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Abstract: Monoamine transporters are the main targets of methamphetamine (METH). Recently, we showed that fluoxet-

ine, a selective serotonin reuptake inhibitor (SSRI), decreased METH conditioned place preference (CPP), suggesting that 

serotonin transporter (SERT) inhibition reduces the rewarding effects of METH. To further test this hypothesis, in the pre-

sent study we investigated the effects of additional SSRIs, paroxetine and fluvoxamine, on METH CPP in C57BL/6J 

mice. In the CPP test, pretreatment with 20 mg/kg paroxetine abolished the CPP for METH, whereas pretreatment with 

100 mg/kg fluvoxamine prior to administration of METH failed to inhibit METH CPP. These results suggest that paroxet-

ine, a medication widely used to treat depression, may be a useful tool for treating METH dependence. Further, these data 

suggest that molecules other than the SERT [such as G protein-activated inwardly rectifying K
+
 (GIRK) channels] whose 

activities are modulated by paroxetine and fluoxetine, but not by fluvoxamine, are involved in reducing METH CPP by 

paroxetine and fluoxetine. 
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INTRODUCTION 

 Methamphetamine (METH) is abused in worldwide [1]. 

In Japan, the number of people arrested for METH posses-

sion or use is approximately 100 times higher than those 

arrested for cocaine, opioids, or cannabis. Further, METH 

frequently induces psychotic states with symptoms similar to 

those seen in paranoid schizophrenia [2]. Such psychotic 

states are treated primarily in hospitals resulting in high 

medical costs. Thus, there is great need for the discovery of 

new medications for METH abuse [3] because the current 

treatments are mostly oriented toward the treatment of psy-

chosis with no treatments available to prevent relapse to 

METH abuse. 

 The dopamine transporter (DAT) is the main target for 

METH and cocaine. However, mice lacking the DAT show 

conditioned place preference (CPP) to cocaine [4] and self-

administer cocaine [5]. Interestingly, heterozygous and ho-

mozygous serotonin transporter (SERT) knockout mice that 

also have a homozygous knockout of the DAT do not exhibit 

cocaine CPP [6]. Cocaine administration leads to increases in 

extracellular dopamine concentration in the striatum of DAT 

knockout mice but not of DAT/SERT double knockout mice 

[7]. Taken together, these reports suggest that SERT inhibi-

tion may decrease METH and cocaine CPP. 

 Recently, we showed that fluoxetine, a selective sero-

tonin reuptake inhibitor (SSRI), abolished METH CPP when  
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METH was administered during both the development  

and expression phases of the CPP procedure, supporting the 

hypothesis that SERT inhibition decreased the rewarding 

effects of METH [8]. To further test this hypothesis, in  

the present study we investigated the effects of the SSRIs 

paroxetine (Paxil ) and fluvoxamine (Lubox  or Depromel ) 

on METH CPP. 

MATERIALS AND METHODS 

Mice 

 Male C57BL/6J mice (8-10 weeks old) were purchased 

from CLEA Japan, Inc. (Tokyo, Japan) and were housed for 

1-2 weeks before the experiments began in an animal facility 

maintained at 22 ± 2˚C and 55 ± 5% relative humidity under 

a 12/12 h light/dark cycle with lights on at 8:00 am. Food 

and water were available ad libitum. All behavioral testing 

was conducted during the light phase. The experimental pro-

cedures and housing conditions were approved by the Insti-

tutional Animal Care and Use Committee of the Tokyo Insti-

tute of Psychiatry, and all animals were cared for and treated 

humanely in accordance with our institutional animal  

experimentation guidelines. 

Conditioned Place Preference (CPP) Test 

 The CPP test was performed according to the method of 

Hoffman and Beninger [9] with some modifications. We 

used a two-compartment Plexiglas chamber (Neuroscience 

Inc., Osaka, Japan). One compartment (17.5  15  17.5 cm: 

width  length  height) was black with a smooth floor, and 

the other compartment was of the same dimensions, but with 

a white textured floor. This two-compartment chamber was 

located in a sound- and light-attenuated box under conditions 
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of dim illumination (approximately 40 lux) to reduce bias 

toward either compartment [10]. Mice were assigned ran-

domly to the treatment groups (see below). 

 On Day 1, the mice (n = 14-26 per group) were allowed 

to freely explore the two compartments for 15 min. On Day 

2, the mice again were allowed to explore the two compart-

ments freely for 15 min, and the time spent in each com-

partment and the number of transitions between compart-

ments were measured. Conditioning sessions then were con-

ducted once daily for 4 consecutive days (Days 5-8). For the 

Day 5 conditioning session, mice were i.p. injected with sa-

line or SSRI (20 mg/kg paroxetine or 100 mg/kg fluvoxam-

ine) 60 min before injection with METH (2 mg/kg, i.p.). 

Immediately after METH administration, mice were con-

fined to the black or white compartment for 50 min. On Day 

6, the mice were pretreated with the same solution (saline or 

SSRI, i.p.) 60 min before a saline injection. Immediately 

after the saline injection, mice were confined to the opposite 

compartment for 50 min. On Days 7 and 8, the same condi-

tioning as on Days 5 and 6 was repeated. On Day 9, the mice 

were pretreated with saline or SSRI (20 mg/kg paroxetine or 

100 mg/kg fluvoxamine, i.p.), and 60 min later were allowed 

to freely explore the two compartments for 15 min without 

METH injection. The time spent in each compartment and 

the number of transitions between compartments were meas-

ured. In summary, there were a total of eight groups in this 

experiment corresponding to the four pretreatments (paroxet-

ine, fluvoxamine, saline; there were two saline groups that 

were run concurrently with the paroxetine and fluvoxamine 

groups) and the two phases of the experiment during which 

they were pretreated with the drug (conditioning days 5-8 or 

test day 9). The CPP score was defined as the time spent in 

the drug-paired compartment during the CPP test phase (Day 

9) minus the time spent in the same compartment during the 

preconditioning exploratory phase (Day 2). The transition 

score was defined as the number of transitions during the 

CPP test phase (Day 9) minus the number of transitions dur-

ing the preconditioning exploratory phase (Day 2). 

Drugs 

 Methamphetamine hydrochloride was purchased from 

Dainippon Pharmaceutical (Osaka, Japan). Paroxetine 

maleate and fluvoxamine maleate were purchased from 

Sigma (St. Louis, MO, USA) and TOCRIS (Hung Road, 

Bristol, UK), respectively. All drugs were dissolved in sa-

line. Drugs and vehicle were administered i.p. in a volume of 

0.1 ml/10 g body weight. All drug doses are reported as salt. 

Statistical Analyses 

 The CPP and transition scores of mice pretreated with 

saline or SSRI during the conditioning and CPP test phases 

were subjected to a two-way analysis of variance (ANOVA). 

The ANOVA had two between-subjects factors, each with 

two levels (saline/SSRI pretreatment in the conditioning 

phase and saline/SSRI pretreatment in the CPP test phase). 

Two separate ANOVAs were conducted on the paroxetine 

and fluvoxamine data. Similar ANOVAs were conducted on 

the transition scores. The CPP scores from the paroxetine 

experiment were subjected to a one-way ANOVA followed 

by post hoc comparisons with the Scheffe test. In this 

ANOVA, there were four levels corresponding to the four 

treatment conditions (saline in both the conditioning and the 

CPP test phases, pretreatment with paroxetine only in the 

conditioning phase, pretreatment with paroxetine only in the 

CPP test phase, pretreatment with paroxetine in both the 

conditioning and the CPP test phases). For the CPP data, the 

durations of time that the mice spent in the METH-paired 

compartment before and after conditioning were compared 

using paired t-tests for each group. For the transition data, 

the number of transitions between the METH-paired com-

partment and the saline-paired compartment before and after 

conditioning were compared using paired t-tests for each 

group. The level of significance was set at 0.05. 

RESULTS 

Effects of Paroxetine on METH CPP 

 The two-way ANOVA revealed that mice treated with 

paroxetine during the test phase exhibited decreased CPP 

scores compared to mice treated with saline during the test 

phase (F1,72 = 7.888, P < 0.01), whereas mice treated with 

paroxetine during the conditioning phase did not differ sig-

nificantly from mice treated with saline during the test phase 

in the CPP score [F1,72 = 1.704, not significant (n.s.); Fig. 

(1A)]. There was no statistically significant interaction be-

tween the factor saline/paroxetine during the conditioning 

phase and the factor saline/paroxetine during the CPP test 

phase (F1,72 = 0.1690, n.s.), indicating that the important fac-

tor was treatment with paroxetine during the expression 

phase of the experiment. In addition, a one-way ANOVA on 

the CPP scores was conducted on data for all four groups. 

The ANOVA showed a significant difference in the CPP 

scores among these four groups (F3,72 = 3.940, P < 0.05). The 

Scheffe post hoc test showed that the CPP score of the par-

oxetine/paroxetine group was significantly lower than that of 

the saline/saline group (P < 0.05). Paired t-tests were con-

ducted to compare the duration of time before and after con-

ditioning for each of the four groups (Fig. (1B)). Whereas 

the saline/saline and paroxetine/saline groups spent signifi-

cantly more time in the METH-paired compartment after 

conditioning than before conditioning (saline/saline: n = 23, 

df = 22, t = -6.050, P < 0.001; paroxetine/saline: n = 15, df = 

14, t = -2.884, P < 0.05), the saline/paroxetine and paroxet-

ine/paroxetine groups did not show METH CPP (sa-

line/paroxetine: n = 15, df = 14, t = -2.033, n.s.; paroxet-

ine/paroxetine: n = 23, df = 22, t = -0.908, n.s.). Paroxetine 

pretreatment had no significant effects on the transition 

scores compared to the saline/saline treatment group (data 

not shown). 

Effects of Fluvoxamine on the METH CPP 

 The two-way ANOVA revealed that both the factor sa-

line/fluvoxamine pretreatment during the conditioning phase 

and the factor saline/fluvoxamine pretreatment during the 

CPP test phase had no effects on CPP scores (conditioning 

phase: F1,68 = 0.045, n.s.; CPP test phase: F1,68 = 3.016, n.s.; 

Fig. (2A)). There was no statistically significant interaction 

between the two factors (F1,68 = 0.066, n.s.). Paired t-tests 

were conducted to compare the duration of time before and 

after conditioning for each of the four groups. All four 

groups spent significantly more time in the METH-paired 
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compartment after conditioning than before conditioning 

(saline/saline: n = 26, df = 25, t = -4.541, P < 0.001; saline/ 

fluvoxamine: n = 14, df = 13, t = -2.983, P < 0.05; fluvoxamine/ 

saline: n = 18, df = 17, t = -3.949, P < 0.01; fluvoxamine/ 

fluvoxamine: n = 14, df = 13, t = -2.757, P < 0.05).  

 The two-way ANOVA revealed that both fluvoxamine 

pretreatment during the conditioning phase and during the 

CPP test phase significantly decreased transition scores 

(conditioning phase: F1,68 = 24.321, P < 0.001; CPP test 

phase: F1,68 = 10.292, P < 0.01; Fig. (2B)). There was no 

statistically significant interaction between the two factors 

(F1,68 = 0.007, n.s.). Paired t-tests were conducted to compare 

the number of transitions before and after conditioning for 

each of the four groups. The S-S group showed no signifi-

cant differences in the number of transitions before and after 

conditioning (n = 26, df = 25, t = -1.213, n.s.). However, 

mice pretreated with fluvoxamine (saline/fluvoxamine, flu-

voxamine/saline, fluvoxamine/fluvoxamine) showed signifi-

cant decreases in the number of transitions after conditioning 

(saline/fluvoxamine: n = 14, df = 13, t = 3.829, P < 0.01; 

fluvoxamine/saline: n = 18, df = 17, t = 5.520, P < 0.001; 

fluvoxamine/fluvoxamine: n = 14, df = 13, t = 6.025, P < 

0.001). 

 

 

 

 

 

 

 

 

Fig. (1). Effects of paroxetine on CPP for METH in mice. (A) Reduction of METH CPP by paroxetine (Px) pretreatment. Mice were pre-

treated with saline (S) in both the conditioning and CPP test phases (S-S), paroxetine only in the CPP test phase (S-Px), paroxetine only in 

the conditioning phase (Px-S), and paroxetine in both the conditioning and the CPP test phases (Px-Px). The CPP score was defined as the 

time spent in the drug-paired compartment during the CPP test phase (Day 9) minus the time spent in the same compartment during the pre-

conditioning phase (Day 2). The CPP score of the Px-Px group was significantly lower than that of the S-S group (
#
P < 0.05). (B) Compari-

son of time spent in the conditioned compartment before and after conditioning in the four groups. There was a significant CPP in the S-S 

and Px-S groups, but not in the S-Px and Px-Px groups (when paroxetine was administered in the CPP test phase). ***P < 0.001, *P < 0.05, 

ns: not significant (P > 0.05). 

 

 

 

 

 

 

 

Fig. (2). Effects of fluvoxamine on CPP for METH and on transitions between compartments. (A) Lack of a significant effect of fluvoxam-

ine (Fv) on METH CPP. Mice were pretreated with saline in both the conditioning and the CPP test phases (S-S), fluvoxamine only in the 

CPP test phase (S-Fv), fluvoxamine only in the conditioning phase (Fv-S), and fluvoxamine in both the conditioning and the CPP test phases 

(Fv-Fv). There was a significant CPP in all groups. Fluvoxamine pretreatment in the conditioning phase and/or the CPP test phase failed to 

inhibit METH CPP (pre- and post-conditioning preference test results were analyzed with paired t-tests, ***P < 0.001, **P < 0.01, *P < 0.05). 

(B) Decreases in transitions between the compartments by fluvoxamine pretreatment. There were significant decreases in transitions in the S-

Fv, Fv-S, and Fv-Fv groups, but not in the S-S group [number of transitions in the pre- and post-conditioning phases was analyzed with 

paired t-tests, ***P < 0.001, **P < 0.01, ns: not significant (P > 0.05)]. The transition score was defined as the number of transitions during 

the CPP test phase (Day 9) minus the number of transitions during the preconditioning phase (Day 2). 
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DISCUSSION 

 In the present study, we showed that paroxetine, a widely 

used medication for treating depression, inhibited METH 

CPP in mice, similar to the results we reported previously 

with fluoxetine [8]. No significant effects of paroxetine on 

transition scores suggest that the effects of paroxetine on 

METH CPP are not due to changes in locomotor activity but 

due to reduction of METH reward and conditioned reward 

by paroxetine. Based on these findings, it appears worth-

while to investigate the clinical effects of paroxetine on 

METH abuse. By contrast, the other SSRI tested here, flu-

voxamine, did not affect METH CPP. These data demon-

strate that there are differences in the effects of SSRIs on 

METH CPP, suggesting the possibility that molecules other 

than the SERT are involved in the inhibition of METH CPP 

by paroxetine and fluoxetine reported here and in our previ-

ous study [8]. 

 In addition to SERT inhibition, paroxetine inhibits the 

function of muscarinic cholinergic receptors [11], nicotinic 

acetylcholine receptors [12], volume-related anion channels 

[13], membrane steroid transporters [14], and nitric oxide 

synthase [15]. Recently, Kobayashi and colleagues [16] re-

ported that paroxetine also inhibits the function of G protein-

activated inwardly rectifying K
+
 (GIRK) channels. It is in-

triguing that paroxetine and fluoxetine, but not fluvoxamine, 

inhibit GIRK channels [16-18]. Various G protein-coupled 

receptors (such as M2 muscarinic, 2 adrenergic, D2 dopa-

minergic, 5-HT1A, opioid, nociceptin/orphanin FQ, and A1 

adenosine) activate GIRK channels [19-22] through the di-

rect action of G protein subunits [23]. In addition, GIRK 

channels are activated by ethanol independently of G pro-

tein-coupled signaling pathways [24, 25]. Activation of 

GIRK channels leads to membrane hyperpolarization [22]. 

These channels play an important role in the inhibitory regu-

lation of neuronal excitability. Thus, modulators of GIRK 

channel activity may affect many brain functions. Kobayashi 

and colleagues [26] also have reported that ifenprodil, a 

cerebral vasodilator which inhibits morphine CPP [27],  

also inhibits the function of GIRK channels. Morgan and 

colleagues [28] demonstrated that GIRK channel knockout 

mice exhibited dramatically reduced intravenous self-

administration of cocaine. In the present study, we found that 

paroxetine and fluoxetine, but not fluvoxamine, inhibited 

METH CPP. These findings, together with the previous find-

ings, suggest that the inhibition of GIRK channels by par-

oxetine or fluoxetine may be involved in the inhibition of 

METH CPP by these drugs. 

 Fluvoxamine administration (60 mg/kg) leads to a sig-

nificant decrease in spontaneous locomotor activity [29]. 

Consistent with this observation, significant decreases in 

transition scores were observed in all of the 100 mg/kg  

fluvoxamine-treated groups compared to the saline/saline-

treated group in the present study. The number of transitions 

of the fluvoxamine/fluvoxamine treated group during the 

CPP test phase (101.4 ± 85.3, mean ± SEM) was the smallest 

among the four groups in this experiment, but more than 100 

transitions indicated adequate locomotion to reveal potential 

differences in CPP. The lack of effect of fluvoxamine on 

CPP for methamphetamine is likely to reflect a lack of effect 

of fluvoxamine on the rewarding effects of METH rather 

than being a nonspecific effect of fluvoxamine. 

 In conclusion, we found that paroxetine, but not fluvox-

amine, inhibited METH CPP in mice. Although further pre-

clinical studies are needed to elucidate the mechanisms un-

derlying these inhibitory effects of paroxetine on processes 

relating to METH dependence, it appears worthwhile to in-

vestigate the clinical effects of paroxetine on METH abuse. 

The present results suggest that molecules other than the 

SERT (such as GIRK channels) are involved in the inhibition 

of METH CPP by paroxetine and fluoxetine. 
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ABBREVIATIONS 

ANOVA = Analysis of variance 

CPP = Conditioned place preference 

DAT = Dopamine transporter 

GIRK = G protein-activated inwardly rectifying K
+
 

METH = Methamphetamine 

n.s.  = Not significant 

SERT = Serotonin transporter 

SSRI = Selective serotonin reuptake inhibitor 
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