Italy at the time of publication and the 
average age of the patients involved in the study). The result-
ing threshold value was � = 0.1.

3  Results

The results of the nested CV procedure are reported in 
Fig. 3. The selected hyper-parameter values are reported in 
Table 3, in bold.

The results of the models on the separate test set are 
reported in Table 4. Furthermore, the ROC curves, calibra-
tion curves, and decision curves for all the evaluated models 
are reported in Figs. 4, 5, and 6.

4  Discussion

No wonder that, due to the ongoing impact of the COVID-
19 disease on worldwide public health systems, we are not 
the first researchers to address the problem of ICU admis-
sion prediction using machine learning techniques. In what 
follows, we outline the main characteristics of the most 
important studies in the existing literature and compare 
these works with ours in order to highlight the respective 
strengths and limitations.

Campbell et al. [6] developed a hierarchical risk stratifi-
cation ensemble model for the prediction of adverse events 

(6)Brier =
1

n

n
∑

i=1

(yi − h(xi))
2

(7)sNB =
TP

�

n
−

1 − �

�

�

1 − �

FP
�

n

Table 3  Range of evaluated hyper-parameters for the ML models. 
The values selected as a result of the nested cross-validation proce-
dure are highlighted in bold

Algorithm Hyper-parameter Value range

DT criterion gini, entropy
max_depth [3, 6] (4)
min_samples_split [2, 40] (31)
min_samples_leaf [1, 20] (20)

MLP learning_rate_init [1e-5, 5e-2] (0.047)
learning_rate constant, invscaling, adaptive
solver adam, sgd
max_iter [5, 100] (100)
first_layer [10, 150] (111)
second_layer [5, 100] (27)
alpha [1e-5, 5e-2] (0.03)

XGB n_estimators [5, 200] (32)
max_depth [2, 30] (2)
reg_alpha [0, 5] (0)
reg_lambda [0,5] (2)
gamma [0, 5] (2)
learning_rate [0.005, 0.5] (0.0067)

SVM C [1e-10, 1e10] (0.055)
kernel sigmoid, rbf
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during hospitalization, including ICU admission, based on 
a small set of laboratory and clinical features available at 
admission time. As a consequence of the small data sample 
used for training (229 patients), the model reported relatively 
low performance on external validation, with an average sen-
sitivity of 34% and average precision of 64%.

Cheng et al. [7] developed a random forest model based 
on a multi-modal dataset encompassing laboratory data, 
clinical characteristics, and ECGs at admission time for 1982 
patients. The authors report a sensitivity of 72.8%, a speci-
ficity of 76.3%, an accuracy of 76.2%, and an AUC of 79.9%. 
While these results represent a good trade-off between sen-
sitivity and specificity, the model, as previously mentioned, 
uses a significant number of characteristics, including labo-
ratory parameters, symptomatology, and electro-cardio-
logical results. This might limit its use in medical practice, 
particularly in resource-constrained situations. Furthermore, 

we note that the authors do not provide any detail about the 
adopted imputation and feature processing methods, thus 
reducing the study’s replicability.

Fernandes et al. [13] also developed a random forest 
model for ICU admission, based on laboratory, clinical, 
and demographics data at admission date for 1040 patients. 
The model reported an AUC of 96%, a sensitivity of 91%, 
a specificity of 87%, and a PPV of 72%. While the reported 
results are higher than those reported by our best model (i.e., 
SVM), particularly concerning sensitivity, we note that the 
authors report that feature pre-processing and imputation 
were performed on the entire dataset before any data split 
operation. Thus, the reported results may be impacted by 
data leakage and over-estimation.

Klann et al. [22] developed generalized-linear and gra-
dient-boosting models. They show an average sensitivity of 
77% and a specificity of 79% for the task of ICU admission 

Fig. 3  Results of the nested CV for all the evaluated models

Table 4  Results of the evaluated 
ML models

Model Accuracy Sensitivity Specificity Precision AUC F2 Brier sNB

MLP 0.79 0.29 0.90 0.40 0.71 0.31 0.204 0.50
DT 0.76 0.66 0.78 0.41 0.76 0.59 0.171 0.60
SVM 0.82 0.57 0.88 0.51 0.85 0.56 0.144 0.69
XGB 0.80 0.65 0.83 0.46 0.81 0.60 0.145 0.50
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prediction. While the reported results are comparable to ours 
(and, in particular, the sensitivity is higher), we note that the 
models use all the information collected in patients’ health 
records as predictive features, whereas the method we pro-
pose only requires CBC data.

Clinical scoring models were developed by Rodriguez-
Nava et al. [30] to predict ICU admission, with an average 
AUC of 76%. Despite this, the scores were produced on a 
small sample of 300 patients, and they were validated using 
the same data that was used to develop the score, with no 
way to prevent overfitting.

Wu et al. [34] created a logistic regression model for risk 
prediction that was also externally verified. The authors 
report an AUC of 87%, sensitivity of 86%, and specific-
ity of 71% on the external validation sets. Similarly to the 
approaches adopted in [7] and [22], the reported model 

grounds on several features, including hemato-chemical 
parameters, symptomatology, and radiological results. 
Finally, while we focus on ICU admission prediction, the 
authors of the study consider a composite binary prediction 
task in which a patient is classified as severe if he or she 
is admitted to the ICU, had organ failure, or died; this, in 
turn, could further limit the utility of the ML method in the 
management of severe cases.

Vaid et al. [33] applied different ML models to predict 
critical events (including ICU admission), based on a dataset 
encompassing patients’ characteristics and laboratory data 
at admission time for 4098 COVID-19-positive patients. 
The best model (i.e., XGBoost) reported AUC values rang-
ing between 78 and 81%, AU-PRC values ranging from 51 
to 69%, and Brier score ranging from 0.124 to 0.161. This 
study was the most comparable with ours since the authors 
of the study also adopted an approach based on a finite time 
horizon (3 to 5 days). The authors of the study similarly 
respected replicability and reporting guidelines [19]. While 
the reported results are comparable with our own (in terms 
of AUC and Brier score), we mention that the authors did 
not report the sensitivity and specificity of the models. 

Thus, a further comparison of the performances cannot be 
performed.

More in general, five recent reviews [2, 18, 27, 32, 35] 
surveyed the state-of-the-art with respect to prognostic ML 
models for COVID-19: most of the surveyed works were 
found to be subject to a high risk of bias. This is due to 
limitations related to model development and data collec-
tion [17], lack of reporting standards [4], lack of procedures 
to control or mitigate over-fitting, and lack of data shar-
ing [15] which, in turn, may affect replicability.

Let us now consider our models and the performance 
results reported in the previous section. As a first note, the 
best model (i.e., the SVM) was associated with an AUC 
score higher than 80%, and good results for both the Brier 
score (i.e., calibration) and standardized net benefit (i.e., 

Fig. 4  ROC curves for the evaluated ML models

Fig. 5  Calibration curves for the 
evaluated ML models
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utility): indeed, SVM was the best model according to all 
these three metrics. All models reported good specificity 
(always greater than 75%), but a relatively low sensitivity 
(the highest sensitivity was 66%, reported by the DT model). 
This relative imbalance between the two performance met-
rics can be seen as a consequence of the observed label 
imbalance: indeed, since the negative class was strongly 
over-represented, all models learned to recognize negative 
instances more accurately than positive ones.

About calibration, all models reported a similar calibra-
tion pattern, as shown in Figure 5. Indeed, it can be easily 
seen that all models tended to be over-confident in their pre-
dictions: the mean predicted probability scores were con-
sistently higher than the corresponding fractions of positive 
instances. Nonetheless, the best performing model (i.e., 
SVM) reported a good Brier score value.

Finally, in regard to utility, we see that the cut-off point 
for positive utility for the best model (i.e., SVM) is � ∼ 0.5 , 
while the utility was strictly positive for every threshold 
lower than that value. In particular, at the selected thresh-
old value ( � = 0.1 ), all models were associated with posi-
tive utility, which was greater than both the Treat-All and 

Treat-None models (i.e., respectively, the models that always 
and never predict ICU admission). This last result, in par-
ticular, shows the potential usefulness of the developed ML 
models in this critical setting.

While we believe that these results are promising, we also 
acknowledge the following limitation: the generalizability of 
the developed models was not externally validated, either on 
data collected from different settings or collected from the 
same hospital but in different periods. Nonetheless, as we 
noted in the Methods section, the adopted model develop-
ment procedures were selected to increase model robust-
ness, reduce over-fitting, and avoid any form of data leakage. 
Moreover, coronavirus diseases are known to be subject to 
relevant changes over time, and also this puts this limitation 
in a different perspective than it is usually the case: indeed, 
the robustness of any predictive model should always be 
assessed in light of the similarity between the training data-
set and a representative sample of local and current cases, 
as discussed in some recent contributions (like [4, 5]). In 
fact, since the robustness of any ML given model would be 
jeopardized by the constant mutability of the SARS-CoV-2 
virus, this study does prove the potential utility of ML for 

Fig. 6  Decision curves for the 
evaluated ML models
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this clinical task, even when parsimoniousness and robust-
ness are pursued over mere accuracy.

As an additional supporting element of our study, we also 
performed an interpretability analysis based on the Shapley 
value method [24]. The results of this analysis are reported 
in Figure 7, and rendered in terms of feature importance 
attributions for the 20 most relevant features.

As depicted in Fig. 7, lymphocytes and neutrophils 
counts were among the most significant features. In 
particular, low lymphocytes values and high neutro-
phils values were predictive for ICU admission. This 
finding, which was also reported in relation to the clus-
tering analysis Section 2.1, is consistent with several 
studies in the existing literature [16, 28, 29], where the 
neutrophils-to-lymphocyte (NLR) ratio, compared with 
other laboratory parameters that predict the prognosis of 
COVID-19, is considered as one of the most important 

and practical prognostic factors for clinical application, 
also due to its convenient derivation from routine blood 
tests [31]. Indeed, the neutrophil-to-lymphocyte ratio 
(NLR) is an inflammatory marker easily calculated by 
dividing absolute neutrophil count by absolute lympho-
cyte count, which are two parameters routinely extracted 
in clinical settings. Recently, studies have reported that 
NLR levels were higher in more severe patients and were 
suggested to have high prognostic value in COVID-19 
patients [8]. COVID-19 severity is primarily affected 
by the innate inflammatory response of the body, where 
more severe cases were attributed to cytokine storm, a 
condition when there is an excessive immune response 
[8]. The biological mechanism underlying this association 
is that high NLR indicates an imbalance in the inflam-
matory response, which resulted from increased neutro-
phil and decreased lymphocyte counts. Inflammatory 

Fig. 7  Shapley value–based 
interpretability analysis of the 
developed SVM model. For the 
sex variable, 1 denotes a male 
patient while 0 a female patient
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factors related to viral infection, such as interleukins and 
granulocyte colony-stimulating factors, could stimulate 
neutrophil production, and, at the same time accelerate 
lymphocyte decrease according to various molecular 
mechanisms [31]. Therefore, obtaining neutrophils and 
lymphocytes levels upon hospital admission could allow 
for early risk stratification, by identifying patients with 
higher levels of inflammation who should be prioritized 
as severe COVID-19 patients.

Similar points can be made in regard to the total number 
of white blood cells and the other components of the leuko-
cyte formula [14, 21]. In regard to sex, the likelihood to be 
admitted in ICU is higher within the male group.

We note that the information about clustering and 
the temporal window (i.e., the number of days of stay) 
was also among the most relevant features. This find-
ing should not seem surprising: in fact, the clustering 
features (i.e., the severity cluster and the NA cluster in 
Fig. 7) were purposely built in order to provide a reli-
able aggregate indicator of the patient health condition. 
In particular, through the clustering analysis reported 
in  2.1, a positive correlation was found between the 
output of the clustering procedure and the features of 
patients admitted to the ICU. Similarly, higher window 
variable values indicate a longer hospital stay, which 
could similarly be a sign of a more complicated disease 
course.

As a final remark, we note that our models were devel-
oped based on data from the first wave of COVID-19 (in 
Italy), that is with likely the SARS-CoV-2 Wuhan strain, 
and only based on ED data. It could be argued that the 
following waves and the related hospitalized populations 
were (and will be) at least partially different from the 
first-wave one, especially in terms of phenotype and dis-
ease bio-markers, also for a matter of vaccine-induced 
partial immunity against COVID-19. The most obvious 
element of difference regards the reduction of the age of 
hospitalized patients (due to the higher incidence of vac-
cination in the elderly) [25], but also other potential ele-
ments could be factored in. Furthermore, accounting also 
for non-ED patients could result in differences regarding 
which individuals develop critical illness, with respect to 
the one we observed in this study. In order to address this 
potential concept drift, in future works, we plan to exter-
nally validate our models with data coming from other 
hospitals and other time periods as already undertaken for 
the diagnostic task in [5]. This would also allow to test 
the model in light of possible virus variations, different 
patient management policies and therapeutic treatments. 
To this end, however, we also note that, generally speak-
ing, the use of ML models should always be limited to 
settings that produce (and consume) data that are rela-
tively similar to the training population, as shown in [5].

5  Conclusions

In this paper, we presented the results of a retrospective 
study aimed at predicting whether a given COVID-19 patient 
will likely need to be transferred to the ICU during the fol-
lowing 5 days of their hospital stay. The results we report 
are supported by a large, publicly available dataset2 that the 
authors personally curated. In order to avoid biases and risks 
of overfitting, we adopted a development process based on 
recent study quality and reporting guidelines [4, 19]. The 
proposed methods, and in particular the best model (i.e., 
the SVM), exhibited promising performance, in terms of 
predictive power, calibration, and utility. Our approach is 
also parsimonious since our models are only based on two 
demographic features and the results of the CBC test, one 
of the cheapest, stablest, and fastest test in the laboratory 
medicine field: we believe that this is the primary strength 
of our approach, as this guarantees its applicability also to 
resource-constrained settings or developing countries [9]. 
An interpretability study, consistently with the existing lit-
erature, also backed up the validity of our models.

In future works, we aim to externally verify our models 
by using data from other hospitals and time periods. This 
will allow us to evaluate the model in light of external fac-
tors, like possible viral variants, the diffusion of viable alter-
natives in patient care and therapy strategies, or the effects 
of vaccines on the disease progression and diffusion. Fur-
thermore, an additional line of further research could regard 
the combination of our methods with models predicting the 
worsening of health status over time [26] so as to provide 
clinicians with more information about patients’ health sta-
tus and better risk stratification indications.
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