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Preoccupation and compulsive use of the internet can have negative psychological
effects, such that it is increasingly being recognized as a mental disorder. The
present study employed network-based statistics to explore how whole-brain functional
connections at rest is related to the extent of individual’s level of internet addiction,
indexed by a self-rated questionnaire. We identified two topologically significant
networks, one with connections that are positively correlated with internet addiction
tendency, and one with connections negatively correlated with internet addiction
tendency. The two networks are interconnected mostly at frontal regions, which might
reflect alterations in the frontal region for different aspects of cognitive control (i.e.,
for control of internet usage and gaming skills). Next, we categorized the brain into
several large regional subgroupings, and found that the majority of proportions of
connections in the two networks correspond to the cerebellar model of addiction which
encompasses the four-circuit model. Lastly, we observed that the brain regions with the
most inter-regional connections associated with internet addiction tendency replicate
those often seen in addiction literature, and is corroborated by our meta-analysis of
internet addiction studies. This research provides a better understanding of large-scale
networks involved in internet addiction tendency and shows that pre-clinical levels of
internet addiction are associated with similar regions and connections as clinical cases
of addiction.
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INTRODUCTION

Internet addiction (OReilly, 1996; Young, 1998) is a modern phenomenon that is characterized
by preoccupation and compulsive use of the internet. In particular, internet gaming disorder
(IGD) has been listed in Section III of the Diagnostic and Statistical Manual version 5 (DSM-
5 R©, American Psychiatric Association [APA], 2013). Due to a lack of a standard criterion, some
literature treated the two terminology as synonymous (see Petry and O’Brien, 2013; Petry et al.,
2014 for a discussion); however, the compulsive and excessive use of the internet for any activity
(which we will refer to in this literature as internet addiction) is more global than its major subtype
IGD, which can include multiple forms of internet use in addition to online gaming (Griffiths and
Pontes, 2014; Király et al., 2014; Petry et al., 2014). Our current study investigates internet addiction
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in the more general form. Similar to substance use disorders,
internet addiction shows withdrawal symptoms, tolerance, loss
of control, and psychosocial problems, leading to clinically
significant distress or impairment in daily functioning.
Prevalence seems highest Asian countries and in male
adolescents, and has been estimated to range from 14.1 to
16.5% (95 percent confidence interval) among Taiwan college
students in one study (Lin et al., 2011). The phenomenon has
been attracting more attention over the past few years and clearly
deserves further research.

Functional magnetic resonance imaging (fMRI) has been
employed to identify the neural substrates of internet addiction,
which turned out to show similar brain signatures with
substance-related addictions (Kuss and Griffiths, 2012; Brand
et al., 2014; Meng et al., 2015). In blocked and event-related
studies, several regions associated with reward, addiction, and
craving have been identified by contrasting internet gaming cues
with baseline, which includes the insula, nucleus accumbens
(NAc), dorsolateral prefrontal cortex (DLPFC), and orbital
frontal cortex (OFC) (Hoeft et al., 2008; Ko et al., 2009; Han et al.,
2010; Sun et al., 2012; Ko et al., 2013). However, activation-based
approaches contrast cue-related activity and do not address how
regions of the brain interact, and thus cannot characterize altered
functional connections associated with clinical or behavioral
measures; yet human disorders are a result of disturbances
in an interconnected complex system (Fornito and Bullmore,
2015). The introduction of resting-state fMRI has proved to be
a powerful tool for studying whole brain neural connectivity (van
den Heuvel and Pol, 2010). Resting-state functional connectivity
is assessed by the correlation of spontaneous fluctuations of blood
oxygen level-dependent (BOLD) signals in different regions
of the brain and is thought to provide a measure of its
functional organization, and can help characterize abnormal
synchronizations between brain regions in the spectrum of
psychological phenotypes (Biswal et al., 2010; Craddock et al.,
2013).

Although there have been some studies that have employed
functional connectivity to investigate altered functional
connectivity associated with internet addiction, most studies
used seed regions chosen a priori, either (a) correlating one
seed region with the remaining voxels of the whole brain
[Hoeft et al., 2008 used the NAc; Lorenz et al., 2013 used
the right inferior frontal gyrus (IFG); Ding et al., 2013 used
the posterior cingulate cortex (PCC); Ko et al., 2015 used
the amygdala; Zhang et al., 2015 used the insula; Hong
et al., 2015 used the caudate nucleus and putamen; Kühn
and Gallinat, 2015 used the right frontal pole; Li et al.,
2015 used the right DLPFC] or (b) performing correlations
among multiple predefined ROIs selected from meaningful
networks (Yuan et al., 2015 examined the central executive
network and salience network; Dong et al., 2015b examined
the executive control network; Dong et al., 2015a examined
the executive control network and reward network; Li et al.,
2014 examined the response inhibition network; Lin et al.,
2015 examined six predefined bilateral corticostriatal ROIs).
The pre-defined seed regions examined only represent a small
proportion of the brain, thus they may not be able to provide a

complete picture of how the connectome is affected by internet
addiction.

Very few studies have used a whole-brain approach to study
internet addiction. To our knowledge, there are currently only
four published papers that adopted a whole-brain approach, and
their methods are quite variable, ranging from network-based
statistics (NBS; Hong et al., 2013) to topological (Hong et al.,
2013; Wee et al., 2014; Park et al., 2015) to a novelly developed
voxel-mirrored homotopic connectivity (Wang et al., 2015). In
particular, Hong et al. (2013) employed NBS to identify between-
group differences in inter-regional functional connectivity, and
found impaired connections involved in cortico-subcortical
circuits in patients with internet addiction. However, their study
focused on a small sample size of a unique population (male early
adolescents).

Therefore, in our current paper, we decided to use a whole-
brain connectivity approach, NBS (Zalesky et al., 2010a; Han
et al., 2013), to identify functional connections that are predictive
of internet addiction tendency. NBS is a validated statistical
method to deal with the multiple comparisons problem on a
graph, it is analogous to cluster-based methods (Nichols and
Holmes, 2002), and is used to identify connections and networks
comprising the human connectome that are associated with an
experimental effect or a between-group difference by testing
the hypothesis independently at every connection. Our results
will furthermore be compared with a meta-analysis of existing
papers related to the neural correlates of internet addiction.
We hope to extend the existing literature in several ways:
(1) We hope to provide a more complete picture of internet
addiction by using whole-brain analysis instead of using only a
small number of pre-defined seed regions. (2) Although there
exists a couple of whole-brain functional connectivity studies
on internet addiction (e.g., Hong et al., 2013; Wang et al.,
2015), the studies compared internet addiction groups with
healthy controls. Our study did not involve any clinical patients,
but characterized internet addiction tendency as a gradient.
We hope to identify functional connections whose strength is
modulated by level of addiction. (3) Most internet addiction
studies have not taken the cerebellum into consideration, yet
the cerebellum has been implicated as an important region in
addiction (Moulton et al., 2014). Thus, we have included the
cerebellum in our analysis. (4) Many studies have limited their
participant group to males, and often contain relatively small
sample sizes (e.g., Hong et al., 2013, 2015; Kühn and Gallinat,
2015). To increase the generalizability and power of these studies,
samples containing both genders and a larger sample size is
necessary (Li et al., 2015). By tackling the above problems,
the current study hopes to provide a better understanding of
how functional connectivity is associated with internet addiction
tendency.

MATERIALS AND METHODS

Meta-Analysis
A meta-analysis was constructed using the NeuroSynth database
(http://neurosynth.org; Yarkoni et al., 2011). A customized
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analysis was performed by using the search terms “addiction,”
“addict,” “internet,” “gaming,” “game,” and “online” to identify
studies related to internet addiction in the database. The
criteria of inclusion was verified manually, and a list of the
studies included are detailed in the Supplementary Materials 1.
A total of 18 studies were included. Peak activation coordinates
as well as its neighborhood of 6 mm voxels were extracted
from the included studies. Next, a meta-analysis of these
coordinates was performed, producing forward and revere
inference whole-brain z-score maps. The forward inference maps
reflect the likelihood that a region will activate given these terms
[P(activation| terms)], therefore informing us of the consistency
of activation for the given terms. The reverse inference map
shows the likelihood that these terms are used in a study
given the presence of reported activation [P(terms| activation)];
thus a region that is activated indicates it is more likely to
be an internet addiction related study than a non-internet
addiction related study, reflecting selectivity of that region.
Since both forward and reverse inference play an important
role in helping us understand regions associated with internet
addiction, we overlapped these two inference maps to outline
their common regions. Clusters greater than five voxels are
reported.

Resting-State fMRI
Participants
Forty-seven healthy participants (21 males and 26 females)
from southern Taiwan, most of which are students or staff
in the university, were recruited through advertisements, to
participate in the experiment (age range = 19–29 years, mean
age = 22.87 years, SD = 2.22 years). The participants were right-
handed (indicated by the Edinburgh Handedness Inventory),
had normal or corrected-to-normal vision, and no history of
psychological or neural disorders. Their depression, anxiety and
intelligence scores were in the normal range [Beck’s Depression
Inventory (BDI) score: 0–12; Beck’s Anxiety Inventory (BAI)
score: 0–7; Raven’s Standard Progressive Matrices test score:
35–57]. The Chen Internet Addiction Scale-Revised (CIAS-R)
score of all participants had range = 28–92, mean = 60.04,
SD = 16.53. Table 1 summarizes the demographic information
and behavioral characteristics of the participants. The normality
of the CIAS-R scores was verified by the Shapiro–Wilk test
[W(47) = 0.98, p = 0.50]. There was no significant correlation
between gender and CIAS-R score (Spearman’s ρ = 0.15,

TABLE 1 | Demographic information and behavioral characteristics.

Range Mean SD

Age 19–29 22.87 2.22

BDI 0–12 4.17 3.74

BAI 0–7 1.81 2.02

SPM 35–57 46.28 5.19

CIAS-R 28–92 60.04 16.53

*BDI, Beck’s Depression Inventory; BAI, Beck,s Anxiety Inventory; SPM, Raven’s
Standard Progressive Matrices; CIAS-R, Chen Internet Addiction Scale-Revised.

p = 0.30). All participants provided their written informed
consent, and the study protocol was approved (NO: B-ER-
101-144) by the Institutional Review Board (IRB) of the
National Cheng Kung University Hospital, Tainan, Taiwan.
All participants were paid 500 NTD after completion of the
experiment.

Chen Internet Addiction Scale-Revised (CIAS-R)
Questionnaire
The Chen Internet Addiction Scale-Revised (CIAS-R; Chen
et al., 2003) is a 26-item measure used to assess the severity
of internet addiction. The CIAS-R is based on the DSM-IV-TR
additive behaviors criteria and contains two subscales of
internet addiction (a) core symptoms and (b) related problems,
assessing five dimensions including (1) compulsive internet use,
(2) withdrawal symptoms when the internet is taken away,
(3) tolerance, (4) jeopardy of interpersonal relationships and
physical health, and (5) time management problems. Items
are rated on a 4-point Likert scale, with total scores ranging
from 26 to 104, reflecting low to high tendency of internet
addiction. It has been shown that the CIAS-R has high internal
consistency (Cronbach’s α = 0.79–0.93; Chen et al., 2003) and
high diagnostic accuracy (AUC = 89.6%; Ko et al., 2005).
In the present study, the CIAS-R total score was utilized
as an indicator of participants’ current status of internet
addiction.

Image Acquisition and Processing
Imaging was performed using the GE MR750 3T scanner
(GE Healthcare, Waukesha, WI, USA) in the MRI center of
National Cheng Kung University. High resolution anatomical
images were acquired using fast-SPGR, consisting of 166 axial
slices (TR = 7.6 ms, TE = 3.3 ms, flip angle 171 = 12◦,
224matrices× 224matrices, slice thickness = 1mm). Functional
images were acquired using a gradient-echo echo-planar imaging
(EPI) pulse sequence (TR = 2000 ms, TE = 30 ms, flip
angle = 77◦, 64 matrices × 64 matrices, slice thickness = 4 mm,
no gap, voxel size 3.4375 mm × 3.4375 mm × 4 mm, 32 axial
slices covering the entire brain).

Participants were told to relax and lie in the scanner with their
eyes closed. They were asked not to think about any particular
event while scanning. The scanning time for the structural
image was approximately 3.6 min. The functional image lasted
approximately 8 min, with the first five TRs serving as dummy
scans to ensure that the signal has reached a steady state before
data are collected; thus a run consists of 240 EPI volume images
for analysis.

The data was preprocessed using the Data Processing Assistant
for Resting-State fMRI (DPARSF; Yan and Zang, 2010), which
is based on functions in MRIcroN (Rorden et al., 20071) as
well as Statistical Parametric Mapping software (SPM2) and
the Resting-State fMRI Data Analysis Toolkit (REST; Song
et al., 2011) in Matlab (The MathWorks, Inc., Natick, MA,
USA). Functional images undergone slice timing correction,

1http://www.mricro.com
2http://www.fil.ion.ucl.ac.uk/spm
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FIGURE 1 | Flowchart of data analysis pipeline. Participants’ brains were preprocessed and parcellated to different structural regions according to the AAL
template. A correlation matrix was constructed using the time courses extracted from each region to characterize connectivity between each pair of brain region.
Network-based statistics was used to identify significant networks related to internet addiction tendency indexed by the CIAS-R score, which included three steps:
(1) mass univariate testing of Spearman’s rank correlation of each cell of the correlation matrix and CIAS-R scores, (2) application of primary threshold to select for
highly correlated connections, and (3) identify the largest number of connected graph components. The preceding three steps were permutated to obtain a null
distribution of the largest component size, and further used to test the significance of the identified network(s).

followed by realignment to correct for head motion using
six-parameter rigid body transformations. The overall motion,
characterized by mean framewise displacement (FD), was not
large (mean = 0.05, SD = 0.03) and did not correlate with
the CIAS-R scores (Spearman’s ρ = −0.28, p = 0.055), thus
impulsivity is not a confounding factor of internet addiction score
and motion (Kong et al., 2014). T1 images were coregistered
to functional images. Structural images were segmented into
CSF, white matter and gray matter based on tissue probability
maps in MNI space, and these calculations were used in the
subsequent normalization of T1 and EPI images to MNI space.
The data were smoothed in the spatial domain using a Gaussian
kernel of 6 mm full width at half maximum (FWHM) and
removed of linear trend. Nuisance covariates including global
mean signal, white matter signal, and cerebrospinal fluid signal
were regressed out. Although whether to perform the global

signal regression is still an ongoing controversy (e.g., Saad
et al., 2012), we decided to implement this method because it
has been suggested to maximize the specificity of functional
correlations and improve the correspondence between resting-
state correlations and anatomy (Fox et al., 2009; Weissenbacher
et al., 2009; Takeuchi et al., 2014). Finally, the images undergone
band-pass filtering of 0.01–0.08 Hz.

Data Analysis
The fMRI images were parcellated based on the Anatomical
Automatic Labeling (AAL; Tzourio-Mazoyer et al., 2002)
template, dividing the brain based on anatomical structure into
116 ROIs (or nodes). We chose the AAL atlas because it has
been the most commonly used parcellation in functional network
studies (Stanley et al., 2013) and was also the template used by
Hong et al. (2013), whose study is most relevant to ours, thus
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increasing the degree of comparability across studies (Zalesky
et al., 2010b). The NBS method was used to identify brain
networks that consists of inter-regional functional connectivity
showing significant correlation with CIAS-R score. The following
analyses was done with the aid of the Network Based Statistic
Toolbox (Zalesky et al., 2010a) with additional in-house Matlab
scripts. A 116 × 116 correlation matrix was constructed for
each participant using the time courses extracted from each
ROI. The Pearson’s r values were normalized to Z scores using
Fisher’s Z transformation. Each cell of the correlation matrix
represent the strength of the connection (or edge) between two
nodes. Mass univariate testing using Spearman’s rank correlation
was performed between participants’ CIAS-R scores and edge
strengths within each edge to identify relevant connections
that were predictive of the CIAS-R score. Candidate edges that
showed high predictability of CIAS-R score were selected via
a primary threshold of Spearman’s rho > 0.37 and <−0.37
(approximately the one-tailed alpha = 0.005) respectively, to
identify networks that are positively and negatively associated
with CIAS-R score. Next, topological clusters, known as
connected graph components were identified among the supra-
threshold connections. A familywise error (FWE) for the
component size was calculated using permutation testing (3000
permutations), which involved randomly reordering the CIAS-R
scores and repeating the above process each permutation
to obtain a null distribution of the largest component size.
Connected graph components whose size exceeds the estimated
FWE-corrected p-value cutoff of <0.05 were identified as
networks that are significantly related to internet addiction
tendency. BrainNet Viewer (Xia et al., 2013) was used for the
visualization of connections. An illustration of the data analysis
pipeline is shown in Figure 1.

RESULTS

Meta-Analysis
Forward and reverse inference z-score maps were generated from
NeuroSynth (shown in Figure 2). The activations in these two
maps show high resemblance of each other. Overlapping these
maps revealed activation in regions of the cerebellum, temporal
lobe (bilateral inferior temporal gyri, right superior temporal
pole, and right middle and superior temporal gyrus), several
frontal regions (left middle and superior orbital frontal gyrus,
right middle frontal gyrus, right inferior frontal operculum, and
right precentral gyrus), bilateral putamen, bilateral insula, right
middle cingulate, and right precuneus. Table 2 lists the clusters
identified as well as AAL regions belonging to the cluster.

Resting-State fMRI
Functional Connections Related to Internet Addiction
Tendency
Using NBS, we identified two networks that showed significant
correlation of edge strength and CIAS-R scores (p < 0.05, FWE-
corrected): one with edges positively correlated with CIAS-R
scores (“CIAS-R positive,” shown in red), and one with edges
negatively correlated with CIAS-R (“CIAS-R negative,” shown in
blue). The CIAS-R positive network consists a total of 65 nodes
and 90 edges (45 intrahemispheric, 42 interhemispheric, and 3
connecting to the vermis), while the negative network consist of
64 nodes and 89 edges (35 intrahemispheric, 40 interhemispheric,
and 14 connecting to/within the vermis). It is important to note
that the two networks are not completely separate, and they share
a total of 39 nodes, 30.77% of which are frontal lobe regions.
The total number of edges related to CIAS-R consist of 2.68%

FIGURE 2 | Inference maps of meta-analysis performed on NeuroSynth, showing regions active in forward inference, reverse inference, and the
overlap of the two maps.
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of all edges of the brain. The network is illustrated in Figure 3
and specific connections are listed in Supplementary Materials 2,
Table S1.

Global Distribution of Involved Edges
To get a better understanding of how these connections are
distributed, we followed Fornito et al. (2011) and Hong et al.
(2013), and categorized each AAL region within each network
as belonging to seven regional subgroupings: frontal, temporal,
parietal, occipital, insula and cingulate gyri, subcortical, and
cerebellum. The majority of edges in the CIAS-R positive
network involved connections between (1) temporal regions
and insula and cingulate gryi (∼13%), most of which involves
the posterior cingulate gyrus connecting to various temporal
regions; (2) frontal and temporal regions (∼12%), which includes
connections between the medial orbitofrontal cortex, paracentral
lobule and the temporal lobe gyri, temporal pole; and (3) parietal
and subcortical regions (∼11%), consisting of connections
between the postcentral cortex and superior parietal lobule with
the putamen and pallidum. It is interesting to note that except
for the frontal lobe, all others regions do not have any intra-
regional connections whose strength is positively correlated with
internet addiction tendency. The majority of edges in the CIAS-R
negative network involved connections between (1) the frontal
lobe and cerebellum (∼19%), most of which are connections
between the orbital frontal regions and various ROIs of the
cerebellum; and (2) insula and cingulate gyri and the temporal
lobe (∼12%), which comprises connections between the insula,
cingulum, parahippocampal, and temporal lobe gyri. No occipital
regions were found to be included in the CIAS-R negative
network. The proportions of inter-regional connections of each
network is illustrated in Figure 4.

Maximally Affected Nodes
Due to the large number of edges identified, we followed Finn
et al. (2014), and identified nodes that have a high “sum of
CIAS-R-correlated edges” in order to focus our analysis on
regions where connections are maximally related to internet
addiction tendency. The sum of CIAS-R-correlated edges of a
node was defined as the total number of its edges in both CIAS-
R positive and CIAS-R negative networks (this is conceptually
equivalent to the degree measure in graph theory). This method
will enable us to identify nodes where connections are most
likely to be altered by internet addiction tendency. The following
Table 3 lists the nodes that are maximally affected, and shows
nodes that have at least a sum of CIAS-R-correlated edges of
at least 8. Visualization of the nodes and their connections is
displayed in Figure 5. These are also the nodes selected for
discussion.

DISCUSSION

In a normal group of young adults, we assessed their level of
internet addiction through a self-rated questionnaire (CIAS-R),
and further identified two brain networks of which functional
connections correlated positively and negatively with internet

TABLE 2 | Overlapping clusters of forward and reverse inference maps.

Regions # of voxels
(2∗2∗2)

Peak MNI co-ordinates

Cluster 1 194 −12 −78 −46

Cerebelum_Crus2_L

Cerebelum_7b_L

Cerebelum_Crus1_L

Vermis_8

Cerebelum_8_L

Vermis_7

Cluster 2 70 −22 −78 −52

Cerebelum_Crus2_L

Cerebelum_7b_L

Cerebelum_8_L

Cluster 3 36 10 0 24

Cingulum_Mid_R

Cluster 4 30 −22 52 −18

Frontal_Mid_Orb_L

Frontal_Sup_Orb_L

Cluster 5 26 10 −62 34

Precuneus_R

Cluster 6 20 52 −50 −26

Temporal_Inf_R

Cluster 7 19 −24 8 −10

Putamen_L

Cluster 8 17 20 10 −10

Putamen_R

Cluster 9 17 38 2 34

Frontal_Mid_R

Precentral_R

Frontal_Inf_Oper_R

Cluster 10 14 −30 0 14

Insula_L

Cluster 11 13 52 0 −14

Temporal_Pole_Sup_R

Temporal_Sup_R

Cluster 12 12 46 2 −22

Temporal_Pole_Sup_R

Temporal_Mid_R

Cluster 13 11 −32 −40 32

White matter

Cluster 14 9 26 −38 52

Postcentral_R

Cluster 15 8 44 6 −8

Insula_R

Cluster 16 6 −44 −32 −22

Temporal_Inf_L

Cluster 17 6 6 −64 62

Precuneus_R

*R and L stand for right and left. Mid, middle; Sup, superior; Inf, inferior; Orb, orbital;
Oper, operculum; Cerebulum, cerebellum.

addiction tendency. In the following, we discuss our results at
different scales of observation: (1) the crucial regions linking
CIAS-R positive and CIAS-R negative networks, (2) regions with
high proportions of connections related to internet addiction
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FIGURE 3 | Network of connections that are correlated with CIAS-R scores. Gray spheres represent the centroid of each node and are scaled accordingly to
the number of significant edges they are associated with. Only nodes with connections are shown. Red lines represent edges that are positively associated with
CIAS-R scores, while the blue lines represent edges that are negatively associated with CIAS-R scores.

tendency, and (3) the critical nodes altered by internet addiction
tendency.

Frontal Regions Link CIAS-R Positive
and CIAS-R Negative Networks
We observed that the majority of nodes that link the two
(CIAS-R positive and CIAS-R negative) networks are located
within the frontal lobe. These regions include the superior
frontal gyrus, IFG, medial frontal gyrus, rolandic operculum,
and supplementary motor area. The prefrontal cortex has

been implicated to be a critical structure in cognitive control,
inhibition, and response selection (Aron et al., 2004; Talati
and Hirsch, 2005; Forstmann et al., 2008). Internet addiction
is a phenomenon in that addicts have decreased self-control
and decision making regarding internet usage, reflected by
continued overuse despite their knowledge of negative effects.
For example, several studies have found that participants with
internet addiction showed higher fronto-striatal and fronto-
parietal activation during the Go/Nogo task (Ding et al., 2014;
Ko et al., 2014; Chen et al., 2015) and Stroop task (Dong

FIGURE 4 | Proportion of edges that are positively and negatively correlated with internet addiction tendency among pairs of regional subgroupings.
The proportions were calculated by dividing the number of edges between (or within) pairs of regions with the total number of edges identified in each network.
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TABLE 3 | Node level analysis of internet addiction tendency.

AAL Node MNI coordinate CIAS-R positive CIAS-R negative Sum of correlated edges

Cingulum_Post_L −4.85 −42.92 24.67 9 8 17

Cingulum_Post_R 7.44 −41.81 21.87 8 5 13

Insula_R 39.02 6.25 2.08 7 6 13

Temporal_Mid_R 57.47 −37.23 −1.47 5 4 9

Temporal_Pole_Sup_L −39.88 15.14 −20.18 4 5 9

Putamen_R 27.78 4.91 2.46 5 3 8

Frontal_Inf_Orb_L −35.98 30.71 −12.11 1 7 8

*R and L stand for right and left. Post, posterior; Mid, middle; Sup, superior; Inf, inferior; Orb, orbital.

et al., 2012a, 2013, 2014), suggesting poorer response inhibition
and error monitoring, and increased impulsivity. But on the
other hand, internet addicts and video game players often show
excellent performance of cognitive function, such as motor
control and efficient decision making during gaming. Indeed,
practice effects of video game play have been shown to generalize
to a variety of enhanced executive skills, including perceptual,
motor, attentional, and probabilistic inference skills (Green and
Bavelier, 2003; Castel et al., 2005; Dye et al., 2009; Green
et al., 2010; Green et al., 2012). One fMRI study found reduced
recruitment of the fronto-parietal network in video game players
compared to non-gamers during a high attentional demand
task, possibly reflecting more efficient executive and attentional
control (Bavelier et al., 2012). The two faces of cognitive control
displayed by internet addicts poses an interesting dilemma. In our
study, the observation of frontal regions linking the two networks
where functional connectivity is decreased and increased by
internet addiction tendency could reflect alterations in the frontal
region for different aspects of cognitive control (i.e., for control
of internet usage and gaming skills). It is worth mentioning that
although Hong et al. (2013) hypothesized there could possibly be
increased functional connectivity associated with practice effects
in internet addicts, only decreased functional connectivity was
observed in their study. One possibility proposed by Hong et al.
(2013) for their absence of increased functional connectivity in
internet-addicted individuals was that their small sample size
resulted in the lack of power. By using seed-based analysis, which
requires less multiple comparisons than whole-brain approaches,
Hong et al. (2015) re-analyzed the 2013 data and observed both
increased and decreased functional connectivity associated with
internet addiction.

The Widely Distributed Connections of
the Internet Addiction Tendency
Networks
The data shows a large number of inter- and intra-hemispheric
connections in both CIAS-R positive and CIAS-R negative
networks, reflecting the extensive influence of internet addiction
tendency on the brain. We observed that the highest proportion
of connections in the CIAS-R positive network involved the
“insula and cingulate – temporal,” “frontal – temporal,” and
“subcortical – parietal” edges, while the highest proportion
of connections in the CIAS-R negative network involved
“frontal – cerebellar” and “insula and cingulate – temporal” edges

(Figure 4). In a recently proposed model of addiction (Moulton
et al., 2014), the cerebellum helps maintain the homeostasis
of the four interconnected circuits relevant to addiction:
reward/saliency, motivation/drive, learning/memory as well as
cognitive control. This model integrates the four-circuit model
(Volkow et al., 2003, 2010) and the cerebellar functional resting
state networks relating to executive and associative processing
in the cerebral cortex (Buckner et al., 2011). The components
for reward/saliency, motivation/drive, and learning/memory are
amplified, while cognitive control is diminished in addiction.
See Figure 6 for an illustration. Our observations of the highest
functional connectivity proportions of the two internet addiction
tendency networks are generally compatible with Moulton
et al.’s (2014) model of the critical components involved in
the addiction circuitry. Likewise, we did not observe many
significant connections comprising the occipital lobe, which also
dovetails Hong et al.’s (2013) findings. However, we additionally
found a great proportion of “subcortical – parietal” edges that
although is not particularly highlighted in the four-circuit model,
these connections have been observed in the internet addiction
literature (e.g., Ding et al., 2013; Hong et al., 2013, 2015), which
could be due to a practice effect relating to internet usage.

Critical Nodes Altered by Internet
Addiction Tendency
We identified nodes with the most connections are maximally
related to internet addiction tendency. These nodes are those
whose pattern of connections between the node itself and other
brain regions are most susceptible to alteration by internet
addiction tendency. The regions are specifically the bilateral
posterior cingulate gyrus, right insula, right middle temporal
gyrus, left superior temporal pole, right putamen, and the orbital
part of left IFG (Figure 5). These regions have been implicated
as key regions in many (internet) addiction studies and some
have already been mentioned in the previous section. We now
discuss the addiction literature highlighting these regions in
more detail. The PCC, part of the default mode network and
involved in various aspects of self-processing (Buckner et al.,
2008; Fransson and Marrelec, 2008), served as a seed region in
Ding et al.’s (2013) study, which showed significantly increased
functional connectivity with the bilateral cerebellum posterior
lobe andmiddle temporal gyrus, while decreased bilateral inferior
parietal lobule and right inferior temporal gyrus in internet
gaming addicts. Internet addicts have also been found to show
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FIGURE 5 | Visualization of the nodes with highest number of edges related to internet addiction tendency. Green spheres depict the centroid of each
node with maximal edges, while yellow spheres depict their functional connectivity partners. Red lines indicate edges that are positively associated with CIAS-R
scores, and blue lines represent edges that are negatively associated with CIAS-R scores. R and L stand for right and left. Post, posterior; Mid, middle; Sup,
superior; Inf, inferior; Orb, orbital.

abnormal fractional anisotropy (Dong et al., 2012b) and gray
matter density (Zhou et al., 2011) in the PCC. Zhang et al. (2015)
chose the insula, which has been implicated in addiction (Naqvi
and Bechara, 2009; Droutman et al., 2015), as the seed region and
found altered functional connectivity with a network of regions

in internet addicts. The role of the insula in addiction has been
suggested for integrating interoceptive signals into conscious
feelings (drug urges) and biases behavior during decision making
(Naqvi and Bechara, 2009). The middle temporal gyrus and
superior temporal pole has been observed in some internet
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FIGURE 6 | A model of addiction highlighting the modulating role of
the cerebellum of the four major brain networks proposed to be
affected by addiction (adapted from Moulton et al., 2014). These circuits
include reward/saliency, motivation/drive, learning/memory, and cognitive
control. The colors correspond to different cerebral resting state networks:
red, frontoparietal control network and default network; blue, early sensory
cortices; green, dorsal attention; and purple, late motor cortices (Buckner
et al., 2011; Yeo et al., 2011). ACC, anterior cingulate cortex; aINS, anterior
insula; DLPFC, dorsolateral prefrontal cortex; DMPFC, dorsomedial prefrontal
cortex; Hypo, hypothalamus; M1, primary motor cortex; PHG,
parahippocampal gyrus; sACC, subgenual anterior cingulate cortex; Verm,
vermis; VI, cerebellar hemispheric lobule VI; VIIb, cerebellar hemispheric lobule
VIIb.

addiction studies (see Meng et al., 2015 for a meta-analysis),
and have been associated with game urge/craving, semantic
processing, disembodiment, working memory, and emotional
processing; however, their specific roles in addiction require
further investigations. The putamen, part of the dorsal striatum,
is also a critical region suggested by many addiction research
(e.g., Ko et al., 2009; Ding et al., 2013; Lin et al., 2015), in which
concomitant dopamine neurotransmission is involved in the
development of compulsive drug-seeking and craving (Volkow
et al., 2006; Koob and Volkow, 2010). Furthermore, research has
suggested that dysfunction with the striato-thalamo-orbitofrontal
circuit is a crucial cause of addiction, while the dorsal striatum
involved in habit-learning and craving, the orbitofrontal cortex
is involved with salience, drive, and compulsivity (Volkow and
Fowler, 2000; Koob and Volkow, 2010; Volkow et al., 2010;
Goldstein and Volkow, 2011). The abnormal functioning of the
orbitofrontal cortex could explain the behavioral malfunctioning
in addiction. Summarizing the above, the nodes we identified are
hubs that are most susceptible to alteration by internet addiction
tendency, and they have been identified repeatedly in the existing
literature.

Limitation
As pointed out by one of our reviewers, whether to perform global
signal regression in resting-state fMRI still remains a current
debate. After re-analyzing the current data without global signal
regression, our results turned out quite different compared to our
original analysis and only 22.91% of the edges found in the NBS
analyses without global signal regression overlapped with those of
our current results. Without global signal regression, we did not

find sufficient functional connections that were positively related
to CIAS-R scores; however, we did find a network that comprised
of functional connections that were negatively related to CIAS-
R scores. When identifying nodes with the most connections
are maximally related to internet addiction tendency, we find
consistency with the global signal regression analysis in that
the cingulate, insula, temporal, and frontal areas were the most
involved. However, several differences include the additional
finding of bilateral supplementary motor areas and right angular
gyrus showing decreased functional connectivity, and there were
not as many subcortical regions in the identified network. While
global signal regression still remains controversial, we decided
to report both results. Details of the network identified without
global signal regression is documented in the Supplementary
Materials 3. Hopefully, future work on image preprocessing will
shed light on which result is more accurate. At this moment, we
suggest to interpret the current results with such caveats in mind.

CONCLUSION

Using a data-driven approach, we showed that network
based statistics is a useful tool to characterize whole-brain
connectivity affected by internet addiction tendency, identifying
connections and critical regions that echo previous studies.
Compared to seed analyses, this whole-brain approach provides
a more comprehensive analysis of brain connections related to
internet addiction, investigating a total of 6670 connections.
We further showed that many functional connections and
brain regions critical in clinical cases of addiction are also
found to be associated with pre-clinical tendencies indexed
by behavioral questionnaire measures. Although using a
correlational approach, we cannot be sure whether these
networks are altered as a result of internet usage or whether they
are characteristics of people who are predisposed to higher risk
of developing internet addiction, this research provides useful
information in helping us understand the neural characteristics
underlying addiction and its development.
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