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ABSTRACT

Targeted mRNA expression panels, measuring up to
800 genes, are used in academic and clinical set-
tings due to low cost and high sensitivity for archived
samples. Most samples assayed on targeted panels
originate from bulk tissue comprised of many cell
types, and cell-type heterogeneity confounds biolog-
ical signals. Reference-free methods are used when
cell-type-specific expression references are unavail-
able, but limited feature spaces render implementa-
tion challenging in targeted panels. Here, we present
DeCompress, a semi-reference-free deconvolution
method for targeted panels. DeCompress leverages
a reference RNA-seq or microarray dataset from simi-
lar tissue to expand the feature space of targeted pan-
els using compressed sensing. Ensemble reference-
free deconvolution is performed on this artificially ex-
panded dataset to estimate cell-type proportions and
gene signatures. In simulated mixtures, four public
cell line mixtures, and a targeted panel (1199 sam-
ples; 406 genes) from the Carolina Breast Cancer
Study, DeCompress recapitulates cell-type propor-
tions with less error than reference-free methods
and finds biologically relevant compartments. We in-
tegrate compartment estimates into cis-eQTL map-
ping in breast cancer, identifying a tumor-specific
cis-eQTL for CCR3 (C–C Motif Chemokine Recep-
tor 3) at a risk locus. DeCompress improves upon
reference-free methods without requiring expression
profiles from pure cell populations, with applications
in genomic analyses and clinical settings.

INTRODUCTION

Academic and clinical settings have prioritized the collec-
tion of tissue samples of mixed cell types for molecular pro-
filing and biomarker studies (1–3). Bulk tissue, especially
from cancerous tumors, is comprised of different cell types,
many rare, and each contributing varied biological signal
to an assay (e.g. mRNA expression) (4,5). This cell-type
heterogeneity makes it difficult to distinguish variability
that reflects shifts in cell populations from variability that
reflects changes in cell-type-specific expression (6). Since
RNA-seq technology was developed, cell-type deconvolu-
tion from mRNA expression has become important in ge-
netic and genomic association studies: either using compo-
sitions in regression models as covariates to adjust for the
association between cell type proportions and phenotype
(7–10), or using them as inputs to solve for cell-type spe-
cific quantities (11,12). Cell-type deconvolution methods
can be reference-based (supervised) (13–19) or reference-
free (unsupervised) (20–25), depending on whether cell-
type-specific expression profiles are available for the compo-
nent cell-types. When reference panels are unavailable, as in
understudied tissues or populations (26), reference-free de-
convolution is the only viable option. Even in cases where
reference expression profiles are available, reference-based
methods may provide inaccurate proportion estimates if the
mixed tissue and references represent different clinical set-
tings or phenotypes (27).

Given the advent of single-cell technologies and studies
into cell trajectories, the concept of cell types in bulk tis-
sue has been debated (28). Especially in perturbed or dis-
eased tissues, like cancerous tumors, individual cells may be
present in different states or various cells of possibly differ-
ent identities may contribute, in aggregate, to the same bio-
logical process and have similar molecular profiles (29–31).
While previous reference-free methods rely on searching the
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feature space for compartment-specific molecular features
from the entire transcriptome and thus require a large fea-
ture space (22,25,32), reference-free deconvolution methods
can, with fewer assumptions, identify tissue compartments
or isolated units of a tissue that represent either a biologi-
cal process or a cell type (33). Thus, reference-free methods
have important advantages over reference-based methods
but may require a large number of features for optimal per-
formance (32,34).

Many important datasets may have fewer expression tar-
gets than those required for existing reference-free deconvo-
lution methods. Targeted mRNA expression assays are op-
timized for gene expression quantification in samples stored
clinically and use a panel of up to 800 genes without requir-
ing cDNA synthesis or amplification steps (35–37). These
technologies offer key advantages in sensitivity, technical re-
producibility, and strong robustness for profiling formalin-
fixed, paraffin-embedded (FFPE) samples (35,38). Given
these advantages, targeted expression profiling is increas-
ingly being used for molecular studies (36,37,39–42), espe-
cially prospective studies involving FFPE samples stored
over several years (43) and diagnostic assays in clinical set-
tings (3,44). Due to its viability in diagnostics, it is impor-
tant to identify reference-free deconvolution methods that
overcome the need for searching for compartment-specific
genes from the assay’s feature space (22,25,32), given the
limited feature space in targeted panels.

Previous groups have proposed methods for efficiently re-
constructing full gene expression profiles from sparse mea-
surements of the transcriptome, borrowing techniques from
image reconstruction using compressed sensing (45,46) and
machine learning (47–50). For example, Cleary et al. devel-
oped a blind compressed sensing method that recovers gene
expression from multiple composite measurements of the
transcriptome (up to 100 times fewer measurements than
genes) by using modules of interrelated genes in an unsuper-
vised manner. Another imputation method by Viñas et al.
(51) used recent machine learning methodology (52) to pro-
vide efficient and accurate transcriptomic reconstruction
in healthy, unperturbed tissue from the Genotype-Tissue
Expression (GTEx) Project (53,54). These ideas provide a
promising avenue to expand the feature space of targeted
panels, rendering them more applicable for reference-free
deconvolution methods.

Here, we present DeCompress, a semi-reference-free de-
convolution method for targeted panels. DeCompress re-
quires a reference RNA-seq or microarray dataset from sim-
ilar bulk tissue assayed by the targeted expression panel
to train a compressed sensing model to expand the feature
space in a targeted panel. We show the advantages of us-
ing DeCompress over other reference-free methods with two
simulation analyses and five real data applications. Lastly,
we examine the impact of tissue compartment deconvo-
lution on downstream analyses, such as cis-eQTL analy-
sis using expression data from the Carolina Breast Can-
cer Study (CBCS) (55). DeCompress is the first deconvo-
lution method to focus on targeted expression panels and
is available freely as an R package on GitHub at https:
//github.com/bhattacharya-a-bt/DeCompress.

MATERIALS AND METHODS

The DeCompress algorithm

DeCompress takes in two expression matrices from similar
bulk tissue as inputs: the target expression matrix from a tar-
geted panel of gene expression with n samples and k genes,
and a reference expression matrix from an RNA-seq and mi-
croarray panel with N samples and K > k genes. Ideally,
both the target and reference expression matrices should be
on the raw expression scale (not log-transformed), as total
RNA abundance of a gene in bulk tissue is a linear com-
bination of that gene’s compartment-specific RNA abun-
dances. We refer to DeCompress as a semi-reference-free
method, as it requires a reference expression matrix but not
compartment-specific expression profiles (as in reference-
based methods). For a user-defined number of compart-
ments, DeCompress outputs compartment proportions for
all samples in the target and the compartment-specific ex-
pression profiles for the genes used in deconvolution; these
compartments reflect groups of cells that have similar bi-
ological processes or molecular profiles. The method fol-
lows three general steps, as detailed in Figure 1: (1) selec-
tion of the compartment-specific genes from the reference,
(2) compressed sensing to expand the targeted panel to a
DeCompressed expression matrix with these compartment-
specific genes, and (3) ensemble deconvolution on the De-
Compressed dataset. Full mathematical and algorithmic
details for DeCompress are provided in Supplemental Meth-
ods. DeCompress is available as an R package on GitHub
(https://github.com/bhattacharya-a-bt/DeCompress).

The first step of DeCompress is to use the reference
dataset to find a set of K ′ < K genes that are representa-
tive of different compartments that comprise the bulk tis-
sue. These K ′ genes, called the compartment-specific genes,
can be supplied by the user if prior gene signatures can
be applied. If any such gene signatures are not available,
DeCompress borrows from previous reference-free meth-
ods to determine this set of genes [Linseed (22) or TOAST
(32)]. If the user cannot determine the total number of
compartments, the number of compartments can be es-
timated from the reference by assessing the cumulative
total variance explained by successive singular value de-
composition modes or the number of columns in the ba-
sis of a non-negative matrix factorization of the reference
matrix.

After a set of compartment-specific genes are deter-
mined, DeCompress uses the reference to infer a model
that predicts the expression of each of these compartment-
specific genes from the genes in the target. Predictive mod-
eling procedures borrow ideas from compressed sensing
(45,46,56), a technique that was developed to reconstruct
a full image from sparse measurements of it: the estima-
tion procedure can be broken down into solving a system of
equations using either linear or non-linear regularized op-
timization, with options for parallelization when the sam-
ple size of the reference dataset is large. These optimization
methods are detailed in Supplemental Methods. The pre-
dictive models are curated into a compression matrix, which
is then used to expand the original target (with k < K ′ < K
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Figure 1. Schematic for the DeCompress algorithm. DeCompress takes in a reference RNA-seq or microarray matrix with N samples and K genes, and the
target expression with n samples and k < K genes. The algorithm has three general steps: (1) finding the K ′ < K genes in the reference that are cell-type
specific, (2) training the compressed sensing model that projects the feature space in the target from k genes to the K ′ cell-type specific genes, and (3)
decompressing the target to an expanded dataset and deconvolving this expanded dataset. DeCompress outputs cell-type proportions and cell-type specific
profiles for the K ′ genes.

genes) into the artificially DeCompressed expression matrix
(with the K ′ compartment-specific genes). This compressed
sensing model and feature expansion helps recover expres-
sion of compartment-specific genes that are not assayed in
the target but also those genes that have high variance in
groups or subtypes present only in the target (Supplemental
Results, Supplemental Figure S1). In practice, we observed
that regularized linear regression (lasso, ridge, or elastic net
regression (48)) provides the best prediction of gene expres-
sion (Supplemental Figure S2), and the user may either
model the gene expression using the traditional Gaussian
family or assume that the errors follow a Poisson distribu-
tion to account for the scale of the original data (not log-
transformed).

Lastly, ensemble deconvolution is performed on the De-
Compressed expression matrix to estimate (i) compart-
ment proportions on the samples in the target and (ii) the
compartment-specific expression profiles for the K ′ genes
used in deconvolution. Several options for reference-free
deconvolution are provided in DeCompress. We also pro-
vide options that uses a reference-based method, unmix
from the DESeq2 package (57), based on compartment ex-
pression profiles estimated from the reference RNA-seq or
microarray dataset (i.e. an approximate compartment ex-
pression profile is estimated from a non-negative matrix
factorization of the reference dataset). Estimates from the
method that best recovers the DeCompressed expression
matrix are chosen. Supplemental Table S1 provides sum-
maries of the methods employed in DeCompress. In prac-
tice, we recommend that users iterate the DeCompress pro-
cess over a range of numbers of compartments and validate
the estimated compartments and gene signatures against
known biology. An example biological validation process
is described in detail when we apply DeCompress to a
large NanoString nCounter expression dataset from the
CBCS (43).

Benchmarking analysis

Using simulations and published datasets, we benchmarked
DeCompress against six other reference-free methods: de-
conf (20), CellDistinguisher (25), Linseed (22), DeconICA
(see Data Availability), CDSeq (23), and iterative non-
negative matrix factorization with feature selection using
TOAST (32) (see Supplemental Table S1). We implemented
all methods with default settings provided by the respec-
tive software packages. All these datasets provide a ma-
trix of known compartment proportions. To measure the
performance of each method, we calculate the error be-
tween the estimated and true compartment proportions
as the mean squared error (MSE) (i.e. the mean row-wise
MSE between the two matrices). We also permute the
columns in the estimated matrix (corresponding to com-
partments) to align compartments accordingly between the
known and estimated proportions to minimize the MSE for
each method. In all benchmarking analyses (in-silico and
published mixing experiments and CBCS), we use default
settings for DeCompress: TOAST to select compartment-
specific genes in the reference, elastic net with mixing pa-
rameter α ∈ {0, 0.5, 1} to train compressed sensing models,
and ensemble deconvolution of the DeCompressed dataset
using CellDistinguisher, Linseed, TOAST + NMF, and De-
conICA; we did not use CDSeq on DeCompressed datasets
due to running time, but it is a viable option for users of
DeCompress. We set the number of compartments in the
benchmarking analyses to the number of compartments in
the true proportion matrices.

In-silico mixing experiments. We performed in-silico mix-
ing experiments using single-cell RNA-seq expression data
(GEO accession number: GSE136148) from single-cell sus-
pensions of fresh frozen mouse mammary gland tissue
(19). After processing and clustering (58,59), we identi-
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fied expression profiles for four well-characterized sets of
cells (>50 cells in each cluster): epithelial cells, fibroblasts,
adipocytes, and immune cells (see Supplemental Methods).
We randomly generated compartment proportions for each
of these tissue types by generating a proportion matrix
drawn from a half-normal distribution with variance 1 and
dividing each row by the row sum. For a reference, we then
simulated mixed RNA-seq expression data for 200 samples
and scaled these mixed expression profiles with multiplica-
tive noise randomly generated from a half-Normal distri-
bution with 0 mean and standard deviations of 4 and 8.
Across 25 simulations, we simulated another mixed RNA-
seq dataset with the same noise parameters and selected
200, 500, and 800 of the genes with mean and standard de-
viations above the median mean and standard deviations
of all genes to generate a targeted panel. We added more
normally-distributed multiplicative noise with zero mean
and unit variance to simulate a batch difference between the
reference and target matrix.

We additionally performed in-silico mixing experi-
ments using expression data from the Genotype-Tissue
Expression (GTEx) Project (dbGAP accession number
phs000424.v7.p2) (53,54). Here, we obtained median tran-
scripts per million (TPM) data for four tissue types largely
present in bulk mammary tissue: subareolar mammary
cells, EBV-transformed lymphocytes, transformed fibrob-
lasts, and subcutaneous adipose. Using these median pro-
files, we generated a reference RNA-seq dataset and tar-
geted panel as in the single-cell experiment. For compar-
ison to compartments with dissimilar expression profiles,
we repeated these simulations for four other tissues: mam-
mary tissue, pancreas, pituitary and whole blood. Full de-
tails for this simulation framework are provided in Supple-
mental Methods.

Existing mixing experiments. We also benchmarked De-
Compress in four published mixing experiments: (i) microar-
ray expression for mixed rat brain, liver, and lung biospec-
imens (GEO Accession Number: GSE19830), commonly
used as a benchmarking dataset in deconvolution studies
(N = 42) (11), (ii) RNA-seq expression (GSE123604) for
a mixture of breast cancer cells, fibroblasts, normal mam-
mary cells and Burkitt’s lymphoma cells (N = 40) (23), (iii)
microarray expression (GSE97284) for laser capture micro-
dissected prostate tumors (N = 30) (60) and (iv) RNA-seq
expression (GSE64098) for a mixture of two lung adenocar-
cinoma cell lines (N = 40) (61,62). As in the in-silico mix-
ing using GTEx data, we generated pseudo-targeted panels
by randomly selecting 200, 500, and 800 of the genes with
mean and standard deviations above the median mean and
standard deviations of all genes. For the rat mixture dataset,
we used 30 of the 42 samples as a reference microarray ma-
trix (with multiplicative noise, as in GTEx) and deconvolved
with the remaining 12 samples in the target matrix. In the re-
maining three datasets, we obtained normalized RNA-seq
reference matrices from The Cancer Genome Atlas: TCGA-
BRCA breast tumor expression for the breast cancer cell
line mixture, TCGA-PRAD prostate tumor expression for
the prostate tumor microarray study, and TCGA-LUAD for
the lung adenocarcinoma mixing study. These datasets are
summarized in Supplemental Table S2.

Applications in Carolina Breast Cancer Study (CBCS) data

We lastly used expression data from the Carolina Breast
Cancer Study for validation and analysis (55). Paraffin-
embedded tumor blocks were requested from participat-
ing pathology laboratories for each sample, were reviewed,
and were assayed for gene expression using the NanoString
nCounter system, as discussed previously (43). As described
before (10,63), the expression data (406 genes and 11 house-
keeping genes) were pre-processed and normalized using
quality control steps from the NanoStringQCPro package,
median ratio normalization using DESeq2 (57,64), and esti-
mation and removal of unwanted technical variation using
the RUVSeq and limma packages (65,66). The resulting nor-
malized dataset comprised of samples from 1199 patients,
comprising of 628 women of African descent (AA) and 571
women of European descent (EA). A study pathologist ana-
lyzed tumor microarrays (TMAs) from 148 of the 1199 pa-
tients to estimate area of dissections originating from ep-
ithelial tumor, intratumoral stroma, immune infiltrate, and
adipose tissue (10). These compartment proportions of the
148 samples were used for benchmarking of DeCompress
against other reference-free methods.

Date of death and cause of death were identified by link-
age to the National Death Index. All diagnosed with breast
cancer have been followed for vital status from diagnosis un-
til date of death or date of last contact. Breast cancer-related
deaths were classified as those that listed breast cancer (In-
ternational Statistical Classification of Disease codes 174.9
and C-50.9) as the underlying cause of death on the death
certificate. Of the 1199 samples deconvolved, 1153 had as-
sociated survival data with 330 total deaths, 201 attributed
to breast cancer.

Over-representation and gene set enrichment analysis. We
conducted over-representation (ORA) and gene set enrich-
ment analysis (GSEA) to identify significantly enriched
gene ontologies using WebGestaltR (67). Specifically, we
considered biological process ontologies categorized by The
Gene Ontology Consortium (68,69) at FDR-adjusted P <
0.05.

Survival analysis. Here, we defined a relevant event as a
death due to breast cancer. We aggregated all deaths not due
to breast cancer as a competing risk. Any subjects lost to
follow-up were treated as right-censored observations. We
built cause-specific Cox models (70) by modeling the hazard
function of breast cancer-specific mortality with the follow-
ing covariates: race, PAM50 molecular subtype (71), age,
compartment-specific proportions and an interaction term
between molecular subtype and compartment proportion.
We compared these compartment-specific survival models
with the nested baseline model that did not include com-
partment proportions using partial likelihood ratio tests.
We tested for the statistical significance of parameter esti-
mates using Wald-type tests, adjusting for multiple testing
burden using the Benjamini-Hochberg procedure at a 10%
false discovery rate (72).

eQTL analysis. CBCS genotype data is measured on the
OncoArray. Approximately 50% of the SNPs for the On-
coArray were selected as a ‘GWAS backbone’ (Illumina
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HumanCore), which aimed to provide high coverage for
many common variants through imputation. The remaining
SNPs were selected from lists supplied by six disease-based
consortia, together with a seventh list of SNPs of interest
to multiple disease-focused groups. Approximately 72 000
SNPs were selected specifically for their relevance to breast
cancer. The sources for the SNPs included in this back-
bone, as well as backbone manufacturing, calling, and qual-
ity control, are discussed in depth by the OncoArray Con-
sortium (73,74). All samples were imputed using the Octo-
ber 2014 (v.3) release of the 1000 Genomes Project (75) as
a reference panel in the standard two-stage imputation ap-
proach, using SHAPEIT2 for phasing and IMPUTEv2 for
imputation (76–78). All genotyping, genotype calling, qual-
ity control, and imputation was done at the DCEG Cancer
Genomics Research Laboratory (73,74).

From the provided genotype data, we excluded variants
(i) with a minor frequency less than 1% based on geno-
type dosage and (ii) that deviated significantly from Hardy-
Weinberg equilibrium at P < 10−8 using the appropriate
functions in PLINK v1.90b3 (79). Finally, we intersected
genotyping panels for the AA and EA samples, resulting
in 5 989 134 autosomal variants. We excluded 334,391 vari-
ants on the X chromosome. CBCS genotype data was coded
as dosages, with reference and alternative allele coding as in
the National Center for Biotechnology Information’s Single
Nucleotide Polymorphism Database (dbSNP) (80).

As previously described (10), using the 1199 samples (621
AA, 578 EA) with expression data, we assessed the addi-
tive relationship between the gene expression values and
genotypes with linear regression analysis using Matrixe-
QTL (81). We consider a baseline linear model with log-
transformed gene expression of a gene of interest as the
dependent variable, SNP dosage as the primary predictor
of interest, and the following covariates: age, BMI, post-
menopausal status, and the first 5 principal components of
the joint AA and EA genotype matrix. We also considered
a compartment-specific interaction model that adds com-
partment proportion from DeCompress and an interaction
term between the SNP dosage and compartment propor-
tion (8,9). This interaction model subtly changes the inter-
pretation of the main SNP dosage effect, representing an es-
timate of the eQTL effect size at 0% compartment-specific
cells. Thus, we recover compartment-specific eQTLs by test-
ing the interaction effect, which measures how the magni-
tude of an eQTL differs between the two cell types. The in-
teraction model was fit using MatrixeQTL’s linear-cross im-
plementation. It is important to note that we model the log-
transformed expression here, as existing methods for mod-
eling expression on genotype do not support interaction
terms (82–84).

We compared eQTLs mapped in CBCS here with
eQTLs in GTEx. We downloaded healthy tissue eQTLs
from the Genotype-Tissue Expression (GTEx) Project and
cross-referenced eGenes and corresponding eSNPs be-
tween CBCS and GTEx in healthy breast mammary tis-
sue, EBV-transformed lymphocytes, transformed fibrob-
lasts, and subcutaneous adipose tissue. We considered these
tissues mainly due to their high relative composition in bulk
breast tumor samples, as shown previously in many stud-
ies (23,85–87). The Genotype-Tissue Expression (GTEx)

Project was supported by the Common Fund of the Office
of the Director of the National Institutes of Health, and by
NCI, NHGRI, NHLBI, NIDA, NIMH, and NINDS. The
data used for the analyses described in this manuscript were
obtained from the GTEx Portal on 14 May 2020. We also
downloaded iCOGs GWAS summary statistics for breast
cancer risk (88–90) to assess any overlap between CBCS
eQTLs and GWAS-detected risk variants.

RESULTS

Benchmarking DeCompress against other reference-free de-
convolution methods

We benchmarked DeCompress performance across seven
datasets (see Supplemental Table S2): (i) in-silico mixing ex-
periments using single-cell expression profiles from mouse
mammary tissue (19) and tissue-specific expression pro-
files from the Genotype-Tissue Expression (GTEx) Project
(53,54), (ii) expression from four published datasets with
known compartment proportions (11,23,60,61) and (iii)
and tumor expression from the Carolina Breast Cancer
Study (43,55). We compared the performance of DeCom-
press against five other reference-free deconvolution meth-
ods (summarized in Supplemental Table S1): deconf (20),
Linseed (22), DeconICA, CDSeq (23), iterative non-negative
matrix factorization with feature selection using TOAST
(TOAST + NMF) (32) and CellDistinguisher (25). Esti-
mated compartment proportions were compared to simu-
lated or reported true compartment proportions with the
mean squared error (MSE) between the two matrices (see
Materials and Methods). In total, we observed that DeCom-
press recapitulates compartment proportions with the least
error compared to reference-free deconvolution methods.

In-silico experiments. We first considered in-silico mix-
ing experiments using single-cell expression profiles from
mouse mammary gland data (19), specifically from four cell-
types: fibroblasts, epithelial cells, adipocytes, and immune
cells (see Materials and Methods). Figure 2A shows the per-
formance of DeCompress compared to reference-free meth-
ods across 25 simulated targeted panels of increasing num-
bers of genes on the simulated targeted panels and 200 sam-
ples. In general, DeCompress estimated compartment pro-
portions with the lowest MSE across datasets of different
feature sizes and the two error settings, with CDSeq and
DeconICA producing similarly low errors in estimation. In
the high noise setting with 500 and 800 genes on the tar-
get, CDSeq shows lower errors than DeCompress. Spear-
man correlations between true and estimated proportions
(element-wise correlation across the two matrices) were con-
sistently largest across all simulation settings using DeCom-
press compared to other methods (Figure 2A); among the
benchmarked reference-free methods, only CDSeq consis-
tently showed positive correlations to the true compartment
proportions.

To put estimates of MSE and correlation in perspective,
we considered two methods of generating a null distribu-
tion for these metrics: (i) randomly generating 10 000 ran-
dom proportion matrices and (ii) permuting estimated pro-
portion matrices across samples 10 000 times (Supplemental
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Figure 2. Benchmarking results for in-silico single cell RNA-seq mixing experiments. (A) Boxplots of mean squared error (MSE) and Spearman correlation
(Y-axis; top and bottom panel, respectively) between true and estimated compartment proportions in in-silico scRNA-seq experiments across various
methods (X-axis), with 25 simulated datasets per number of genes. Boxplots are colored by the number of genes in each simulated dataset. (B) Scatter plots
of MSE (X-axis) and Spearman correlation (Y-axis) across all simulation settings, colored and shaped by method. The Spearman correlation between MSE
and correlation is also provided. (C) Boxplots of Spearman correlation (Y-axis) between true and estimated compartment-specific proportions in in-silico
scRNA-seq experiments across various methods (X-axis), with 25 simulated datasets per number of genes. Boxplots are colored by the number of genes in
each simulated dataset.

Figure S3). We found that DeCompress, CDSeq, and Decon-
ICA estimates greatly outperform both nulls, whereas MSE
and correlations for other methods overlap with these null
distributions. In general, in subsequent analyses, we choose
to compare with a randomly generated null (null distribu-
tion 1 from above) as it is a common basis of comparison
across all methods and included this in Figure 2A. We also
found a strong negative association (Spearman correlations
of −0.62 and −0.61 at high and low error settings, both with
P < 2.2 × 10−16) between MSE and correlation between
the truth and estimates (Figure 2B). This inverse associa-
tion between MSE and correlation has been reported in pre-
vious deconvolution analyses (17,19,32). Thus, to be con-
sistent with previous analyses, we mainly consider MSE as
the performance metric in subsequent analyses. Moreover,
we found that compartment proportion estimates from De-
Compress shows moderate positive correlation (Spearman
correlation 0.45; P < 2.2 × 10−16) with the truth overall,

in sharp contrast to other methods (Supplemental Figure
S4).

We also assessed correlations between true and estimated
compartment-specific expression profiles. Here, for the six
benchmarked methods, we computed Spearman correla-
tions between true and estimated compartment-specific ex-
pression profiles for the k genes on the targeted panel. For
DeCompress, we computed these correlations for the K ′ > k
compartment-specific genes on the artificial DeCompressed
expression matrix. Figure 2C shows that CDSeq showed
largest correlations with the truth, with deconf, TOAST,
CellDistinguisher and DeCompress with slightly lower cor-
relations. High correlations of DeCompress estimates with
true compartment-specific expression profiles suggests that
the compression matrix generally preserves rank order of
the compartment-specific genes.

With these in-silico single cell RNA-seq mixtures, we per-
formed sensitivity analysis with respect to the choice of the
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number of compartments (c) to assess how choosing fewer
or more compartments might affect results. To orient the
compartments across different c, we used canonical corre-
lation analysis (CCA) on the estimated per-compartment
expression profiles (91). As expected, we found that choos-
ing lower values of c (c = 3 compared to c = 4) resulted
in the merging of two compartments, while other compart-
ments stayed relatively similar across runs. Likewise, choos-
ing higher values of c (c = 5 compared to c = 4) resulted
in the splitting of a single compartment into two, while the
other compartments stayed relatively similar. Contribution
plots to the shared canonical variates for a specific instance
of simulations (4 true compartments, 500 genes on the tar-
get, 100 samples in both the reference and target) are pre-
sented in Supplemental Figure S5.

Next, we conducted in-silico mixing experiments using
median GTEx expression profiles of mammary tissue, lym-
phocytes, fibroblasts, and subcutaneous adipose (see Ma-
terials and Methods). Figure 3A shows the performance
of DeCompress compared to other reference-free methods
across 25 simulated targeted panels of increasing numbers
of genes on the simulated targeted panels. In general, we
found that DeCompress gives more accurate estimates of
compartment proportions than the other methods at both
settings for multiplicative noise. As the number of genes
in the targeted panel increased, the difference in MSE be-
tween DeCompress and the other methods remains largely
constant. Linseed and DeconICA, methods that search for
mutually independent axes of variation that correspond to
compartments, consistently perform poorly on these sim-
ulated datasets, possibly due to the relative similarity be-
tween the expression profiles for these compartments and
the small number of genes on the targeted panels. deconf,
TOAST + NMF (matrix factorization-based methods) and
CellDistinguisher (topic modeling) perform similarly to one
another and only moderately worse in comparison to De-
Compress. CDSeq shows a trend of decreasing median MSE
as the number of genes on the target increases, though the
range in the MSE values is large.

We also investigated how the number of compartments
affects the performance of the seven reference-free methods.
Using GTEx, we generated another set of in-silico mixed
targeted panels (500 genes) using 2 (human mammary tis-
sue and lymphocytes), 3 (mammary, lymphocytes, fibrob-
lasts) and 4 (mammary, fibroblasts, lymphocytes, and adi-
pose) compartments and applied all methods to estimate
the compartment proportions. Figure 3B provides boxplots
of the MSE across 25 simulated targeted panels using De-
Compress and the other five benchmarked methods. For
all seven methods, the median MSE for these datasets re-
mained similar as the number of compartments increased,
though the range in the MSE decreases considerably. In par-
ticular, the performance of DeconICA increases consider-
ably as more compartments were used for mixing, as men-
tioned in its documentation. Here again, we found that De-
Compress gave the smallest median MSE between the true
and estimated cell proportions, with Linseed and CDSeq
performing well in the four cell-type setting. In total, re-
sults from these in-silico mixing experiments show both the
accuracy and precision of DeCompress in estimated com-
partment proportions.

The four cell types we used for the above analyses sim-
ulated bulk mammary tissue but contained compartments
with highly correlated gene expression profiles (Supple-
mental Figure S6A). We recreated the in-silico mixing ex-
periments with four compartments with minimal corre-
lations: mammary tissue, pancreas, pituitary gland, and
whole blood (Supplemental Figure S6A). In mixtures with
these tissues, we found that DeCompress also outperformed
the reference-free methods, with a clear decrease in median
MSE as the number of genes on the simulated targeted pan-
els are increased (Supplemental Figure S6B).

Publicly available datasets. Although in-silico mixing ex-
periments showed strong performance of DeCompress, we
sought to benchmark DeCompress with previously pub-
lished datasets that have known compartment mixture pro-
portions. We downloaded expression data from a breast
cancer cell-line mixture (RNA-seq) (23), rat brain, lung,
and liver cell-line mixture (microarray) (11), prostate tu-
mor with compartment proportions estimated with laser-
capture microdissection (microarray) (60), and lung adeno-
carcinoma cell-line mixture (RNA-seq) (61) and generated
pseudo-targeted panels with 200, 500, and 800 genes (see
Materials and Methods). For the rat mixture dataset, we
trained the compression sensing model on a randomly se-
lected training split with added noise to simulate a batch
effect between the training and targeted panel; for the other
three cancer-related datasets, reference RNA-seq data was
downloaded from The Cancer Genome Atlas (TCGA) (2).

Overall, DeCompress showed the lowest MSE across all
three datasets, in comparison to the other reference-free
methods (Figure 3C, Supplemental Figure S7). The pat-
terns observed in the GTEx results are evident in these
real datasets, as well. Deconvolution using Linseed gave
variable performance across datasets (high variability in
model performance), with very small ranges in MSEs in
the rat microarray and lung adenocarcinoma datasets while
highly variable MSEs in the breast cancer and prostate can-
cer datasets. We investigated the performance of the meth-
ods (four reference-free methods and unmix from the DE-
Seq2 package (57)) incorporated into the ensemble decon-
volution step of DeCompress in deconvolving the DeCom-
pressed expression, using the breast, prostate, and lung can-
cer datasets (Supplemental Figure S8). We found that un-
mix gives accurate estimates of compartment proportions
in the breast cancer and prostate tumor datasets, where the
compartments are like those in bulk tumors. However, in
the case of the lung adenocarcinoma mixing dataset (mix-
ture of two lung cancer cell lines), unmix does not consis-
tently outperform the reference-free methods, perhaps ow-
ing to a dissimilarity between the lung adenocarcinoma
mixture dataset and TCGA-LUAD reference dataset. We
lastly investigated a scenario where the reference and target
assays measure different bulk tissue. Using the breast can-
cer cell-line mixtures pseudo-targets and a TCGA-LUAD
reference, DeCompress estimated compartment proportions
with larger errors, such that the distribution of MSEs inter-
sect with a null distribution of MSEs from randomly gener-
ated compartment proportion matrices (Supplemental Fig-
ure S9). In general, these results suggest that DeCompress
performs best when using a reference from a tissue prop-
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Figure 3. Benchmarking results for in-silico GTEx mixing experiments and real data examples. (A) Boxplots of mean squared error (Y-axis) between true
and estimated cell-type proportions in in-silico GTEx mixing experiments across various methods (X-axis), with 25 simulated datasets per number of genes.
GTEx mixing was done at two levels of multiplicative noise, such that errors were drawn from a Normal distribution with zero mean and standard deviation
8 (left) and 4 (right). Boxplots are colored by the number of genes in each simulated dataset. (B) Boxplots of MSE (Y-axis) between true and estimated
cell-type proportions over 25 simulated GTEx mixed expression datasets with 500 genes, multiplicative noise drawn from a Normal distribution with zero
mean and standard deviation 10, and 2 (left), 3 (middle) and 4 (right) different cell-types. Boxplots are collected by the reference-free method tested. (C)
Boxplots of mean squared error (Y-axis) between true and estimated cell-type proportions in 25 simulated targeted panels of 200, 500, and 800 genes
(X-axis), using four different datasets: breast cancer cell-line mixture (top-left) (23), rat brain, lung, and liver cell-line mixture (top-right) (11), prostate
tumor samples (bottom-left) (60), and lung adenocarcinoma cell-line mixture (bottom-right) (61). Boxplots are colored by the benchmarked method. The
red line indicates the median null MSE when generating cell-type proportions randomly. If a red line is not provided, then the median null MSE is above
the scale provided on the Y-axis.

erly aligned to the target and iterating over deconvolution
methods implemented in the ensemble deconvolution.

Carolina Breast Cancer Study (CBCS) expression. We
finally benchmarked DeCompress against the other
reference-free deconvolution methods in breast tumor
expression data from the Carolina Breast Cancer Study
(CBCS) (43,55) on 406 breast cancer-related genes on
1199 samples. We used RNA-seq breast tumor expression
from TCGA to determine compartment-specific genes for
four compartments and train the compression matrix for
deconvolution in CBCS using DeCompress; 393 of the 406
genes on the CBCS panel were measured in TCGA-BRCA.
For validation, a study pathologist trained a computational
algorithm to estimate compartment proportions based on
tissue areas using 148 tumor microarrays (TMAs) (92).
We treat these estimated compartment proportions for
epithelial tumor, adipose, stroma, and immune infiltrate
as a ‘silver standard.’ However, it is important to note

the distinction between the estimated proportions from
gene expression deconvolution and the study pathologist:
gene expression deconvolution methods output propor-
tions based on RNA content, whereas the pathological
algorithm is based on tissue areas. Previous methods have
suggested that gene expression-based deconvolution over-
and underestimates proportions of compartments that
produce, respectively, high and low levels of RNA, but
RNA content and tissue compartment areas are generally
positively correlated (22,23).

First, to determine whether the DeCompressed expres-
sion matrix accurately represented expression for samples in
the target, we split the 393 genes into 5 groups and trained
TCGA-based predictive models of genes in each ‘test’ group
using those in the other four ‘training’ groups. This scheme
allowed for assessment of how well genes in the four train-
ing groups could predict expression of genes in the test
group, both in-sample via cross-validation across samples
in TCGA data and out-of-sample applied to CBCS data.
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Overall, in-sample cross-validation prediction of gene ex-
pression across 5 folds of samples in TCGA is strong (me-
dian adjusted R2 = 0.53), with a drop-off in out-sample
performance in CBCS (median adjusted R2 = 0.38), shown
in Figure 4A. We also trained models stratified by estrogen-
receptor (ER) status, a major, biologically-relevant classifi-
cation in breast tumors (93,94). These ER-specific models
showed slightly better out-sample performance compared
to the overall models (median adjusted R2 = 0.34 and 0.31
in ER-specific and overall models, respectively), though in-
sample performance of the ER-specific models was similar
to overall models with roughly the same median R2 (Figure
4A). In a similar fashion, we predicted gene expression in
CBCS using a miscast reference, TCGA lung adenocarci-
noma data, observing a distribution of prediction R2 that
is far shifted to the left with a median adjusted R2 = 0.09
(Supplemental Figure S10). This observation, as seen in the
mixing experiments, further reinforces the importance of se-
lecting a proper reference for all steps of DeCompress.

Next, as in the GTEx mixing simulations and the 4 pub-
lished datasets, DeCompress recapitulated true compart-
ment proportions with the minimum error (Figure 4B),
∼33% less error than TOAST + NMF, CDSeq, and Linseed,
the second tier of methods with respect to MSE. To provide
some context to the magnitude of these errors, we randomly
generated 10 000 compartment proportion matrices for 148
samples and 4 compartments. The mean MSE is provided
in Figure 4B, showing that two of the five benchmarked
methods (CellDistinguisher and DeconICA) exceeded this
randomly generated null MSE value. We also observed
that correlations between tissue area compartment and
DeCompress-estimated compartment proportions are pos-
itive and significantly non-zero for three of four compart-
ments, computed as the Spearman rank correlation between
the two estimates across all samples for the four proposed
compartments (Figure 4C). Unlike those from TOAST +
NMF, DeCompress estimates of compartment-specific com-
partment proportions were positively correlated with esti-
mates of tissue compartment areas (Supplemental Figure
S11). Though these correlations are not large in magnitude,
we observed the DeCompress estimates are well-calibrated
with the tissue area estimates, consistent with previous ob-
servations that RNA content-based estimates are generally
positively associated with area-based estimates (22,23). We
note here that CDSeq’s Bayesian machinery considers pri-
ors on read length and gene length to adjust for this dis-
crepancy; however, the nCounter assay is not a sequencing
technology (35).

Comparison of computational speed. The computational
cost of DeCompress is high, owing primarily to training
the compressed sensing models. Non-linear estimation of
the columns of the compression matrix is particularly slow
(Supplemental Figure S12). In practice, we recommend run-
ning an elastic net method (LASSO, elastic net, or ridge
regression) which is both faster (Supplemental Figure S12)
and generally gives larger cross-validation R2 (Supplemen-
tal Figure S2). As we see that the cross-validation R2 distri-
butions of the non-linear methods overlap with that of the
linear methods and no one method clearly outperforms oth-
ers (Supplemental Figure S2), we include all methods in the

DeCompress package but set the default methods as elas-
tic net, ridge regression, and lasso. Given enough computa-
tional resources, iterating over all possible options provided
(least angle regression, elastic net regression, and non-linear
optimization) will provide the most accurate compressed
sensing model. The median cross-validation R2 for elastic
net and ridge regression is ∼16% larger than least angle re-
gression and LASSO, and nearly 25% larger than the non-
linear optimization methods. Using CBCS data with 1199
samples and 406 genes, we ran all benchmarked deconvolu-
tion methods 25 times and recorded the total runtimes (Sup-
plemental Figure S13). For DeCompress, we used TCGA-
BRCA data with 1212 samples as the reference. Running
DeCompress in serial (∼7 min) takes around 5 times longer
than the next slowest reference-free deconvolution method
(TOAST + NMF, ∼1.5 min), though DeCompress can meet
TOAST + NMF in runtime if implemented in parallel with
enough workers (∼50 s). The computational cost of CDSeq
is high, probably owing to its Markov chain Monte Carlo
sampling scheme. These computations were conducted on
a high-performance cluster (RedHat Linux operating sys-
tem) with 25GB of RAM using the bigstatsr package to ef-
ficiently manage memory and fit models (95).

Applications of DeCompress in the Carolina Breast Cancer
Study

Given the strong performance of DeCompress in bench-
marking experiments, we estimated compartment propor-
tions for 1199 subjects in CBCS with transcriptomic data
assayed with NanoString nCounter. As reference-free meth-
ods output proportions for agnostic compartments, iden-
tifying approximate descriptors for compartments is of-
ten difficult. Here, we first outline a framework for assign-
ing modular identifiers for compartments identified by De-
Compress, guided by compartment-specific gene signatures.
Then, we assess performance of using compartment-specific
proportions in downstream analyses of breast cancer out-
comes and gene regulation. Using TCGA breast cancer
(TCGA-BRCA) expression as a training set, we iteratively
searched for compartment-specific features using TOAST +
NMF (32) (Step 1 in Figure 1) and included canonical com-
partment markers for guidance using a priori knowledge
(29,96,97) (see Materials and Methods). After expanding
the targeted CBCS expression to these genes using a com-
pressed sensing model based on elastic net, lasso, or ridge
regression, we estimated compartment proportions. We iter-
ated across three to five possible tissue compartments, as per
the recommendations in Materials and Methods. At an as-
sumed five compartments, we observed that compartment-
specific gene signatures that were enriched for clearly dis-
tinct sets of biological process ontologies consistent with
compartments generally identified in bulk breast tumors.

Identifying approximate modules for DeCompress-estimated
compartments. We leveraged compartment-specific gene
signatures to annotate each compartment with modular
identifiers. First, we conducted over-representation analy-
sis (ORA) (67) of gene signatures for all five compartments,
revealing cell cycle regulation ontologies (FDR-adjusted
P < 0.05) for compartment 4 (C4), shown in Figure 5A.
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Figure 4. Benchmarking results with Carolina Breast Cancer Study expression data. (A) Kernel density plots of predicted adjusted R2 per-sample in
in-sample TCGA prediction (left) through cross-validation and out-sample prediction in CBCS (right), colored by overall and ER-specific models. (B)
MSE (Y-axis) between true and estimated cell-type proportions in CBCS across all methods (X-axis). Random indicates the mean MSE over 10 000
randomly generated cell-type proportion matrices. (C) Spearman rank correlations (Y-axis) between compartment-wise true and estimated proportions
across all benchmarked methods (X-axis). These correlations measure the association between estimated compartment proportions and the ‘silver standard’
pathologist-estimated tissue compartment areas across all samples for the four compartments. Correlations marked with a star are significantly different
from 0 at P < 0.05.

Gene set enrichment analysis (GSEA) for the C4 gene sig-
nature (98) revealed significant enrichments for cell differen-
tiation and development process ontologies (Supplemental
Figure S14). ORA analysis also assigned immune-related
ontologies to the C2 gene signatures at FDR-adjusted P <
0.05 and ERBB signaling to C3, though this enrichment did
not achieve statistical significance. The stem cell differen-
tiation, extracellular matrix, and morphogenic ontologies
in C5 suggest that this compartment may resemble stromal
or tumor-adjacent normal mammary tissue (60,99,100). C1
gene signatures were not enriched for ontologies in that con-
clusive compartment assignment, though these catabolic,
morphogenic, and extracellular process ontologies (Figure
5A) are often present in activated cells in the tumor mi-

croenvironment (101). From these results, we hypothesized
that C3 resembled HER2-enriched tumor cells, C4 an ep-
ithelial tumor compartment, C2 an immune cell compart-
ment and C1 and C5 presumptively stromal or tumor-
adjacent mammary tissue found in the tumor microenviron-
ment.

To investigate these hypotheses further, we computed
Spearman correlations between the compartment-specific
gene expression profiles and median tissue-specific expres-
sion profiles from GTEx (53,54) and single cell RNA-seq
profiles of MCF7 breast cancer cells (102) (Figure 5B; Sup-
plemental Figure S15). Here, we find that C4 shows strong
positive correlations with fibroblasts, lymphocytes, multi-
ple collagenous organs (such as blood vessels, skin, mucosal
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Figure 5. Identification of DeCompress-estimated compartments. (A) Bar plot of −log10 F DR-adjusted P-values for top gene ontologies (Y-axis) enriched
in compartment-specific gene signatures. (B) Heatmap of Pearson correlations between compartment-specific gene signatures (X-axis) and GTEx median
expression profiles and MCF7 single-cell profiles (Y-axis). Significant correlations at nominal P < 0.01 are indicated with an asterisk. (C) Boxplots of
estimated immune (left) and tumor (C3 + C4 compartments, right) proportions (Y-axis) across PAM50 molecular subtypes (X-axis).

esophagus, vagina, and uterus (103–105)), and MCF7 cells,
breast tumor cells that cannot have ERBB2 gene amplifica-
tion (106). We hypothesize that strong correlation with lym-
phocytes reflects immune infiltrate. C1 showed strong pos-
itive associations with epithelial organs but also with adi-
pose, lending more evidence to the hypothesis that C1 may
represent tumor-adjacent normal mammary tissue. The C3
gene signature was significantly correlated with expression
profiles of secretory organs (salivary glands, pancreas, liver)
(107). C2 and C5, however, did not exhibit strong corre-
lations with bulk organs and cell-types assayed in GTEx.
In sum, these gene expression correlations support our hy-
potheses, especially for C1, C3, and C4.

Lastly, we subjected the C2, C3, and C4 compartments to
further biological validation by investigating established as-
sociations between tumor tissue composition, breast cancer
subtypes, and race. Distributions of the hypothesized im-
mune (C2) and tumor (C3 + C4 proportions) compartment
proportions revealed significant differences across PAM50
molecular subtypes (Figure 5C; Kruskal–Wallis test of dif-
ferences with P < 2.2 × 10−16) (71). These trends across
subtypes were consistent with evidence that Basal-like and
HER2-enriched subtypes, known to have high prolifera-
tion and high epithelial cellularity, had the largest pro-

portions of estimated tumor and immune compartments,
while Luminal A, Luminal B and Normal-like subtypes
showed lower proportions (43,71,108). Though not statisti-
cally significant, we also noticed that the C1 was enriched in
Normal-like and Luminal A tumor and C5 in Basal-like and
HER2-enriched tumors (Supplemental Figure S16). Next,
we found strong differences in C4 and total tumor compart-
ment estimates across race (Supplemental Figure S17A). C3
and C4 also have strong correlations with ER (estrogen re-
ceptor) and HER2-scores, gene-expression based continu-
ous variables that indicate clinical subtypes based on ESR1
and ERBB2 gene modules (Supplemental Figure S17B);
however, none of the C3, C4, immune or tumor compart-
ment estimates showed significant differences across clinical
ER status determined by immunohistochemistry (Supple-
mental Figure S17C). We considered the incorporation of
estimates of compartment proportions in building models
of breast cancer survival (Supplemental Results and Sup-
plemental Table S3).

Incorporating compartment proportions into eQTL models
detects more tissue-specific gene regulators. We investi-
gated how incorporating estimated compartment propor-
tions affected cis-expression quantitative trait loci (cis-
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eQTL) mapping in breast tumors, a common application
of deconvolution methods in assessing sources of variation
in gene regulation (9,109). In previous eQTL studies us-
ing CBCS expression, several bulk breast tumor cis-eGenes
(i.e. the gene of interest in an eQTL association between
SNP and gene expression) were found in healthy mam-
mary, subcutaneous adipose, or lymphocytes from GTEx
(10). We included DeCompress proportion estimates for
the tumor (C3 + C4 estimates) and immune (C2) com-
partments in a race-stratified, genetic ancestry-adjusted cis-
eQTL interaction model (see Materials and Methods), as
proposed by Geeleher et al. and Westra et al. (8,9). We
found that sets of compartment-specific cis-eGenes gen-
erally had few intersections with bulk cis-eGenes (Figure
6A), though we detected more cis-eQTLs with the immune-
and tumor-specific interaction models (Supplemental Fig-
ure S18). At FDR-adjusted P < 0.05, of 209 immune-
specific cis-eGenes identified in women of European ances-
try (EA), 7 were also mapped in the bulk models (with no
compartment proportion covariates), and no tumor-specific
cis-eGenes were identified with the bulk models. Similarly,
at FDR-adjusted P < 0.05, in women of African ances-
try (AA), 27 of 331 and 9 of 124 cis-eGenes identified with
the immune- and tumor-compartment interaction models
were also mapped with the bulk models, respectively. Man-
hattan plots for cis-eQTLs across the whole genome across
bulk, tumor, and immune show the differences in eQTL ar-
chitecture in these compartment-specific eQTL mappings
in EA and AA samples (Supplemental Figures S19 and
S20, respectively). Furthermore, we generally detected more
cis-eQTLs at FDR-adjusted P < 0.05 with the immune-
specific interactions than the bulk and tumor-specific inter-
actions (EA: 565 bulk cis-eQTLs, 65 tumor cis-eQTLs, 8927
immune cis-eQTLs; AA: 237 bulk cis-eQTLs, 449 tumor
cis-eQTLs, 7676 immune cis-eQTLs; Supplemental Figure
S18). All eQTLs with FDR-adjusted P < 0.05 are pro-
vided in Supplemental Data.

We analyzed the sets of EA and AA tumor- and immune-
specific eGenes in CBCS with ORA analysis for biologi-
cal processes (Figure 6B). We found that, in general, these
sets of eGenes were concordant with the compartment in
which they were mapped. All at FDR-adjusted P < 0.05,
AA tumor-specific eGenes showed enrichment for cell cy-
cle and developmental ontologies, while immune-specific
eGenes were enriched for leukocyte activation and migra-
tion and response to drug pathways. Similarly, EA tumor-
specific eGenes showed enrichments for cell death and pro-
liferation ontologies, and immune-specific eGenes showed
cytokine and lymph vessel-associated processes. We then
cross-referenced bulk and tumor-specific cis-eGenes found
in the CBCS EA sample with cis-eGenes detected in healthy
tissues from GTEx: mammary tissue, fibroblasts, lympho-
cytes, and adipose (see Materials and Methods), similar to
previous pan-cancer germline eQTL analyses (10,110). We
attributed several of the bulk cis-eGenes to healthy GTEx
tissue (all but 2), but tumor-specific cis-eGenes were less
enriched in healthy tissues (Supplemental Figure S21). We
compared the cis-eQTL effect sizes for significant CBCS cis-
eSNPs found in GTEx. As shown in Figure 6C, 98 of 220
bulk cis-eQTLs detected in CBCS that were also found in
GTEx were mapped in healthy tissue, with strong positive

correlation between effect sizes (Spearman ρ = 0.93). The
remaining 122 eQTLs that could not be detected in healthy
GTEx tissue contained some discordance in the direction of
effects, though correlations between these effect sizes were
also high (ρ = 0.71). In contrast, we were unable to detect
any of the CBCS tumor-specific cis-eQTLs as significant
eQTLs in GTEx healthy tissue, and the correlation of these
effect sizes across CBCS and GTEx was poor (Spearman
ρ = −0.07). These results suggest that this compartment-
specific eQTL mapping, especially those that are tumor-
specific, identified eQTLs that are not enriched for eQTLs
from healthy tissue.

To evaluate any overlap of compartment-specific eQTLs
with SNPs implicated with breast cancer risk, we extracted
932 risk-associated SNPs in women of European ancestry
from iCOGS (88–90) at FDR-adjusted P < 0.05 that were
available on the CBCS OncoArray panel (73). Figure 6D
shows the raw −log10 P-values of the association of these
SNPs with their top cis-eGenes in the bulk and tumor- and
immune-specific interaction models. In large part, none of
these eQTLs reached FDR-adjusted P < 0.05, except for
three cis-eQTLs, with their strengths of association favor-
ing the bulk eQTLs. However, we detected three tumor-
specific EA cis-eQTLs in near-perfect linkage disequilib-
rium of r 2 ≥ 0.99 (strongest association with rs56387622)
with chemokine receptor CCR3, a gene whose expression
was previously found to be associated with breast can-
cer outcomes in luminal-like subtypes (111,112). As es-
timated tumor purity increases, the cancer risk allele C
at rs56387622 has a consistently strong negative effect on
CCR3 expression (Figure 6E). We find that CCR3 expres-
sion is not significantly different across tumor stage and ER
status but is significantly different across PAM50 molecular
subtype (Supplemental Figure S22). In sum, results from
our cis-eQTL analysis show the advantage of including
DeCompress-estimated compartment proportions in down-
stream genomic analyses to identify compartment-specific
associations that may be relevant in disease pathways.

DISCUSSION

Here, we presented DeCompress, a semi-reference-free de-
convolution method catered towards targeted expression
panels that are commonly used for archived tissue in
clinical and academic settings (3,35). Unlike traditional
reference-based methods that require compartment-specific
expression profiles, DeCompress requires only a reference
RNA-seq or microarray dataset on similar bulk tissue to
train a compressed sensing model that projects the tar-
geted panel into a larger feature space for deconvolution.
Such reference datasets are much more widely available
than compartment-specific expression on the same targeted
panel. We benchmarked DeCompress against reference-free
methods (20,22,23,25,32) using in-silico single-cell (19) and
GTEx mixing experiments (53,54), four published datasets
with known compartment proportions (11,23,60,61), and
a large, heterogeneous NanoString nCounter dataset from
the CBCS (43,55). In these analyses, we showed that
DeCompress efficiently and accurately expanded the fea-
ture space of the target and recapitulated true compart-
ment proportions with the lowest error and the strongest
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Figure 6. Compartment-specific cis-eQTL mapping in the Carolina Breast Cancer Study. (A) Venn diagram of bulk, tumor-, and immune-specific cis-
eGenes identified in European-ancestry (left) and African-ancestry samples (right) in CBCS. (B) Enrichment analysis of immune- (red) and tumor-specific
(blue) cis-eGenes in CBCS, plotting the –log10 P-value of enrichment (X-axis) and description of gene ontologies (Y-axis). The size of the point represents
the relative enrichment ratio for the given ontology. (C) Scatterplots of GTEx (X-axis) and CBCS effect size (Y-axis) for significant CBCS cis-eQTLs
that were mapped in GTEx. Each point is colored by the GTEx tissue in which the cis-eQTL has the lowest P-value. Reference dotted lines for the X-
and Y-axes are provided. (D) For risk variants from GWAS for breast cancer from iCOGs (88–90), scatterplot of –log10 P-values of bulk (X-axis) and
compartment-specific cis-eQTLs (Y-axis), colored blue for tumor- and red for immune-specific models. A 45-degree reference line is provided. In the top
right corner, three tumor-specific cis-eQTLs are labelled with the eGene CCR3 as they are significant at FDR-adjusted P < 0.05. (E) Tumor-specific
eQTL effect sizes and 95% confidence intervals (Y-axis) for rs56387622 on CCR3 expression across various estimates of tumor purity. The eQTL effect size
from the bulk model is given in blue.
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compartment-specific positive correlations, especially when
the reference dataset is properly aligned with the tissue as-
sayed in the target and ensemble deconvolution is executed
across all implemented deconvolution methods. We tested
the performance of DeCompress by incorporating compart-
ment estimates in eQTL mapping to reveal immune- and
tumor-compartment-specific breast cancer eQTLs.

While DeCompress has several important strengths, it has
some limitations. First, DeCompress, like other deconvo-
lution methods (22,23,25,32), may over- or underestimate
tissue compartment areas. Linseed and CDSeq, methods
built for RNA-seq data, include scaling factors using ERCC
spike-ins or read length (22,23), though these options are
not available for targeted panels. Second, DeCompress has
a high computational cost, owing mainly to feature se-
lection and compressed sensing training steps. We recom-
mend running mainly linear optimization methods in this
step and have implemented parallelization options and effi-
cient memory mapping (95) to bring computation time on
par with the iterative framework proposed in TOAST (32).
However, DeCompress estimates compartment proportions
both accurately and precisely, compared to other reference-
free methods, and provides a strong computational alterna-
tive that is much faster than costly lab-based measurement
of composition. Third, DeCompress is a semi-reference-free
method and shares the limitations of reference-based meth-
ods – namely concerns with the proper selection of a ref-
erence dataset. As seen in the lung adenocarcinoma exam-
ple, where TCGA-LUAD data was not an accurate reflec-
tion of a mixture of adenocarcinoma cell-lines, DeCompress
performance was slightly lower than with datasets prop-
erly matched to their references. Yet, in this setting, De-
Compress performance was on par with that of the other
reference-free methods that do not use a misaligned refer-
ence. Lastly, also in common with reference-free methods,
the compression model may also be sensitive to phenotypic
variation in the reference, as evidenced by the increase in
out-sample prediction R2 in ER-specific models compared
to overall models in CBCS. This specificity may be leveraged
to train more accurate models by using more than one refer-
ence dataset to reflect clinical or biological heterogeneity in
the targeted panel. Researchers may employ more system-
atic methods of assessing the similarity of the reference and
target datasets, like measuring the distance between the two
matrices (i.e. norms based on the singular values of matri-
ces) or comparing the correlation structure of overlapping
genes in the feature spaces of the reference and target. These
evaluations will help with selecting a proper reference for a
targeted panel to be deconvolved using DeCompress.

DeCompress also shares some challenges with reference-
free deconvolution methods, such as the selection of an ap-
propriate number of compartments. Previous groups have
emphasized reliance on a priori knowledge for deconvolv-
ing well-studied tissues, such as blood and brain (113,114).
However, diseased tissues, like bulk cancerous tumors, es-
pecially in understudied subtypes or populations, are more
difficult to deconvolve due to the similarity between com-
partments, many of which may be rare or reflect tran-
sient cell states (29,94,115,116). For this reason, we in-
cluded several data-driven approaches for estimating the
number of compartments from variation in the gene ex-

pression and recommended applying prior domain knowl-
edge about the tissue of interest. We also observed, through
simulations, that selecting too many or too few compart-
ments a priori lead to signal from true compartments split-
ting into compartments with smaller proportions or aggre-
gating into compartments with larger proportions, respec-
tively. Overestimating the number of compartments may
lead to difficulties in assigning identities to the compart-
ment, whereas underestimating the compartments may lead
to ignoring important biological variation that is present
in the DeCompress-ed expression. It is also important to
carefully consider the gene module-based annotations for
the unidentified estimated compartments, especially in bulk
tissue where traditional ideas of compartments are inap-
plicable (28). Several previous reference-free methods have
leveraged in vitro mixtures of highly distinct cell lines in
training and testing (11,22), namely the rat cell line mix-
ture (GSE19830) (11). Though this dataset is easy to decon-
volve and thus useful in testing methodology, the extreme
differences in gene expression between these three tissue
types renders this dataset sub-optimal for methods bench-
marking. Furthermore, assigning estimated compartments
to known tissues in this dataset is straightforward and does
not capture the difficulty of this task in typical deconvolu-
tion applications. Instead, our applications in breast can-
cer expression with CBCS provided such a difficult statis-
tical challenge. Our outlined approach of first comparing
compartment-specific gene signatures to known tissue pro-
files from GTEx or single-cell profiles, then analyzing these
signatures with ORA or GSEA, and lastly checking hy-
potheses against known biological trends provides a struc-
tured framework for addressing the compartment identifi-
cation problem.

Our downstream eQTL analysis in CBCS breast tumor
expression also provided some insight into gene regula-
tion, similar to recent work into deconvolving immune sub-
population eQTL signals from bulk blood eQTLs (109).
In breast cancer, Geeleher et al. previously showed that a
similarly implemented interaction eQTL model gave bet-
ter mapping of compartment-specific eQTLs (8,9). Our re-
sults are consistent with this finding, especially since tumor-
and immune-specific eGenes were enriched for commonly
associated ontologies. However, unlike Geeleher et al, we
generally detected a larger number of immune- and tumor-
specific eQTLs and eGenes than in the bulk, unadjusted
models. We believe that this larger number of compartment-
specific eGenes may be due to the specificity of the genes
assayed by the CBCS targeted panel. As the panel included
406 genes, all previously implicated in breast cancer patho-
genesis, proliferation, or response (10,43,117), the inter-
action model will detect SNPs that have large effects on
compartment-specific genes. The interaction term is inter-
preted as the difference in eQTL effect sizes between sam-
ples of 0% and 100% of the given compartment; accord-
ingly, for genes implicated in specific breast cancer path-
ways, we expect to see large differences in compartment-
specific eQTL effects (118–120). Though this interaction
model is straight-forward in its interpretation for the tu-
mor compartment (i.e. a sample of 100% tumor cells ver-
sus 100% tumor-associated normal cells), this interpreta-
tion may be tenuous for less well-defined compartments,
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like an immune compartment that includes several differ-
ent immune cells. This interaction term’s effect size may
also be inflated for compartment estimates that have low
mean and high variance across the samples. In addition,
we did not consider trans-acting eQTLs that are often at-
tributed to compartment heterogeneity, though we believe
that methods employing mediation or cross-condition anal-
ysis can be integrated with compartment estimates to map
compartment-specific trans-eQTLs relevant in breast can-
cer (121–123).

Relevant to risk and proliferation of breast cancer, we de-
tected a locus of cis-eSNPs associated with expression of
CCR3 (C–C chemokine receptor type s3) that were GWAS-
identified risk SNPs (88–90) but were not significantly as-
sociated with CCR3 expression using the bulk models and
were not detected in GTEx. If one or more causal SNPs in
this genomic region affects CCR3 expression only in can-
cer cells and the effect on CCR3 expression is the main
mechanism by which the locus predisposes individuals to
breast cancer, we can hypothesize that an earlier perturba-
tion in the development of cancer (e.g. transcription factor
or microRNA activation) may cause this SNP’s tumorigenic
effect. Given this perturbation in precancerous mammary
cells, individuals with the risk allele would convey the tu-
morigenic effects of decreased CCR3 expression. It has been
previously shown that increased peritumoral CCR3 expres-
sion is associated with improved survival times in luminal-
like breast cancers (111,112). The CCR3 receptor has been
shown to be the primary binding site of CCL11 (eotaxin-1),
an eosinophil-selective chemoattractant cytokine (124,125),
and accordingly CCR3 antagonism prohibited chemotaxis
of basophils and eosinophils, a phenomenon observed in
breast cancer activation and proliferation (126,127). With-
out DeCompress and the incorporation of estimated com-
partment proportions in the eQTL model, this association
between eSNP and CCR3 expression would not have been
detected in this dataset (128).

DeCompress, our semi-reference-free deconvolu-
tion method, provides a powerful method to estimate
compartment-specific proportions for targeted expression
panels that have a limited number of genes and only
requires RNA-seq or microarray expression from a similar
bulk tissue. Our method’s estimates recapitulate known
compartments with less error than reference-free methods
and provide compartments that are biologically relevant,
even in complex tissues like bulk breast tumors. We
provide examples of using these estimated compartment
proportions in downstream studies of outcomes and eQTL
analysis. Given the wide applications of reference-free
deconvolution, the popularity of targeted panels in both
academic and clinical settings, and increasing need for an-
alyzing heterogeneous and dynamic tissues, we anticipate
creative implementations of DeCompress to give further
insight into expression variation in complex diseases.

DATA AVAILABILITY

The DeCompress package is available as R software
on GitHub: https://github.com/bhattacharya-a-bt/
DeCompress. Sample code for replication and re-
sults from the eQTL analysis are provided: https:

//github.com/bhattacharya-a-bt/DeCompress supplement.
CBCS expression data is publicly available at GSE148426.
CBCS genotype datasets analyzed in this study are not
publicly available as many CBCS patients are still be-
ing followed and accordingly is considered sensitive;
the data is available from M.A.T upon reasonable re-
quest. GTEx median expression profiles are available
from dbGAP accession number phs000424.v7.p2. Single
cell RNA-seq expression from Dong et al is available
from GEO: GSE136148. Data from the published mix-
ture experiments are available from GEO: GSE19830,
GSE123604, GSE97284 and GSE64098. Single-cell ex-
pression profiles of MCF7 cells were obtained from
GSE52716. Expression data from The Cancer Genome
Atlas is available from the Broad GDAC Firehose repos-
itory (https://gdac.broadinstitute.org/) with accession
number phs000178.v11.p8. Software for DeconICA is avail-
able from the following DOI: 10.5281/zenodo.1250070,
with documentation and code at https://github.com/
UrszulaCzerwinska/DeconICA/tree/v0.1.0.
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