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Abstract
Length of stay (LOS) is an essential metric for the qual-
ity of hospital care. Published works on LOS analysis
have primarily focused on skewed LOS distributions and
the influences of patient diagnostic characteristics. Few
authors have considered the events that terminate a hos-
pital stay: Both successful discharge and death could end
a hospital stay but with completely different implications.
Modelling the time to the first occurrence of discharge or
death obscures the true nature of LOS. In this research, we
propose a structure that simultaneously models the proba-
bilities of discharge and death. The model has a flexible for-
mulation that accounts for both additive and multiplicative
effects of factors influencing the occurrence of death and
discharge. We present asymptotic properties of the param-
eter estimates so that valid inference can be performed for
the parametric as well as nonparametric model compo-
nents. Simulation studies confirmed the good finite-sample
performance of the proposed method. As the research is
motivated by practical issues encountered in LOS analysis,
we analysed data from two real clinical studies to showcase
the general applicability of the proposed model.
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1 INTRODUCTION

Length of hospital stay (LOS), that is, the number of inpatient days, is an important indicator of
patient’s health and care status. The concept is extensively used in clinical practice and health ser-
vices research for quantification of resource consumption and quality of care (Chima et al., 1997;
Freitas et al., 2012). Prolonged hospitalisation adds care cost, reduces operational efficiency and
increases patient stress and risks for hospital-acquired infections (Clarke & Rosen, 2001; Graves
et al., 2005). Reducing LOS has become one of the generally accepted policy goals of health care
organisations (Pearson et al., 2001). In the United States, Centers for Medicare and Medicaid
Services (CMS) use a prospective payment system that reimburses care cost by procedures per-
formed, regardless of hospital days (CMS.gov, 2021), thus creating a great incentive for hospitals
to reduce LOS.

Data analyses involving LOS are abundant in health services research. A simple Google
Scholar search of ‘hospital length of stay analysis’ yields more than 2.1 million published items.
Published analyses of LOS data tended to focus on skewed LOS distributions and employed com-
mon statistical models such as logistic regression and time-to-event analysis (Faddy et al., 2009;
Marazzi et al., 1998; Vekaria et al., 2021; von Cube et al., 2017). Most do not differentiate the
events that terminate a hospital stay. Discharge and death are treated the same, whichever comes
first defines the LOS, despite the obvious clinical differences between the two. The situation
resembles that described by various competing risk or semi-competing risk models, where the
former depicts the occurrence of the first event by cause-specific hazards (Poguntke et al., 2018;
Vekaria et al., 2021), and the latter quantifies the transition rates among multiple states with
pre-defined subject-specific frailties or copula-based correlation structures (Hsieh et al., 2008;
Lee et al., 2015; Peng & Fine, 2007; Xu et al., 2010).

With LOS data, analysts face two challenges: (1) Estimating the hazard function of discharge
among survivors in the presence of censoring; (2) accommodating independent variables that
are not adequately modelled by the Cox regression model. We present a model that addresses
both challenges. Specifically, we describe a structure that simultaneously models the survival
probabilities and discharge hazards, without pre-specifying the correlation structure between the
two, by extending an approach as advocated by Sun et al. (2004, 2006), Zhao et al. (2011, 2013),
Lee et al. (2015), and Wang et al. (2015). To enhance the model’s flexibility, we allow indepen-
dent variable effects to modify both the linear predictor and also the baseline hazard function,
as suggested by Lin et al. (1995), Liu et al. (2010), Martinussen and Scheike (2007), and Sarker
et al. (2015). To illustrate the proposed method, we analyse data from two clinical applications,
one is a randomised clinical trial of anti-thrombotic therapies in patients suffering from stroke,
and the other is a group of patients hospitalised for treatment of COVID.

The rest of this paper is organised as follows: In Section 2, we introduce the model, describe
the estimation and inference procedures, as well as related theoretical results. In Section 3, we
present simulation results. In Section 4, we use the proposed method to analyse data from two
clinical studies. We conclude the paper in Section 5 with a few remarks.

2 METHOD

2.1 Model specification

Let T and U represent the event times for successful discharge and death, both are defined
from the date of hospital admission. LOS is the time to T or U, whichever occurs first, that is,
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LOS= T ∧ U where a ∧ b = min(a, b). When LOS = U, in-hospital death occurs and the hazard
of T is terminated. If LOS = T and the clinical follow-up continues, U could still be observed
at a future time t > LOS. We write the counting processes for T and U as N∗(t) = I(T ≤ t) and
Nd(t) = I(U ≤ t), respectively, where I(⋅) is the indicator function.

The conventional hazard function for T is

𝜆(t) = lim
Δt→0+

P
(

t ≤ T < t + Δt|t ≤ T
)

Δt
. (1)

For LOS analysis, the above hazard function is appropriate if T is subject only to censoring.
But with death, the formulation becomes questionable because T cannot happen after U, that is,
𝜆(t) = 0 whenever t > U. This is a fact that (1) does not reflect.

To describe the hazard of discharge conditional on survival, we write the discharge intensity
among survivors as E{dN∗(t)|t ≤ U} = 𝜆(t|t ≤ U)dt, where

𝜆(t|t ≤ U) = lim
Δt→0+

P
(

t ≤ T < t + Δt|t ≤ T, t ≤ U
)

Δt
, (2)

represents the corresponding hazard function. The conditional hazard function in (2) is the same
as the ‘cause-specific’ hazard discussed in the competing-risks literature (Prentice et al., 1978).
However, unlike the the competing-risks models that focus on the occurrence of T or U,
whichever occurs first, in LOS data, U could still happen after T if LOS = T.

To assess the effects of risk factors on 𝜆(t|t ≤ U), we let X(t) and Z(t) be random covariate vec-
tors of dimensions p and q, respectively. Letting (t) = {X(s), 0 ≤ s ≤ t}, (t) = {Z(s), 0 ≤ s ≤ t},
we present a general model as follows:

𝜆

(
t|(t),(t), t ≤ U

)
=
[
𝜆0(t) + g{𝛽′X(t)}

]
h
{
𝜃

′Z(t)
}
, (3)

where 𝜆0(t) is an unknown baseline hazard function, g(⋅) and h(⋅) are pre-specified twice dif-
ferentiable functions representing the additive and multiplicative covariate effects, and 𝛽 and 𝜃
are the corresponding regression parameters. We assume h(x) > 0 for any x ∈ R, and g(0) = 0,
h(0) = 1 to avoid identifiability issues. To reflect the fact that no live discharge is possible after
death, we define 𝜆(t|(t),(t), t > U) = 0. In this model, X(t)modifies the baseline hazard func-
tion, whereas Z(t) influences the linear predictor. In practical data analysis, the composition of
X(t) and Z(t) should be determined by scientific consideration and hypotheses of interest, as we
shall demonstrate in the real data applications.

Model (3) differs from most of the existing models that depict time to the first occurrence
of either T or U (Poguntke et al., 2018; Vekaria et al., 2021), and also from the semi-competing
risk models (Lee et al., 2015; Peng & Fine, 2007; Xu et al., 2010) as Model (3) does not require
specification of a correlation structure between T and U. The discharge hazards associated
with the covariates are defined by (2), instead of by the marginal distribution of T, as done
by Peng and Fine (2007) among others. Of note, the existing semi-competing risk models typi-
cally require copula-based correlations or shared frailties among successful discharge, in-hospital
death, and death after discharge; estimation and inference, therefore, are susceptible to the risk
of correlation misspecification. To avoid superimposing an arbitrary dependency structure or dis-
tributional assumptions, we extend an approach from event history analyses (Cheng et al., 2015;
Sun et al., 2004, 2006; Zhao et al., 2011, 2013). Model (3) describes the conditional hazard
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function of T given t ≤ U, allowing for dependent T and U without requiring correlation structure
specification.

For a special case of model (3), the survival function of T can involve a latent
variable 𝜈

Q(t|𝜈,(t),(t)) = exp
{
−
∫

t

0

[
𝜆0(s) + g

{
𝛽

′X(s)
}]

h
{
𝜃

′Z(s)
}

ds
}
𝜔(𝜈, t),

where 𝜈 depends on U, and 𝜔(⋅) satisfies E[𝜔(𝜈, t)|t ≤ U] = 1. Other correlation structures
between T and U are also possible but the marginal survival function of T would take a different
form. In addition to its flexibility in accommodating correlation structures, model (3) provides
a desired conditional hazard interpretation, which is not always ascertainable from either the
copula (Peng & Fine, 2007) or the frailty semi-competing risk models (Lee et al., 2015; Sun &
Shen, 2009; Wang et al., 2015; Zhang et al., 2005, 2007).

The simultaneous inclusion of g(⋅) and h(⋅) creates a structure that covers a broader class
of models. Choices of g(⋅), h(⋅), X(t), and Z(t) can be made based on investigators understand-
ing of the variables’ influences, and the intended interpretations of the resulting parameters. For
example, when g(⋅) = 0 or h(⋅) = 1, model (3) is reduced to the Cox proportional hazards model
or the Aalen additive hazards model, respectively (Sun et al., 2004).

Model (3) can be used to assess proportional hazards across different levels of Z(t); within
each level, the baseline hazard rate can be further modified by X(t), whose effects may deviate
from the exponential form. This structure lends enhanced flexibility to parameter interpretation
in the LOS analyses. For example, including the comorbidity and treatment indicators in Z(t)
and continuous characteristics (such as age) in X(t) gives the comorbidity/treatment indicators’
hazard ratio interpretations at a given age. Similarly, for subjects of the same comorbidity profile,
𝛽 represents an additive effect associated with per unit change of age on the baseline hazard, as
one year change in age typically does not alter the hazard exponentially. More generally, the model
depicts the proportional hazard of Z(t) at different levels of X(t). In particular, when g(x) = x and
h(x) = exp(x), for one-dimensional covariates X(t) and Z(t), one unit change in Z(t) leads to the
interpretation of 𝜃 as a hazard ratio:

𝜆(t|U ≥ t,X(t),Z(t) + 1)
𝜆(t|U ≥ t,X(t),Z(t))

= exp(𝜃).

Similarly, one unit change in X(t) while keeping Z(t) constant gives 𝛽 exp
(
𝜃

′Z(t)
)

a
covariate-dependent hazard difference interpretation:

𝜆

(
t|U ≥ t,X(t) + 1,Z(t)

)
− 𝜆

(
t|U ≥ t,X(t),Z(t)

)
= 𝛽 exp

(
𝜃

′Z(t)
)
.

In the absence of death or when death functions as a noninformative censoring event, model (3)
is reduced to the Cox-Aalen regression model (Scheike & Zhang, 2002), except for the additive
term 𝛽

′X(t). But as we shall demonstrate in the simulation study, unbiased inference cannot be
derived from the Cox–Aalen regression by treating death time as noninformative censoring, even
with the time-varying covariate effects averaged out over time.

The terminal event time U can be modelled by a standard Cox model:

𝜆

d(t|(t),(t)
)
= 𝜆d(t) exp

{
𝛾

′W(t)
}
, (4)
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where 𝜆d(t) is the baseline hazard function, 𝛾 is a vector of regression coefficients for the covariates
W(t) ⊆ {X(t),Z(t)}.

Here, we let C be a non-informaitve censoring time that is independent of both T and U
given (t) and (t). Letting T1 = U ∧ T ∧ C, 𝛿1 = I(T ≤ (U ∧ C)), T2 = U ∧ C, 𝛿2 = I(U ≤ C), we
write n independent and identically distributed quadruplets as {(𝛿1i,T1i, 𝛿2i,T2i), i = 1, … ,n}.
Let Ni(t) = N∗

i (t ∧ Ci) be a counting process that jumps by one at t if and only if Ti = t and
t ≤ (Ui ∧ Ci). The survival information for the ith subject is contained in {𝛿2i,T2i}, regardless of
T1i and whether Ui and Ti are dependent.

2.2 Estimation and inference

For narrative convenience, we discuss estimation and inference of the proposed model when
g(x) = x and h(x) = exp(x), while noting that the estimation and inference procedures described
below are readily extendable to other forms of g(⋅) and h(⋅).

2.2.1 Estimation

To estimate the unknown parameters associated with model (3), we define

dMi(t) = 𝜙i(t)
[
dNi(t) exp

{
−𝜃′Zi(t)

}
−
{
𝛽

′Xi(t) + 𝜆0(t)
}

dt
]
,

where 𝜙i(t) =
I(t≤T1i)

Sd
i (t)

and Sd
i (t) represents the subject-specific survival function, that is,

Sd
i (t) = P

(
t ≤ Ui|i(t),i(t)

)
.

Under model (3), it is straightforward to show Mi(t)’s are zero-mean stochastic processes. Hence
one could estimate 𝛽, 𝜃, and 𝜆0(t) by solving the following estimating equations:

n∑

i=1
∫

t

0
𝜙i(s)

[
exp

{
−𝜃′Zi(s)

}
dNi(s) −

{
𝛽

′Xi(s) + 𝜆0(s)
}

ds
]
= 0, (5)

and

n∑

i=1
∫

𝜏

0
Vi(t)𝜙i(t)

[
exp

{
−𝜃′Zi(t)

}
dNi(t) −

{
𝛽

′Xi(t) + 𝜆0(t)
}

dt
]
= 0, (6)

where Vi(t) =
(

X ′
i (t),Z

′
i (t)

)′ and 𝜏 a pre-specified value representing a known finite maximum
duration of the study. Combining Equations (5) and (6), estimates of 𝛽 and 𝜃 can be obtained by
solving

n∑

i=1
∫

𝜏

0

{
Vi(t) − V(t)

}
𝜙i(t)

[
exp

{
−𝜃′Zi(t)

}
dNi(t) − 𝛽′Xi(t)dt

]
= 0, (7)
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where

X(t) =
∑n

i=1Xi(t)𝜙i(t)
∑n

i=1𝜙i(t)
, Z(t) =

∑n
i=1Zi(t)𝜙i(t)
∑n

i=1𝜙i(t)
, V(t) =

(
X
′
(t),Z

′
(t)
)′
.

Let Λ0(t) = ∫
t

0 𝜆0(s)ds be the cumulative baseline hazard function. When 𝛽 = ̂
𝛽 and 𝜃 = ̂

𝜃, Λ0(t)
can be estimated by

̂Λ(t; ̂𝛽, ̂𝜃) =
∫

t

0

∑n
i=1𝜙i(s)

[
e− ̂𝜃

′Zi(s)dNi(s) − ̂
𝛽

′Xi(s)ds
]

∑n
i=1𝜙i(s)

, (8)

based on Equation (5).
We note that corresponding to model (3), the estimation involves Sd

i (t), which is in general
unknown. On the other hand, it can be estimated under model (4) with right-censored survival
data from the study cohort. Specifically, Sd

i (t) can be estimated by ̂Si(t), where

̂Si(t) = exp
{
−
∫

t

0
exp

{
�̂�

′
nWi(s)

}
d ̂Δ0(s)

}
,

where d ̂Δ0(t) =
∑n

i=1I(t≤T2i)dNd
i (t)∑n

i=1I(t≤T2i) exp{�̂� ′nWi(t)}
, �̂�n is the solution to the equation

n∑

i=1
∫

𝜏

0
I(t ≤ T2i)

{
Wi(t) −W(t; 𝛾)

}
dNd

i (t) = 0, (9)

W(t; 𝛾) = R(1)(t;𝛾)
R(0)(t;𝛾)

, R(k)(t; 𝛾) = 1
n

∑n
i=1I(t ≤ T2i)e𝛾

′Wi(t)W⊗k
i , a⊗0 = 1, a⊗1 = a, a⊗2 = aa′ for any vec-

tor a and k = 0, 1, 2.
We denote the true values of 𝛽 and 𝜃 by 𝛽0 and 𝜃0, and their estimators by ̂

𝛽n and ̂𝜃n, solved from
(7) with Sd

i (t) replaced by ̂Si(t). Let 𝜁 = (𝛽′, 𝜃′)′, 𝜁0 =
(
𝛽

′
0, 𝜃

′
0
)′, ̂𝜁n =

(
̂
𝛽

′
n, ̂𝜃

′
n
)′ and ̂

𝜙i(t) =
I(t≤T1i)
̂Si(t)

.
The estimate of Λ0(t) given by Equation (8) is now updated by

̂Λ(t) =
∫

t

0

∑n
i=1

̂
𝜙i(s)

[
e− ̂𝜃

′
nZi(s)dNi(s) − ̂

𝛽

′
nXi(s)ds

]

∑n
i=1

̂
𝜙i(s)

. (10)

Since the baseline cumulative hazard estimator ̂Λ(t) is not necessarily non-decreasing in t. With-
out altering the asymptotic properties of ̂Λ(t), we modify the estimator as ̃Λ∗(t) = maxs≤t ̂Λ(s).
Following arguments similar to Lin et al. (1994), we show that ̃Λ∗(t) and ̂Λ(t) are asymptotically
equivalent as ̃Λ∗(t) − ̂Λ(t) = op(n−1∕2).

2.2.2 Prediction

Survival and discharge probabilities are both important clinical endpoints. Patient-specific
trajectories of predictive probabilities are useful in aiding hospital management and patient
care planning (Li et al., 2021; Li & Cheng, 2016; Sun et al., 2006). Although prediction is not
the focus of the current research, we note that the existing semi-competing risk models with
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shared frailty terms do not lend themselves to a straightforward predictive probability interpre-
tation unless the frailty variables are integrated out over pre-specified prior distributions (Lee
et al., 2015). From models (3) and (4), predictive probabilities can be ascertained in a straight-
forward fashion. More specifically, for a patient with covariates X = x, Z = z, the probability of
death can be calculated from ̂G(t|x, z) = 1 − ̂S(t|x, z). Suppose the patient is alive at time t, the
cumulative hazard that the patient has a successful discharge at time T = t can be estimated
from:

̂H(t|x, z) =
∫

t

0

[
exp

{
̂
𝜃

′z(s)
}

d ̃Λ∗(s) + ̂
𝛽

′x(s) exp
{
̂
𝜃

′z(s)
}

ds
]
, (11)

where ̂S(t|x, z), ̃Λ∗(t), ̂𝛽, ̂𝜃 are the estimators obtained from Section 2.2.1. The predicted cumulative
incidence probability is then given by ̂F(t|x, z) = 1 − exp

{
− ̂H(t|x, z)

}
.

2.2.3 Asymptotic properties

The following theorems state the asymptotic properties of ̂𝜁n and ̂Λ(t).

Theorem 1. Under regularity conditions C1–C6 in the Appendix, ̂𝛽n and ̂
𝜃n are consistent estima-

tors of 𝛽0 and 𝜃0, respectively. Additionally, n1∕2( ̂𝜁n − 𝜁0) converges weakly to a zero-mean
normal distribution with a covariance matrix Σ consistently estimated by ̂Σ = Â−1

̂Σ
∗
Â−1,

where

̂Σ
∗
= 1

n

n∑

i=1
(û1i + û2i)⊗2

,

Â =

(
Â11 Â12

Â21 Â22

)

,

Â11 =
1
n

n∑

i=1
∫

𝜏

0

(
Xi(t) − X(t)

)
̂
𝜙i(t)X ′

i (t)dt,

Â12 =
1
n

n∑

i=1
∫

𝜏

0

(
Xi(t) − X(t)

)
̂
𝜙i(t)e−

̂
𝜃

′
nZi(t)Z′i (t)dNi(t),

Â21 =
1
n

n∑

i=1
∫

𝜏

0

(
Zi(t) − Z(t)

)
̂
𝜙i(t)X ′

i (t)dt,

Â22 =
1
n

n∑

i=1
∫

𝜏

0

(
Zi(t) − Z(t)

)
̂
𝜙i(t)e−

̂
𝜃

′
nZi(t)Z′i (t)dNi(t),

û1i =
∫

𝜏

0

(
Vi(t) − V(t)

)
d ̂Mi(t),

d ̂Mi(t) = ̂
𝜙i(t)

[
e− ̂𝜃

′
nZi(t)dNi(t) −

{
̂
𝛽

′
nXi(t) + ̂

𝜆0(t)
}

dt
]
,

û2i =
∫

𝜏

0

[
̂Ψ(u)

R(0)(u)
+ ̂B

{
Wi(u) −

R(1)(u; �̂�n)
R(0)(u; �̂�n)

}]
d ̂Md

i (u),

̂Ψ(u) = 1
n

n∑

i=1
e�̂�

′
nWi(u)

∫

𝜏

0
I(t > u)

(
Vi(t) − V(t; �̂�n)

)
d ̂Mi(t),
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d ̂Md
i (t) = dNd

i (t) − I(t ≤ T2i)e�̂�
′
nWi(t)d ̂Δ0(t), d ̂Δ0(t) =

∑n
i=1dNd

i (t)
∑n

i=1I(t ≤ T2i)e�̂�
′
nWi(t)

,

̂B = 1
n

n∑

i=1
∫

𝜏

0

(
Vi(t) − V(t; �̂�n)

)
̂J(t,Wi)′Ω−1

𝛾
d ̂Mi(t),

̂Ω
𝛾
= 1

n

n∑

i=1
∫

𝜏

0

[
R(2)(t; �̂�n)
R(0)(t; �̂�n)

−
(

R(1)(t; �̂�n)
R(0)(t; �̂�n)

)
⊗2]

dNd
i (t),

̂J(t;Wi) =
∫

t

0
e�̂�

′
nWi(u)

[
Wi(u) −W

(
u; �̂�n

)]
d ̂Δ0(u).

Theorem 2. Under regularity conditions C1–C6 in the Appendix, ̂Λ(t) converges in probabil-
ity to Λ0(t) uniformly in t ∈ [0, 𝜏] and

√
n{ ̂Λ(t) − Λ0(t)} converges weakly to a zero-mean

Gaussian process with a covariance function that can be consistently estimated by ̂Υ(s, t) =
1
n

∑n
i=1{ĝi(s)ĝT

i (t)} for s, t ∈ [0, 𝜏], where

ĝi(t) = ̂Γ(t)Â−1(û1i + û2i) + û3i(t) + û4i(t) + û5i(t),

̂Γ(t) = 1
n

n∑

i=1
∫

t

0

̂
𝜙i(s)
�̂�(s)

[
−X ′

i (s)ds,−Z′i (s)e
− ̂𝜃′nZi(s)dNi(s)

]
,

û3i(t) =
∫

t

0

d ̂Mi(s)
�̂�(s)

, û4i(t) =
∫

t

0

̂G(u, t)d ̂Md
i (u)

R(0)(u; �̂�n)
,

û5i(t) = Ô(t)
∫

𝜏

0

{
Wi(u) −

R(1)(u; �̂�n)
R(0)(u; �̂�n)

}
d ̂Md

i (u), �̂�(s) = 1
n

n∑

i=1

̂
𝜙i(s),

̂G(u, t) = 1
n

n∑

i=1
e�̂�

′
nWi(u)

∫

t

0

I(s > u)
�̂�(s)

d ̂Mi(s),

Ô(t) = 1
n

n∑

i=1
∫

t

0

1
�̂�(s)

̂J(s,Wi)′ ̂Ω
−1
𝛾

d ̂Mi(s),

besides other quantities defined in Theorem 1. In particular,
√

n{ ̂Λ(t) − Λ0(t)}
D
−→ N(0,ΣΛ(t)),

and the covariance ΣΛ(t) can be estimated consistently by SΛ(t) = n−1∑n
i=1{ĝi(t)}2. Theorems

1 and 2 imply that the SEs of ̂
𝛽n, ̂𝜃n and ̂Λ0(t) can be consistently estimated by

√
S
𝛽
,
√

S
𝜃

and√
SΛ(t), respectively, where S

𝛽
, S

𝜃
are diagonal entries of ̂Σ in Theorem 1.

3 SIMULATION STUDIES

We conducted an extensive simulation study to assess the finite sample performance of the pro-
posed estimators ̂

𝛽n, ̂𝜃n and ̃Λ∗(t). We evaluated the estimation performance under the sample
sizes of n = 100 and 200, with 1000 replication for each parameter setting.

3.1 Data generation

We considered two major scenarios:
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(i) T and U were independent. Ti for subject i was generated with the hazard function:

𝜆i(t;Xi,Zi) =
( 4
√

t + 𝛽Xi
)

exp{𝜃Zi}, (12)

where Xi and Zi were generated from the uniform (0, 1) and Bernoulli distribution with a proba-
bility of success of 0.5, respectively. Ui was generated from the Cox model with covariates Zi with
a baseline hazard 𝜆d

0.
(ii) T and U were correlated. Besides sharing covariates X and Z generated in the

same way as in Scenario (i), we involved in the distribution functions of T and U
a latent variable 𝜈 from the positive stable distribution with Laplace transformation
L(s) = E[exp{−s𝜈i}] = exp{−s𝜌} for 0 ≤ 𝜌 ≤ 1 for subject i (Luong & Doray, 2009). From 𝜈i
and Zi, Ui had a hazard function 𝜆

d(t;Zi, 𝜈i) = 0.1𝜈i exp{𝛾Zi}. It can be shown that Ui satisfies
model (4) with S(t;Zi) = exp{−(0.1te𝛾Zi)𝜌}. The discharge time Ti was generated from survival
function

Q(t;Xi,Zi, 𝜈i) = exp {−(1 + 𝛽Xi) exp{𝜃Zi}t}𝜔(𝜈i, t), (13)

where

𝜔(𝜈i, t) = exp
(

k𝜈it + t𝜌
[{
𝜆

d
0e𝛾Zi − k

}
𝜌 −

{
𝜆

d
0e𝛾Zi

}
𝜌
] )
,

0 ≤ k ≤ 𝜆d
0. One can show that E[𝜔(𝜈i, t)|Zi, t ≤ Ui] = 1. Hence among survivors,

S(t|Xi,Zi, t ≤ Ui) = exp
[
−(1 + 𝛽Xi) exp{𝜃Zi}t

]
and 𝜆

(
t|Xi,Zi, t ≤ Ui

)
= (1 + 𝛽Xi) exp{𝜃Zi},

which satisfies model (3). Different values of k, 𝜌 and 𝜆d
0 yield event times T and U with various

magnitudes of correlation. In all simulated settings, T and U were negatively correlated with
the empirical estimates of the Spearman correlation coefficient ranged around −0.1 to −0.3
(Schemper et al., 2013). The censoring time Ci was taken to be a common value at 𝜏 = 2, which
represented the study duration.

3.2 Metrics of evaluation

We calculated summaries of estimation bias (Bias), sample standard error (SSE), averaged stan-
dard error estimate (SEE) according to the theorems, and empirical 95% coverage probability (CP).
When the estimators worked as the theorems dictated, the evaluation metrics were expected to
show a bias approaching zero, strong agreement between SSE and SEE, and CP close to the 95%
nominal level.

3.3 Simulation results

The estimation results for 𝛽 and 𝜃 are in Tables 1 and 2 and Tables S1–S3, where Table 1 corre-
sponds to settings of independent T and U in Scenario (i) with 𝜆d

0 = 0.1, and Tables 2 and S1–S3
represent correlated T and U. The Spearman correlation coefficient between T and U ranged
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T A B L E 1 Simulation results on ̂
𝛽n and ̂

𝜃n for Scenario (i) when T and U were generated independently

̂

𝜷n ̂

𝜽n

n Bias SEE SSE CP Bias SEE SSE CP

(𝛽, 𝜃, 𝛾) = (0, 0, 0)

100 −0.016 0.341 0.358 0.944 −0.006 0.197 0.200 0.953

200 −0.015 0.238 0.237 0.955 0.008 0.138 0.143 0.948

(𝛽, 𝜃, 𝛾) = (0.2, 0, 0)

100 0.028 0.374 0.391 0.945 −0.002 0.201 0.220 0.929

200 0.008 0.260 0.269 0.948 0.003 0.140 0.143 0.945

(𝛽, 𝜃, 𝛾) = (0, 0.5, 0)

100 0.005 0.330 0.356 0.939 −0.023 0.214 0.225 0.929

200 −0.007 0.234 0.239 0.943 −0.032 0.151 0.155 0.936

(𝛽, 𝜃, 𝛾) = (0.2, 0.5, 0)

100 0.012 0.361 0.397 0.923 −0.016 0.215 0.227 0.938

200 0.005 0.255 0.267 0.937 −0.026 0.152 0.155 0.947

(𝛽, 𝜃, 𝛾) = (0, 0, 0.3)

100 −0.027 0.341 0.361 0.932 0.004 0.199 0.207 0.943

200 0.005 0.238 0.240 0.953 0.007 0.139 0.141 0.952

(𝛽, 𝜃, 𝛾) = (0.2, 0, 0.3)

100 0.017 0.376 0.398 0.937 0.006 0.202 0.200 0.957

200 −0.004 0.261 0.254 0.942 −0.002 0.141 0.137 0.956

(𝛽, 𝜃, 𝛾) = (0, 0.5, 0.3)

100 −0.007 0.333 0.356 0.922 −0.016 0.217 0.225 0.932

200 0.012 0.234 0.240 0.937 −0.031 0.152 0.157 0.940

(𝛽, 𝜃, 𝛾) = (0.2, 0.5, 0.3)

100 0.029 0.362 0.389 0.932 −0.003 0.218 0.233 0.930

200 0.009 0.254 0.255 0.947 −0.010 0.153 0.152 0.954

Note: Summaries of biasses, sample standard errors (SSE), standard error estimates (SEE) and coverage probabilities (CP) for
n = 100 and 200, based on 1000 simulations.

around −0.1 to −0.3 as described in Scenario (ii). All proposed estimators performed well with
small biases, values of SSEs and SEEs close to each other, and empirical CPs approached the
nominal level. The SEEs decreased with an increasing sample size, showing improved estimation
efficiency.

In addition to the parametric estimators, we also calculated the pointwise SSE, SEE and CP
for the non-parametric estimator ̃Λ∗(t), which is asymptotically equivalent to ̂Λ(t) as defined in
Equation (10). Observations showed a similar performance as with the parametric estimators.
For example, Figure 1 shows the pointwise estimates on (0, 𝜏) when (𝛽, 𝜃, 𝛾) = (0, 0.5, 0), as one
set-up in Table 2. We noted that ̃Λ∗(t) had generally accurate SEEs, and the empirical coverage
probabilities fluctuated closely around the nominal-level. When the sample size increased, the
estimates showed improved efficiency with reduced standard errors. To gauge the magnitude of
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T A B L E 2 Simulation results on ̂
𝛽n and ̂

𝜃n for Scenario (ii) when correlated T and U were generated,
k = 0.1, 𝜌 = 0.8 and 𝜆d

0 = 0.1

̂

𝜷n ̂

𝜽n

n Bias SEE SSE CP Bias SEE SSE CP

(𝛽, 𝜃, 𝛾) = (0, 0, 0)

100 0.014 0.401 0.419 0.939 −0.004 0.203 0.208 0.952

200 −0.011 0.281 0.284 0.950 0.002 0.142 0.145 0.942

(𝛽, 𝜃, 𝛾) = (0.2, 0, 0)

100 0.026 0.437 0.453 0.941 −0.007 0.205 0.210 0.956

200 −0.008 0.306 0.311 0.950 0.001 0.144 0.148 0.945

(𝛽, 𝜃, 𝛾) = (0, 0.5, 0)

100 0.009 0.400 0.424 0.930 −0.016 0.218 0.223 0.943

200 −0.010 0.283 0.288 0.939 −0.014 0.154 0.159 0.940

(𝛽, 𝜃, 𝛾) = (0.2, 0.5, 0)

100 0.025 0.435 0.463 0.935 −0.010 0.218 0.222 0.947

200 −0.004 0.308 0.311 0.941 −0.006 0.154 0.158 0.936

(𝛽, 𝜃, 𝛾) = (0, 0, 0.3)

100 0.015 0.405 0.421 0.940 −0.018 0.205 0.210 0.950

200 −0.010 0.284 0.287 0.952 −0.011 0.143 0.146 0.946

(𝛽, 𝜃, 𝛾) = (0.2, 0, 0.3)

100 0.030 0.440 0.455 0.945 −0.021 0.207 0.213 0.951

200 −0.007 0.308 0.315 0.947 −0.011 0.145 0.150 0.943

(𝛽, 𝜃, 𝛾) = (0, 0.5, 0.3)

100 0.012 0.402 0.425 0.935 −0.026 0.220 0.225 0.939

200 −0.009 0.284 0.290 0.943 −0.025 0.155 0.161 0.933

(𝛽, 𝜃, 𝛾) = (0.2, 0.5, 0.3)

100 0.029 0.437 0.461 0.937 −0.019 0.219 0.223 0.948

200 −0.002 0.308 0.313 0.941 −0.016 0.155 0.160 0.933

Note: Summaries of biases, sample standard errors (SSE), standard error estimates (SEE) and coverage probabilities (CP) for
n = 100 and 200, based on 1000 simulations.

bias over time, we calculated the integrated squared bias (ISB) defined as

ISB =
M∑

j=0

(
̃Λ∗(tj) − Λ0(tj)

)2Δt,

where t0 = 0, t1,… , tM are equally spaced time points separated by Δt = 𝜏∕M, M = 999,

̃Λ∗(tj) =
1

1000

1000∑

m=1

̃Λ∗(m)(tj),
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F I G U R E 1 Pointwise SE estimates and the coverage probabilities for Scenario (ii) when T and U are
correlated, n = 100 and 200, 𝛽 = 0, 𝜃 = 0.5, 𝛾 = 0, based on 1000 simulations. CP, coverage probabilities;
SEE, standard error estimates; SSE, sample standard errors [Colour figure can be viewed at
wileyonlinelibrary.com]

and ̃Λ∗(m)(tj) is the mth replicate of ̃Λ∗(tj). The ISB values were 0.0022 and 0.0019, respectively,
when n = 100 and n = 200. The results indicated the ̃Λ∗(t)’s were unbiassed.

We also note that when there were no deaths or when U was treated as non-informative
censoring, Scheike and Zhang (2002) proposed the following model:

𝜆

(
t|X ,Z

)
=
[
𝜆0(t) + 𝛽(t)′X

]
exp{𝜃′Z}, (14)

coupled with an estimation procedure for 𝜃 and cumulative time-varying effects A(t), where
A(t) = ∫ t

0 𝛽(s)ds. This model yields a parameter estimator ̂
𝛽

∗ = Â(L)∕L, where L is the largest T
observed. We refer to ̂

𝛽

∗ as the SZ2002 estimator, which is different from the estimator we pro-
posed under the conditional hazard in (2). We presented simulation results showing that the
SZ2002 estimator has considerably larger biases whereas our estimator performed well in both

http://wileyonlinelibrary.com
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T A B L E 3 Comparisons of the biases associated with the proposed 𝛽 estimator and a modified SZ2002
estimator, for Scenarios (i) and (ii) when 𝛾 = 0.3

Proposed Modified SZ2002

(𝜷, 𝜽) = (0, 0) (𝜷, 𝜽) = (0.2, 0.5) (𝜷, 𝜽) = (0, 0) (𝜷, 𝜽) = (0.2, 0.5)

Scenario (i)

n = 100 −0.027 0.029 0.820 1.241

n = 200 −0.005 0.009 −0.511 0.275

Scenario (ii)

n = 100 0.015 0.029 −0.260 0.264

n = 200 −0.010 −0.002 −0.777 −0.625

simulation scenarios (i and ii). See Table 3. The results, therefore, confirm that treating deaths as
noninformative censoring events leads to biased inference for model (3).

3.4 Sensitivity analyses

Finally, we assessed the estimation robustness against covariate mis-specification by simulating
various situations where W in model (4) is incorrectly specified. We generated correlated T and
U for Scenario (ii) with k = 0.1, 𝜌 = 0.8 and 𝜆d

0 = 0.1; Z ∼Bernoulli(p = 0.5). W was misspecified
in various ways: (i) Inclusion of an extra variable X ∼ Uniform(0, 1), that is, using W = (Z,X)′
when the true W = Z. (ii) Inclusion of a wrong variable. We used W = (X1,Z)′ when the true
W = (X1,X2)′, where X1 ∼ Uniform(0, 1) and X2 ∼ Uniform(1, 3). (iii) Leaving out a variable in
W . We used W = Z or W = X when the true W = (Z,X)′, where X ∼ Uniform(1, 3). Simulation
results are presented in Tables S4 and S5. Briefly, estimates of 𝛽 and 𝜃were not strongly influenced
by the misspecification of W , probably because only the survival function estimate (̂Si(t)) but not
�̂� was needed in the estimating equations for 𝛽 and 𝜃. For all tested settings, the performance
appeared to improve with sample size.

4 REAL DATA APPLICATIONS

The model proposed in the paper is general enough to be applicable to a broad range of LOS anal-
yses. Here we present analyses of data from two clinical studies, each of which requires some
of the features of the proposed model. As discussed in earlier sections, although existing frailty
and copula-based semi-competing risk models can be used to analyse such data, those methods
do not accommodate deaths that occurred after discharge, nor do they offer the conditional haz-
ard interpretation, and often require pre-specification of correlation structures that are not easily
verifiable in practical data analysis.

4.1 LOS with the International Stroke Trial

We first considered the International Stroke Trial (IST), a randomised clinical trial of anti-
thrombotic therapies in patients suffering from strokes (Group, 1997; Sandercock et al., 2011).
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The study followed a factorial design, testing the effects of various combinations of aspirin and
heparin at different dose levels on the survival of stroke patients. Treatment started upon enroll-
ment and continued for 14 days or until hospital discharge or death, whichever came first.
Among the 6415 trial participants whose medical images showed visible infarctions at randomi-
sation, 1351 had died before discharge; 3159 had been successfully discharged, of which 296 died
after discharge. The maximum follow-up length was 567 days, at which time patients without a
discharge or death record were censored.

The IST trial has four treatment groups. Among the 6415 patients, 1662 were on aspirin, 1564
on heparin, 1675 on both, and 1514 on neither. In this secondary analysis, we focused on the time
from treatment initiation to hospital discharge, with death as the terminal event. Indicators of
treatment groups were the main independent variables of interest, with other patient character-
istics such as age and conscious state at enrollment as relevant covariates (Kwah & Diong, 2014).

We first examined the treatment effects on death while adjusting for the influences of age and
the baseline level of consciousness by using the following Cox model:

𝜆

d
i (t|Wi) = 𝜆d(t) exp{𝛾 ′Wi}, (15)

where 𝜆d
i represented the hazard of death. Because of the wide age range (16–98 years) of the

trial participants, we categorised age by tertiles. A total of six covariates were included in Wi: Age
≤ 67, 67 <Age≤ 77, full consciousness at randomisation (CONSC), aspirin alone (ASP), heparin
alone (HEP), and both aspirin and heparin (Both). All independent variables were binary. Table 4
shows that being in the younger age groups and being fully alert at randomisation were associated
with reduced hazards of death. Aspirin reduced the hazards of death slightly but its effect did not
reach the level of statistical significance.

We then examined LOS with successful discharge by fitting the model below:

𝜆

(
t|X ,Z, t ≤ U

)
=
[
𝜆0(t) + 𝛽′X

]
exp{𝜃′Z}. (16)

We determined the composition of X and Z primarily based on the objective of the analysis,
which is to determine the effects of the four treatments on LOS with successful discharge. We,
therefore, included the treatment indicators in Z to retain the hazard ratio interpretation. Age
and levels of consciousness were included in X as adjustment factors to the baseline hazard.
Interestingly, previous studies suggested that age was a poor predictor of functional recovery

T A B L E 4 Results from Cox regression analysis containing independent variable effects on death hazards of
the 6415 patients whose medical images showed visible infarctions at randomisation in International Stroke Trial

EST (SE) p-value 95%CI

Age ≤ 67 −1.3028 (0.0748) 0.0000 (−1.4495,−1.1561)

67 < Age ≤ 77 −0.5111 (0.0554) 0.0000 (−0.6195,−0.4024)

CONSC −1.2831 (0.0495) 0.0000 (−1.3801,−1.1861)

ASP −0.0270 (0.0696) 0.6978 (−0.1634, 0.1093)

HEP 0.0082 (0.0684) 0.9045 (−0.1258, 0.1422)

Both −0.0258 (0.0699) 0.7124 (−0.16298, 0.1113)

Abbreviations: 95% CI, 95% confidence interval; EST, point estimate; SE, standard error estimate.
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T A B L E 5 Results from the proposed model containing independent variable effects on length of stay among
survivors from 6415 International Stroke Trial participants

Proposed method Scheike and Zhang (2002)

EST (SE) p-value 95% CI EST (SE) p-value 95% CI

Age ≤ 67 0.0010 (0.0002) 0.0000 (0.0006, 0.0013) — — —

67 < Age ≤ 77 0.0004 (0.0002) 0.0132 (0.0001, 0.0007) — — —

CONSC 0.0012 (0.0001) 0.0000 (0.0009, 0.0015) — — —

ASP 0.0993 (0.0534) 0.0631 (−0.0054, 0.2041) 0.1105 (0.0502) 0.0276 (0.0122, 0.2088)

HEP 0.0256 (0.0534) 0.6319 (−0.0790, 0.1301) 0.0282 (0.0360) 0.4336 (−0.0423, 0.0986)

Both 0.0099 (0.0540) 0.8542 (−0.0959, 0.1158) 0.0249 (0.0359) 0.4890 (−0.0456, 0.0953)

Notes: Age groups and conscious status were included in X as additive effects, and treatment groups included in Z as
multiplicative effects. The left panel presents the results from the proposed model and the right panel from Scheike and Zhang’s
(2002) model by treating deaths as noninformative censoring events.
Abbreviations: 95% CI, 95% confidence interval; EST, point estimate; SE, standard error estimate.

from stroke (Kugler et al., 2003) and levels of consciousness correlated with various stroke
outcomes but their predictive power was not high (Li et al., 2020). The studies have not tested
hypotheses whether age and conscientious state alter the baseline hazards. To test, we included
them in X as modifiers of the baseline hazards. Analytical results supported the hypothesis that
younger patients and those that had been fully alert at the randomisation had greater baseline
hazards for a successful discharge (shorter LOS). For the treatment effects, the analysis showed
that the average treatment effects of aspirin and heparin corresponded to shorter LOS, but the
effects did not reach the level of significance. The findings were generally consistent with the
findings of the primary paper, which did not find significant effects for either heparin or aspirin
on mortality (Group, 1997). Detailed results are presented in the left panel of Table 5.

For comparison, we also analysed the LOS data by treating death as non-informative censoring
by using the model described by Scheike and Zhang (2002):

𝜆(t|X ,Z) = [𝜆0(t) + 𝛽(t)′X] exp{𝜃′Z}, (17)

where X and Z were defined similarly as in model (16). The cumulative coefficient estimates
of A(t) = ∫ t

0 𝛽(s)ds are presented in Figures S1 and S2, and the estimates of 𝜃 elements in the
right panel of Table 5. The analysis showed a significant effect of aspirin in reducing LOS. The
finding, however, had a questionable validity because death was treated as non-informative cen-
soring, and the hazards of discharge should be interpreted in the full sample which included
people that had died. To characterise the hazards of discharge, it is more justified to use the
conditional hazards in model (16) per definition (2). On the other hand, the hazards of dis-
charge could be underestimated among survivors if death is ignored. This may explain why
most positive estimates from the right panel are slightly larger than the corresponding estimates
on the left.

As an illustration for prediction, we presented the trajectories of survival and successful dis-
charge probabilities for patients with otherwise comparable health conditions and mortality rates
as within the IST cohort. For example, for a patient of 69 years of age, drowsy at admission and
assigned to aspirin (Patient #1), and another patient aged 63, fully alert at admission and assigned
heparin (Patient #2), Figure 2 present their death and successful discharge probabilities within 90
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F I G U R E 2 Predictive trajectories of (a) death probabilities and (b) successful discharge probabilities for
observed International Stroke Trial covariates [Colour figure can be viewed at wileyonlinelibrary.com]

days. It can be seen the two sets of different covariates lead to quite different trajectories, where
Patient #2 had overall lower death risks and higher probabilities of successful discharge.

4.2 LOS in patients with COVID

The second application is a study of LOS of patients hospitalised for COVID in a midwestern
hospital. In this application, censoring happened when a patient remained in the hospital at the

http://wileyonlinelibrary.com
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time of data extraction. Among the patients that were not censored, six died with survival times
ranging from 0.8 to 30.5 days since admission; 480 survived and were discharged within 20 days.
The maximum length of the observational window was 31 days.

In this application, LOS was calculated from the date of admission to discharge or death,
whichever came first. No patients were followed up after LOS. Patient information was ascer-
tained at the time of admission, as recorded by an electronic health record system: Age
(AGE), smoking status (SMO), and a set of pre-specified medical conditions associated with
COVID-related disease severity (CDC, 2020), including dyspnea (DYS), diabetes (DIA), hyper-
tension (HYP), chronic obstructive pulmonary disease (COPD), asthma (AST), cancer (CANC),
chronic kidney disease (CKD) and congestive heart failure (CHF). In this analysis, we assessed the
influences of these comorbidities on successful discharge with death as the terminal event. For
the convenience of interpretation, we characterised AGE by decade (ranged from 0 to 9). Binary
indicators were created for all comobidities. Because of the low number of mortality in the data
set, we used the following model to screen the potential correlates of death:

𝜆

d
i
(

t|Wi
)
= 𝜆d(t) exp{𝛾 ′Wi}. (18)

Our analysis showed age was the only significant factor associated with increased hazard of
death (exp(�̂�) = 1.008; p < 0.0001), which is consistent with the existing literature (Weiss &
Murdoch, 2020).

We then examined the comorbidity effects on LOS with discharge alive, while adjusting for
the influence of AGE as an additive effect in model (3),

𝜆

(
t|X ,Z, t ≤ U

)
=
[
𝜆0(t) + 𝛽′X

]
exp{𝜃′Z}. (19)

The independent variables of primary interest were comorbidity and smoking status. We included
them in Z to retain the hazard ratio interpretation. Age was included in X as a modifier to the
baseline hazard because we do not believe it would affect the hazard of discharge exponentially.
Here we coded age as Xi = AGEi − 9, representing the age difference from the oldest age cate-
gory (9 in decades) to ensure ̂

𝛽

′Xi > 0 (i = 1, 2, … , 487). We then screened the comorbidity and
smoking indicators one at a time. Significant variables were included in Zi for the final model (19),

T A B L E 6 Results of the length of stay analysis for patients that tested positive for COVID and were
admitted to the hospital

The proposed method Scheike and Zhang (2002)

EST (SE) p-value 95% CI EST (SE) p-value 95% CI

AGE −0.0872 (0.0182) 0.0000 (−0.1229,−0.0515) — — —

SMO −0.3750 (0.1716) 0.0288 (−0.7113,−0.0387) −0.1900 (0.1605) 0.2365 (−0.5045, 0.1246)

DIA −0.2171 (0.0835) 0.0094 (−0.3808,−0.0534) −0.1295 (0.1229) 0.2919 (−0.3704, 0.1113)

CKD −0.3311 (0.1280) 0.0097 (−0.5820,−0.0803) −0.3359 (0.2073) 0.1051 (−0.7421, 0.0704)

CHF −0.2743 (0.1104) 0.0129 (−0.4907,−0.0580) −0.3435 (0.2222) 0.1221 (−0.7790, 0.0920)

Notes: The left panel presents results from the proposed model. Significant multiplicative effects Z included smoking status
(SMO), diabetes (DIA), chronic kidney disease (CKD), and congestive heart failure (CHF). AGE was included in X as an
additive effect. The right panel are result from Scheike and Zhang’s (2002) model where deaths are treated as noninformative
censoring events.
Abbreviations: 95% CI: 95% confidence interval; EST, point estimate; SE, standard error estimate.
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F I G U R E 3 Predictive trajectories of (a) death probabilities and (b) successful discharge probabilities for
observed COVID covariates [Colour figure can be viewed at wileyonlinelibrary.com]

which also included age in Xi. We presented the model fitting results in the left panel of Table 6.
Briefly, SMO, DIA, CKD, CHF and AGE were significantly associated with longer LOS. Based on
the point estimates, a decade increase in age was associated with a reduced baseline hazard for
discharge by 8.7%. SMO, DIA, CKD and CHF reduced discharge hazards by 31.3%, 19.5%, 28.2%,
24.0%, respectively. Among patients that were successfully discharged but had LOS greater than
the median value (0.15 days), 15.8% were smokers, 35.8% had DIA, 13.3% CKD, 11.7% CHF, and
the mean age was 50. A vast majority of the patients (98.3%) were successfully discharged and
had LOS in less than 10 days.

http://wileyonlinelibrary.com
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We also analysed the COVID LOS data by treating death as a form of noninformative censor-
ing by applying the method from Scheike and Zhang (2002) to fit model (17), where X and Z are
defined as the same as with (19). The results are presented in Figure S3 for the cumulative coef-
ficient estimates of A(t) = ∫ t

0 𝛽(s)ds from AGE, and the right panel of Table 6 for the estimates of
𝜃 elements representing comorbidity and smoking effects. Again, the model fitting results were
different from those obtained from the proposed model. In particular, all comorbidities lost their
significance. Such comparisons showed that ignoring the terminating events of death and treating
them as noninformative censoring could lead to different and possibly questionable conclusions.

The median discharge time is 0.15 days, suggesting a significant portion of the patients were
admitted for observation instead of treatment. We visually compared the predictive trajectories
of death and discharge probabilities up to 7 days from two hypothetical patients as displayed
by Figure 3. Suppose Patients #1 and #2 were both nonsmokers, free of DIA, CKD and CHF at
admission, but one was 90 and the other one was 63 years of age. The younger patient is expected
to be discharged sooner with a much lower probability of death.

5 DISCUSSION

LOS is a critically important metric for the health status of hospitalised patients and a widely
used indicator for care quality. A major challenge in analysing LOS with successful discharge is
the handling of patient death, a terminating event that prevents the full observation of a hospital
stay. LOS analyses in the medical literature have often ignored the influence of terminal events,
and as a result, provided no interpretation for the factors associated with LOS among survivors.
On the other hand, the competing risk or semi-competing risk models have focused on analysing
either the first occurrence of the discharge and death events or the transition rates among dif-
ferent multi-states under unverifiable correlation assumptions. In this research, by modelling
the survival probabilities and conditional discharge hazards, we present an alternative analysis
that is more closely aligned with the practical interest of LOS analysis. The proposed model is
flexible enough to accommodate a more general correlation structure instead of operating on
assumed dependency. The accommodation of the additive and multiplicative effects has extended
the model’s flexibility. We show that the regression estimates also can be used for predicting both
deaths and discharge probability trajectories. Coupled with asymptotic properties, the proposed
method lays the foundation for formal statistical inference.

Methodologically, this research represents a more comprehensive approach for modelling
hospital LOS. The model that we presented has a flexible structure that allows for further exten-
sions. For example, one could extend the model to include other functional forms for g(⋅) and h(⋅),
and thus further enhancing its flexibility. An intuitive formulation is to replace exp{−𝜃′Zi(t)} and
𝛽

′Xi(t)with 1∕h{𝜃′Zi(t)} and g{𝛽′Xi(t)}, respectively, in Equations (5) and (6), as long as h{𝜃′Zi(t)}
and g{𝛽′Xi(t)} yield positive hazard values on the time domain. Although this extension will not
fundamentally alter the modelling structure, it will provide alternative interpretations for the
additive and multiplicative effects. Another extension is to include time-varying effects in the
additive or multiplicative components, by using appropriate smoothing techniques.

Through two real clinical studies, we have illustrated the use of the proposed model. We
wish to emphasise that the model provides not only a structure for incorporating patient deaths
when analysing LOS but also enhances the analysts’ ability to account for the effects of different
patient characteristics. This said, as with other sophisticated statistical models, increased mod-
elling flexibility typically comes at the expense of model justification. For practical data analysts, a
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question of foremost importance is what factors should be included in X and what factors should
be included in Z. Such decisions ultimately rest with the investigators. How each factor exerts
its influence on the care process and what hypotheses the investigators intend to test should be
the primary consideration. As we have shown in the example data analysis, one might want to
include the variables of primary interest in Z to retain the usual hazard ratio interpretation. X , on
the other hand, can be viewed as adjustments to the baseline hazard. When independent variables
are of higher dimensions, variable selection may become necessary. Penalisation or regularisation
steps prior to employing the proposed inference could help alleviate the challenge (Li et al., 2021).
All things considered, we have put forward a new analytical approach for studying the LOS, one
that could be used in a broad range of clinical investigations. Computational code for method
implementation is available upon request.
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APPENDIX

The following regularity conditions are needed in the proof:

(C1) {Ni(⋅),Xi(⋅),Zi(⋅),Ti,Ci,Ui, 𝛿i}n
i=1 are independent and identically distributed.

(C2) P(U ≥ 𝜏) > 0, and ∫ 𝜏0 𝜆0(t)dt <∞.
(C3) The covariates X(t) and Z(t) are almost surely bounded on t ∈ [0, 𝜏].
(C4) The quantity Ω

𝛾
= E

[
∫
𝜏

0
{

Wi(t) − w
𝛾0(t)

}
⊗2e𝛾 ′0Wi(t)I(t ≤ T2i)dΔ0(t)

]
is non-singular, and

w
𝛾0(t) =

r(1)(t)
r(0)(t)

, r(k)(t) = E
[
I(t ≤ T2i)e𝛾

′
0Wi(t)W⊗k

i

]
, k = 0, 1.

(C5) There is a convex compact set  containing 𝜁0 = (𝛽′0, 𝜃
′
0)
′ such that

(𝛽0, 𝜃0) is the unique solution to the system u(𝛽, 𝜃) = E
{
∫
𝜏

0 𝜙i(t)
{

Vi(t) −

https://doi.org/10.1111/rssc.12593
https://doi.org/10.1111/rssc.12593
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v(t)
} [{

𝜆0(t) + 𝛽0Xi(t)
}

e(𝜃0−𝜃)′Zi(t) − 𝛽′Xi(t)
]

dt
}
= 0, where v(t) =

(
x′(t), z′(t)

)′, x(t) =
E[Xi(t)𝜙i(t)]

E[𝜙i(t)]
, z(t) = E[Zi(t)𝜙i(t)]

E[𝜙i(t)]
.

(C6) A =
(

A11 A12
A21 A22

)
is non-singular, where A11 = E

[
∫
𝜏

0 (Xi(t) − x(t))𝜙i(t)X ′
i (t)dt

]
,

A12 = E
[
∫
𝜏

0 (Xi(t)−x(t))𝜙i(t)Z′i (t){𝜆0(t)+𝛽′0Xi(t)}e(𝜃0−𝜃)′Zi(t)dt
]
, A21 = E

[
∫
𝜏

0 (Zi(t) − z(t))𝜙i(t)
X ′

i (t)dt
]

and A22 = E
[
∫
𝜏

0 (Zi(t) − z(t))𝜙i(t)Z′i (t){𝜆0(t) + 𝛽′0Xi(t)}e(𝜃0−𝜃)′Zi(t)dt
]
.

The above regularity conditions are frequently used in the failure-time data analysis literature,
and they are easily satisfied in many applications. Conditions (C1) and (C2) are similar to those
of Andersen and Gill (1982, theorem 4.1) and are the standard conditions for failure-time data.
Condition (C3) is about the boundedness and continuity and is commonly used in survival anal-
ysis. Conditions (C4)–(C6) are needed to ensure the existence and uniqueness of the proposed
estimator. They are also needed to avoid technical distractions in the proofs, which are analogous
to Scheike and Zhang (2002). For (C6), if A is positive definite, (𝛽0, 𝜃0)will be the only solution to
u(𝛽, 𝜃) = 0 so that the uniqueness in (C5) holds automatically.

A.1 Proof of Theorem 1
To prove the consistency and asymptotic normality of ̂𝜁n, from Equations (5) and (6) we have

n∑

i=1
∫

𝜏

0
̂
𝜙i(t)

[
Vi(t) − V(t)

] [
exp{−𝜃′Zi(t)}dNi(t) − 𝛽′Xi(t)dt

]
= 0,

where ̂
𝜙i(t) =

I(t≤T1i)
̂Si(t)

= I(t≤T1i)

exp
{
−∫ t

0
̂
𝜆

d
0 (s)e

�̂�

′
nWi(s)ds

} . Define

Un(𝛽, 𝜃) =
n∑

i=1
∫

𝜏

0
̂
𝜙i(t)

[
Vi(t) − V(t)

] [
exp{−𝜃′Zi(t)}dNi(t) − 𝛽′Xi(t)dt

]
,

It follows that n−1Un(𝛽, 𝜃)
P
−−→ u(𝛽, 𝜃) uniformly in 𝜁 ∈  by uniform consistency of ̂Si(t) to

Sd
i (t) in probability (Fleming & Harrington, 2011) and the uniform strong law of large numbers

(Pollard, 1990). The consistency of ̂𝜁n follows under condition (C6) by theorem 5.9 of Van der
Vaart (2000). To show that the asymptotic normality of ̂𝜁n, we note that by the Taylor series
expansion,

n1∕2( ̂𝜁n − 𝜁0) =
[
−n−1 𝜕U(𝜁0)

𝜕𝜁
′

||||𝜁=𝜁0

]−1

n−1∕2U(𝜁0) + op(1) = A−1n−1∕2U(𝜁0) + op(1), (A1)

where

U(𝜁0) =
n∑

i=1
∫

𝜏

0
̂
𝜙i(t)

[
Vi(t) − V(t)

] [
exp{−𝜃′0Zi(t)}dNi(t) − 𝛽′0Xi(t)dt

]

=
n∑

i=1
∫

𝜏

0
̂
𝜙i(t)

[
Vi(t) − V(t)

] [
exp{−𝜃′0Zi(t)}dNi(t) − 𝛽′0Xi(t)dt − 𝜆0(t)dt

]
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=
n∑

i=1
∫

𝜏

0

(
𝜙i(t) + ̂

𝜙i(t) − 𝜙i(t)
) [

Vi(t) − V(t)
] [

exp{−𝜃′0Zi(t)}dNi(t) − 𝛽′0Xi(t)dt − 𝜆0(t)dt
]
.

(A2)

According to the functional delta method (van der Vaart & Wellner, 1996, theorem 3.9.4, p. 374),
we have

̂
𝜙i(t) − 𝜙i(t) =

𝜙i(t)
n

[ n∑

i=1
∫

t

0

e𝛾 ′0Wi(s)dMd
i (s)

r(0)(s)
+ J(t;Wi)′Ω−1

𝛾

n∑

i=1
∫

𝜏

0

{
Wi(u) −

r(1)(u)
r(0)(u)

}
dMd

i (u)

]

+ op
(

n−1∕2)
. (A3)

Back to (A2),

U(𝜁0) =
n∑

i=1
∫

𝜏

0

[
Vi(t) − v(t)

]
dMi(t)

+
n∑

i=1
∫

𝜏

0

[
Vi(t) − v(t)

] [
exp{−𝜃′0Zi(t)}dNi(t) − 𝛽′0Xi(t)dt − 𝜆0(t)dt

]
𝜙i(t)

n

×

[ n∑

i=1
∫

t

0

e𝛾 ′0Wi(s)dMd
i (s)

r(0)(s)
+ J(t;Wi)′Ω−1

𝛾

n∑

i=1
∫

𝜏

0

{
Wi(u) −

r(1)(u)
r(0)(u)

}
dMd

i (u)

]

+ op
(

n1∕2)

=
n∑

i=1
∫

𝜏

0

(
Vi(t) − v(t)

)
dMi(t) +

n∑

i=1
∫

𝜏

0

[
Ψ(u)

r(0)(u)
+ B

{
Wi(u) −

r(1)(u)
r(0)(u)

}]
dMd

i (u) + op
(

n1∕2)
,

(A4)

where

dMi(t) = 𝜙i(t)
[
e−𝜃′0Zi(t)dNi(t) − {𝛽′0Xi(t) + 𝜆0(t)}dt

]
,

Ψ(u) = E
[

e𝛾 ′0Wi(u)
∫

𝜏

0
I(t > u)(Vi(t) − v(t))dMi(t)

]

dMd
i (t) = dNd

i (t) − I(t ≤ T2i)e𝛾
′
0Wi(t)dΔ0(t),

B = E
[

∫

𝜏

0

{
Vi(t) − v(t)

}
J(t,Wi)′Ω−1

𝛾
dMi(t)

]
,

Ω
𝛾
= E

[

∫

𝜏

0

{
Wi(t) − w

𝛾0(t)
}
⊗2e𝛾 ′0Wi(t)I(t ≤ T2i)dΔ0(t)

]
,

J(t;Wi) =
∫

t

0
e𝛾 ′0Wi(s)

{
Wi(s) − w

𝛾0(s)
}

dΔ0(s),

From (A1), (A4) and multivariate central limit theorem Theorem 1 holds.
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A.2 Proof of Theorem 2
The uniform consistency of ̂Λ(t) follows using arguments similar to those in Spiekerman and
Lin (1998) (Appendix B). To establish asymptotic normality of ̂Λ(t) for t ∈ [0, 𝜏], where

̂Λ(t) =
∫

t

0

∑n
i=1

̂
𝜙i(s)

[
e− ̂𝜃

′
nZi(s)dNi(s) − ̂

𝛽

′
nXi(s)ds

]

∑n
i=1

̂
𝜙i(s)

,

denote ̂Λ(t) = ̂Λ(t; ̂𝛽n, ̂𝜃n). Consider

̂Λ
(

t; ̂𝛽n, ̂𝜃n
)
= ̂Λ

(
t; ̂𝛽n, ̂𝜃n

)
− ̂Λ(t; 𝛽0, 𝜃0) + ̂Λ(t; 𝛽0, 𝜃0) − Λ0(t),

where

√
n
{
̂Λ(t; ̂𝛽n, ̂𝜃n) − ̂Λ(t; 𝛽0, 𝜃0)

}
= 1

√
n

n∑

i=1
Γ(t)A−1(u1i + u2i) + op(1),

and

√
n{ ̂Λ(t; 𝛽0, 𝜃0) − Λ0(t)}

= 1
√

n

n∑

i=1

[

∫

t

0

dMi(s)
�̂�(s)

+
∫

t

0

̂
𝜙i(s) − 𝜙i(s)

�̂�(s)

{
e−𝜃′0Zi(s)dNi(s) − 𝛽′0Xi(s)ds − 𝜆0(s)ds

}]

= 1
√

n

n∑

i=1

[

∫

t

0

dMi(s)
𝜅(s)

+
∫

t

0

G(u, t)dMd
i (u)

r(0)(u)
+ O(t)

∫

𝜏

0

{
Wi(u) −

r(1)(u)
r(0)(u)

}
dMd

i (u)

]

+ op(1),

where 𝜅(s) = 1
n

∑n
i=1𝜙i(s),

Γ(t) = E
[

∫

t

0

𝜙i(s)
𝜅(s)

(
− X ′

i (s)ds,−Z′i (s)e
(𝜃−𝜃0)′Zi(s)

{
𝜆0(s) + 𝛽′0Xi(s)

}
ds
)]
,

G(u, t) = E
[

e𝛾 ′0Wi(u)
∫

t

0

I(s > u)
𝜅(s)

dMi(s)
]
,

Ô(t) = E
[

∫

t

0

1
𝜅(s)

J(s,Wi)′Ω−1
𝛾

dMi(s)
]
.

By the multivariate central limit theorem and following similar arguments in Zhao et al. (2013,
supplementary materials), Theorem 2 holds.
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